
MATH 4163 Homework 4 Due Fri, Sep 21, 2012

Problem 1. Solve the following BVP for the Laplace’s equation:

∆u(x, y) = 0 , x ∈ [0, a] , y ∈ [0, b] ,

ux(0, y) = 0 , ux(a, y) = 0 ,

u(x, 0) = 0 , u(x, b) = f(x) ,

(1)

where the function f has Fourier cosine series

f(x) =
a0
2

+
∞∑
n=0

an cos
nπx

a
, aj =

2

a

∫ a

0

f(x) cos
jπx

a
dx , j ∈ {0, 1, 2, . . .} .

The physical meaning of the BVP (1) is the following: u(x, y) can be interpreted as the
steady-state temperature distribution in the rectangle [0, a]× [0, b] such that:

• there are no heat sources inside the rectangle [0, a]× [0, b];

• the walls at x = 0 and x = a are thermally insulated (i.e., the heat flux through each
point of these walls is zero);

• the temperatures at the wall at y = 0 is kept equal to zero, while the temperature at
the wall at y = b is given by the function f(x).

You may use that the BVP

X ′′(x)− µX(x) = 0 , x ∈ [0, a] ,

X ′(0) = 0 , X ′(a) = 0

has a non-zero solution only if µ takes one of the values

µn = −
(nπ
a

)2
, n ∈ {0, 1, 2, . . .} .

The corresponding solutions of this BVP are

Xn(x) =

 1 if n = 0 ,

cos
nπx

a
if n ∈ N .

(2)

When you separate variables, the solution u(x, y) of the BVP (1) is a superposition of
functions of the form

un(x, y) = Xn(x)Yn(y) , (3)

where the functions Xn are given by (2).
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(a) What ODEs do the functions Yn in (3) satisfy? (Derive the ODEs separately for the
cases n = 0 and n ∈ N.)

The general solutions of the ODEs you just wrote are

Yn(y) =

 A0 +B0y if n = 0 ,

Ancosh
nπy

a
+Bnsinh

nπy

a
if n ∈ N

(4)

(you do not need to derive this!). We could have written the solution for Yn(y) for
n ∈ N as a sum of two exponents, but the representation in (4) is more convenient in
this problem.

(b) Do the functions un(x, y) = Xn(x)Yn(y) satisfy the PDE from the BVP (1)? Why?
Which of the four BCs does each of these functions satisfy?

(c) Write the expansion

u(x, y) =
∞∑
n=0

un(x, y) =
∞∑
n=0

Xn(x)Yn(y) ,

with the explicit expressions for Xn and Yn. Impose the remaining BCs from the
BVP (1) to find the constants in the functions Yn. Write down the solution u(x, y) of
the BVP (1).

(d) Solve the BVP (1) in the case

f(x) = 5 + 3 cos
7πx

a
.

Problem 2. In this problem you will attempt to solve the following BVP for the Laplace’s
equation:

∆u(x, y) = 0 , x ∈ [0, a] , y ∈ [0, b] ,

ux(0, y) = 0 , ux(a, y) = 0 ,

uy(x, 0) = 0 , uy(x, b) = f(x) ,

(5)

where the function f has Fourier cosine series

f(x) =
a0
2

+
∞∑
n=0

an cos
nπx

a
, aj =

2

a

∫ a

0

f(x) cos
jπx

a
dx , j ∈ {0, 1, 2, . . .} . (6)

The BVP (5) is similar to the BVP (1) considered in Problem 1, but here the BCs on
all walls are Neumann BCs (i.e., the derivative of u(x, y) in a direction normal to the wall is
given), while in Problem 1 the BCs on two walls were Neumann and on the other two walls
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the BCs were of Dirichlet type (i.e., the value of u(x, y) at the wall is given). This difference
seems very small, but in fact is crucial because of the physical interpretation of the BVPs
(1) and (5).

