
MATH 4193/5103 Homework 4 Due 3/24/20 (Tuesday)

Problem 1. [The golden mean]

In this problem you will find the exact value of the number γ, often called the golden mean
or the golden ratio (sometimes this terminology is used for γ−1). The golden mean is defined
by the following expression:

γ =
1

1 +
1

1 +
1

1 +
1

1 + · · ·

. (1)

(a) Consider the iteration xn+1 = f(xn), where x1 = 1, and

f(x) =
1

1 + x
.

Recall the following result.

Theorem.

(i) If the function g : [a, b]→ R is continuous and g(x) ∈ [a, b] for all x ∈ [a, b], then
g has at least one fixed point in [a, b].

(ii) If, in addition, g′(x) exists on (a, b) and a positive constant k < 1 exists with
|g′(x)| ≤ k for all x ∈ (a, b), then there is exactly one fixed point in [a, b].

Find an interval [a, b] that is mapped into itself by f and use this theorem to prove
the existence of a fixed point of f in [a, b].

(b) Use the above theorem to prove the uniqueness of the fixed point of f .

(c) Is the fixed point of f stable or unstable?

Hint: Recall Lecture 4.

(d) Sketch (by hand) a cobweb plot for the function f to illustrate how the iterates of f
behave.

(e) Find the exact value of the fixed point of f .

(f) How is your result in part (e) related to the value of the golden mean? Explain briefly.

Problem 2. [Linearization of a nonlinear system at a hyperbolic fixed point]

Consider the nonlinear system

x′1 = 1− x1ex2

x′2 = x1x2 ,
(2)
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i.e., x′ = f(x) =

(
f1(x1, x2)
f2(x1, x2)

)
, with f1(x) = 1 − x1ex2 , f2(x) = x1x2. The system (2) has

only one fixed point, namely, x∗ = (1, 0).

(a) Let us first linearize the nonlinear system (2) “by hand”. Define new vector-valued
function u(t) = (u1(t), u2(t)) by

x(t) = x∗ + u(t) , (3)

i.e., set x1(t) = x∗1 + u1(t), x2(t) = x∗2 + u2(t). The vector-valued function u(t) is
the displacement from the fixed point. Since we are interested in the behavior of the
integral lines in a small neighborhood of the fixed point, we think of u(t) as small.
In more detail, this means the following. Think of the functions u1(t) and u2(t) as
having values so small that if one substitutes x(t) expressed in terms of the function
u(t) into the right-hand side of the nonlinear system (2) and expands all the terms in
the right-hand side of (2) in Taylor series, then one can leave only the terms that are
linear in u1(t) and u2(t). In other words, ignore the quadratic terms u1(t)

2, u1(t)u2(t),
u2(t)

2, the cubic terms, and all terms of higher order. Then the nonlinear system (2)
for the unknown functions x1(t), x2(t) becomes a linear constant-coefficient system for
the new unknown functions u1(t), u2(t) – this is exactly the linearization of the original
system (2) at the fixed point x∗. Your goal in this part of the problem is only to write
the linear constant-coefficient system for u1(t) and u2(t) by using this method. The
resulting system is the linearization of the original nonlinear system (2) at the fixed
point x∗.

(b) Write down the linearized system

u′ = Df(x∗) u ,

in the “standard” way (you will obtain the same result as in part (a)). Here Df(x∗) is
the Jacobian matrix at x∗, i.e., a constant matrix with entries

[Df(x∗)]ij =
∂fi
∂xj

(x∗) , where x∗ = (1, 0) .

(c) Find the eigenvalues of the linearized system. Is the fixed point x∗ = (1, 0) hyperbolic?
What does this imply about the behavior of the linearized system compared with the
behavior of the original system (2) in a small neighborhood of x∗?

(d) Find the eigenvectors of the linearized system. Sketch the integral lines of the linearized
system in a small neighborhood of the fixed point.

Some integral lines of the nonlinear system (2) are represented in Figure 1.
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Figure 1: Integral lines of the nonlinear system (2) in the square [−5, 5]× [−5, 5] (left) and
in the square [−0.01, 0.01]× [−0.01, 0.01] (right); the fixed point of (2) is at x∗ = (1, 0).

Problem 3. [Linearization of a nonlinear system at a non-hyperbolic fixed point]

Consider the nonlinear system

x′ = −y + µx(x2 + y2)

y′ = x+ µy(x2 + y2) ,
(4)

where µ is a parameter. Obviously, the origin x∗ = (0, 0) is a fixed point of (4).

(a) Linearize the non-linear system (4) at the fixed point x∗ = (0, 0), i.e., write down the
system

u′ = Au , A = Df(x∗) ,

where u(t) = (u(t), v(t)) are the small displacements from the fixed point.

(b) What are the eigenvalues of the matrix A from part (a)? Is the fixed point (0, 0)
hyperbolic? Justify your answer.

(c) Solve the linearized system of ODEs derived in part (a). Perhaps the simplest way
to solve it is to write down a second-order ODE for the first component, u(t), of the
vector-valued function u(t) – if you do that, you will immediate recognize the equation
and can write its solution right away. Sketch the typical phase trajectories of the
linearized system in the (u, v)-plane (which is the same as the (x, y)-plane).

(d) Now you will solve the nonlinear system (4). Perform a polar change of coordinates,
i.e., introduce new pair of unknown functions, r(t) and θ(t), related with x(t) and y(t)
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by
x(t) = r(t) cos θ(t) , y(t) = r(t) sin θ(t) .

Performed detailed calculations to show that the nonlinear system (4) becomes

r′ = µr3

θ′ = 1 .

(e) The solution of the ODE for θ(t) is obvious – the angle θ increases at a constant rate.
Without solving the ODE for r(t), explain how r(t) behaves when t→∞ in the cases
µ < 0, µ = 0, and µ > 0. Sketch the typical phase trajectories in the (x, y)-plane in
each of these three cases.

(f) Does the linearized system faithfully reflect the behavior of the nonlinear system (4)
in a small neighborhood of the fixed point (0, 0)? Discuss your findings in the light of
the Hartman-Grobman Theorem.

Problem 4. [One-parameter family in the trace-determinant plane]

Consider the one-parameter family of linear systems

x′ =

(
a −a
1 0

)
x =: Ax . (5)

(a) Sketch the path traced out by the one-parameter family (5) of linear systems in the
trace-determinant plane as the parameter a varies. Indicate the important values in
your picture.

(b) What can you say about the eigenvalues of A for a ∈ (−∞, 0)? What is the type of
the fixed point (0, 0) of (5) when the parameter a is in this range? Sketch the phase
portrait in this case.

(c) What can you say about the eigenvalues of A for a ∈ (0, 4)? Classify the type of the
fixed point (0, 0) of (5) and sketch the phase portrait in this case.

(d) Do the same as in parts (b) and (c) for a ∈ (4,∞).
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