
MATH 4073 Homework 4 Due in class on Fri, 09/30/16

Problem 1. [Rate of convergence of a sequence, Aitken’s ∆2 method]

Let the sequence {pn}∞n=0 be defined for all n ≥ 0 by

p0 = 5 , pn =
7pn−1

8
+

1

p2n−1
for n ∈ N .

(a) Think of the sequence {pn}∞n=0 as defined by a functional iteration, pn = g(pn−1), for an
appropriate function g. Write g explicitly. Use some of the theorems about Fixed Point
Iteration to show that g has a fixed point in the interval [32 , 100]. (In fact, instead of 100,
I could have put any arbitrarily large positive number.) Please specify which theorem you
have used.

(b) Use some of the theorems about Fixed Point Iteration to show that there is only one fixed
point of g in the interval [32 , 100]. Again, do not forget to specify which theorem you have
used.

(c) Solve the equation x = g(x) by hand to find the fixed points of g. Observe that the value that
you just found, as well as the value of p0 are in the interval [32 , 100]. This implies that there
are no fixed points of g in this interval other than the value p that you have found. This, in
turn, implies the that the sequence {pn}∞n=0 will converge to the fixed point p.

(d) What does the general theory predict about the rate of convergence α and the asymptotic
error constant λ?

(e) I have run the MATLAB code fixedpoint.m (taken from the class web-site) for the functional
iteration pn = g(pn−1). with g being the function you wrote in part (a), and with initial value
p0 = 5. Part of the output is shown on the next page.

Use the method from Problem 3 of Homework 3 to compute empirically the values of the rate
of convergence α and the asymptotic error constant λ. In your calculation, use values of pn
with n around 30. Please write your computations explicitly, with the concrete values you
are using. Do the empirical values match the predictions of the general theory from part (d)?

(f) Clearly, the fixed-point iteration above converges, but the convergence is not very fast. Use
Aitken’s ∆2 method for accelerating convergence,

p̂n := {∆2}(pn, pn+1, pn+2) := pn −
(∆pn)2

∆2pn
:= pn −

(pn+1 − pn)2

pn+2 + pn − 2pn+1

to compute the value of p̂15. Find the errors |p̂15 − p| and |p15 − p|; discuss briefly what you
observe.

Remark: When computing the value of p̂15, use more digits, otherwise you will lose precision
because of round-off error.

1

>> fixedpoint(inline(’7/8*x+1/x^2’), 5.0, 1e-8, 1000, 1)

iters x x-xold log_10(|x-xold|)

1 4.41500000000000 -0.58500000000000 -0.23284

2 3.91442750651221 -0.50057249348779 -0.30053

3 3.49038653584740 -0.42404097066481 -0.37259

4 3.13617116779797 -0.35421536804943 -0.45073

5 2.84582156525324 -0.29034960254473 -0.53708

6 2.61357047114044 -0.23225109411279 -0.63404

7 2.43327095777499 -0.18029951336545 -0.74401

8 2.29800796769249 -0.13526299008251 -0.86882

9 2.20012076284642 -0.09788720484607 -1.00927

10 2.13169455687759 -0.06842620596883 -1.16478

11 2.08529726669286 -0.04639729018473 -1.33351

12 2.05460133119119 -0.03069593550168 -1.51292

13 2.03466515118882 -0.01993618000236 -1.70036

14 2.02188593661876 -0.01277921457006 -1.89350

15 2.01376722909088 -0.00811870752788 -2.09051

16 2.00863973290306 -0.00512749618782 -2.29009

17 2.00541374881800 -0.00322598408506 -2.49134

18 2.00338906862121 -0.00202468019678 -2.69364

19 2.00212031661768 -0.00126875200354 -2.89662

20 2.00132603964781 -0.00079427696987 -3.10003

21 2.00082910418512 -0.00049693546268 -3.30370

22 2.00051831893458 -0.00031078525055 -3.50754

23 2.00032399968943 -0.00019431924514 -3.71148

24 2.00020251948461 -0.00012148020483 -3.91549

25 2.00012658236699 -0.00007593711761 -4.11955

26 2.00007911698345 -0.00004746538354 -4.32362

27 2.00004944928825 -0.00002966769520 -4.52772

28 2.00003090626362 -0.00001854302463 -4.73182

29 2.00001931659386 -0.00001158966976 -4.93593

30 2.00001207294112 -0.00000724365274 -5.14004

31 2.00000754561553 -0.00000452732559 -5.34416

32 2.00000471602038 -0.00000282959515 -5.54828

33 2.00000294751691 -0.00000176850347 -5.75239

34 2.00000184219970 -0.00000110531721 -5.95651

35 2.00000115137545 -0.00000069082425 -6.16063

36 2.00000071960990 -0.00000043176554 -6.36475

37 2.00000044975629 -0.00000026985362 -6.56887

38 2.00000028109772 -0.00000016865857 -6.77299

39 2.00000017568609 -0.00000010541163 -6.97711

40 2.00000010980381 -0.00000006588228 -7.18123

41 2.00000006862738 -0.00000004117643 -7.38535

2

Problem 2. [Newton’s method for multiple zeros]

Recall that the multiplicity of a zero p of the function f is defined as the number m such that

f(x) = (x− p)m q(x) ,

where q is a function satisfying lim
x→p

q(x) 6= 0.