The solution of this problem is very similar to the one of Problem 1 (some things
are totally identical), so use your results from Problem 1 without rederiving them here.
Assume that, again, we look for the solution u(x, y) as a superposition of functions un(x, y) =
Xn(x)Yn(y). The functions Xn are again given by (2). For the rest of the problem, follow
the steps below.

(a) What ODEs do the functions Yn satisfy? What are the general solutions of these
ODEs?

Hint: How is this part of the problem different from part (a) of Problem 1?

(b) Do the functions un(x, y) = Xn(x)Yn(y) satisfy the PDE from the BVP (5)? Which
of the four BCs does each of these functions satisfy?

(c) As in Problem 1(c), write the expansion

u(x, y) =
∞∑
n=0

un(x, y) = A0 +B0y +
∞∑
n=1

(
Ancosh

nπy

a
+Bnsinh

nπy

a

)
cos

nπx

a

and impose the remaining BCs in (5) to derive equations for the constants Aj and Bj.
Do not solve the equations here!

(d) Show that the BC at y = 0 imply that Bj = 0 for all j = 0, 1, 2, . . ..

Hint: If

c0 +
∞∑
n=1

cn cos
nπx

a
= 0 for all x ∈ [0, a] , (7)

then you can conclude that cj = 0 for all j = 0, 1, 2, . . .. This can be derived sim-
ply (but you do not need to do this!): using the fact that the system of functions
{1, cos πx

a
, cos 2πx

a
, cos 3πx

a
, . . .} is orthogonal on [0, a] with respect to the inner product

〈f, g〉 =

∫ a

0

f(x) g(x) dx ,

you can multiply (7) consecutively by 1, cos πx
a

, cos 2πx
a

, . . ., to show that all coeffi-
cients cj must be 0.

(e) Now that you know that all Bj = 0 for j = 0, 1, 2, . . ., impose the BC at y = b to
try to find the coefficients Aj. Equate the expression for uy(x, b) (with Bj = 0) to the
function f(x) from (6). What do you get for the coefficients An for n ∈ N?

(f) The most interesting thing here is what you obtain for the coefficient A0. Do you
obtain any condition for it? What would happen if the coefficient a0 in (6) is not equal
to zero?

Hint: The answer to the last question is very dramatic!
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(g) The physical reason for your dramatic answer in part (f) is that the function f(x)
in (5) gives the flux of heat energy through the wall at y = b. The coefficient a0 of
the Fourier cosine series (6) of f(x) is proportional to the average of the function f(x)
over the interval x ∈ [0, a]: indeed,

1

a

∫ a

0

f(x) dx =
1

a

∫ a

0

(
a0
2

+
∞∑
n=0

an cos
nπx

a

)
dx =

a0
2
.

If a0 6= 0, this means that the net amount of heat going into the rectangle [0, a] ×
[0, b] through the wall at y = b is non-zero, while the other three walls are thermally
insulated. Recall that Laplace’s equation describes the steady-state heat distribution.
What is the physical explanation of the fact that if a0 6= 0, the BVP (5) has no solution?

Problem 3. Read Section 2.5.2 (pages 76–80) of the textbook (about the solution of the
Laplace’s equation in a circular disk), and solve the following BVP:

∆u(r, θ) = 0 , r ∈ [0, 2] , θ ∈ [0, 2π) ,

u(2, θ) = 3 + 5 cos 6θ − 7 sin 8θ .
(8)

You may simply use the general form of the solution of the problem given by Equa-
tion (2.5.45) of the book,

u(r, θ) = A0 +
∞∑
n=1

rn(An cosnθ +Bn sinnθ) ,

but please read the text from the book and identify the main points in the derivation of this
expression. For example, here the discretization of the constant occurring in the separation
of variables comes not from a boundary condition, but from the fact that the angular part
Θ(θ) of the solution u(r, θ) = R(r)Θ(θ) must be a periodic function of period 2π (these
notations are different from the ones in the book). Another crucial thing to notice is that
we here eliminate solutions that have a factor of r−n for n ∈ N because they would lead to
an unbounded growth of the solution at the origin (i.e., when r → 0), which is clearly not
physical.
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