Recall also that Newton’s method for finding a zero of the function f (or, equivalently, a root of
the equation f(x) = 0) is based on the iterative procedure pn = g(pn−1), where p0 is some starting

value, and g(x) = x− f(x)

f ′(x)
. We stated in class that, if p is a simple zero of f (i.e., a zero of

multiplicity 1) and the Newton’s method converges to p, then the convergence is at least quadratic,
i.e., or order α ≥ 2.

If, however, the zero of f is non-simple, then the Newton’s method converges only linearly.

In class we proved that, if p is a fixed point of the function g and g′(p) 6= 0, then if the iteration
pn = g(pn−1) converges to p, then the convergence is linear and the asymptotic error constant
is λ = |g′(p)|.
In this problem you will show that, indeed, the Newton’s method converges linearly for m ≥ 2,
and will find a modification of Newton’s method that works with multiple zeros (but one needs to
know the multiplicity of the zero and pass it to the program as one of the arguments).

Let p be a zero of multiplicity m ≥ 2 of f . Then the Newton’s iteration for finding a zero of f has
the form

g(x) = x− f(x)

f ′(x)

= x− (x− p)mq(x)

[(x− p)mq(x)]′

= x− (x− p)mq(x)

m(x− p)m−1q(x) + (x− p)mq′(x)

= x− (x− p) q(x)

mq(x) + (x− p)q′(x)
,

therefore

g′(x) = 1− q(x)

mq(x) + (x− p)q′(x)
− (x− p) d

dx

(
q(x)

mq(x) + (x− p)q′(x)

)
.

This implies that

g′(p) = 1− 1

m
6= 0 ,

hence the convergence of Newton’s method is only linear.

(a) Let p be a zero of multiplicity m ≥ 2 of f . Consider the following modification of the Newton’s
method: pn = g(pn−1), where

g(x) = x−m f(x)

f ′(x)
.

Show that in this case g′(p) = 0, hence the convergence is faster than linear.

3

(b) Show that the multiplicity of the root π
2 of the equation (x− π

2)(1− sinx) = 0 is m = 3.

Hint: Expand sinx in a Taylor series around p0 = π
2 .

(c) The Mathematica code

p = N[3, 50000];

m = 3;

f[x_] := (x - Pi/2) * (1-Sin[x]);

For[i = 1, i <= 10, i++,

{ p = p - m*f[p]/f’[p],

error = Abs[p - Pi/2],

Print[i, " ", N[Log[error],10]]

}

]

can be used to find empirically the order of convergence of the method; note that it does the
calculations with accuracy or 50000 decimal digits! Run this code, attach the printout. Use
the data from the printout to compute the order of convergence. Explain how you found the
order of convergence, and write explicitly all calculations.

(d) The number π
2 is a root of the equation(

x− π

2

)3
(1− sinx) = 0

of multiplicity 5. Modify the Mathematica code from part (c) to find empirically the or-
der of convergence of the modified Newton’s method for this equation. Run your code,
attach the printout, and use the data from the printout to compute the order of convergence.

Problem 3. [Synthetic division and deflation for computing roots of polynomials]

In this problem you will use the Horner’s method, called also synthetic division, to find all the zeros
of a polynomial of degree 5, i.e., all the roots of the equation

x5 − 8x4 + 36x3 − 42x2 − 37x+ 50 = 0 . (1)

(a) Use synthetic division to find

x5 − 8x4 + 36x3 − 42x2 − 37x+ 50

x+ 1
.

(b) Use synthetic division to find

x5 − 8x4 + 36x3 − 42x2 − 37x+ 50

(x+ 1)(x− 2)
.

(c) Use Horner’s method to find the value of the cubic polynomial found in part (b) at x0 = 1.
This should suggest a way of representing the cubic polynomial from part (b) as a product
of a linear polynomial and a quadratic polynomial.

4

(d) Use the results of parts (a), (b), and (c) to find all the roots of the equation (1) (including
the non-real roots).

Remark: The built-in MATLAB command roots finds (possibly complex) roots of polynomials.
The argument of roots is a vector of all coefficients of the polynomial, starting with the one at
the highest power. For example, to find all roots of the polynomial 2x5 + x4 + 5x2 − 13x+ 5, type
roots([2 1 0 5 -13 5]) and press return.

One can find out more information about MATLAB functions, say roots, by typing
help roots

Use this to see the description of MATLAB command fzero which is a built-in zero finder. By
typing

help help

you will get information about the command help itself, and

help /

will give you a description of all operators and special characters.

5

