
MATH 4073 Homework 5 Due Fri, 10/14/16

Problem 1. [Using Taylor expansions to find approximate solutions of equations]

In this problem you will find approximate solutions of the nonlinear equation

x+ e0.00001x = 100 . (1)

(a) You can give a very rough estimate of the solution thinking like this. Clearly, the left-hand
side of equation (1) is a strictly increasing function of x (look at its derivative). If x = 100,
then the left-hand side is has value 100 + e0.00001·100 = 100 + e0.01, which is a little more than
101, so that the root we are looking for must be a little less than 100. Since x in e0.00001x is
multiplied by the very small number 0.00001, for x ≈ 100, we will have e0.00001x ≈ e0.001 ≈ 1.
Use the Taylor expansion of ez about z = 0, truncated right after the constant term, i.e.,

ez = 1 + z +
z2

2!
+
z3

3!
+
z4

4!
+ · · · ≈ 1 ,

in order to find an approximate value of the solution x of equation (1).

(b) Now follow the ideas of part (a) and use Taylor expansion of the exponent truncated right
after the linear term,

ez = 1 + z +
z2

2!
+
z3

3!
+
z4

4!
+ · · · ≈ 1 + z ,

to obtain an approximation of the solution that is better than the one obtained in part (a).

(c) Run the code newton.m (available at the class web-site) to find the exact root of the nonlinear
equation (1) (set the tolerance to be small, say, 10−14); attach your MATLAB printout.

(d) Find the absolute and the relative errors of the approximate solutions found in parts (a)
and (b).

Problem 2. [Error bounds in piecewise-linear Lagrange interpolation]

In this problem you will study in detail the piecewise-linear interpolation of the function

f(x) =
1

x
(2)

on the interval [1, 2], and then on the interval [1, 3]. The graphs of the function and the Lagrange
interpolating polynomial on the interval [1, 2] are shown in Figure 1.

(a) Find the first order Lagrange polynomial P1(x) of f(x) = 1
x that passes through the points

(1, f(1)) and (2, f(2)).
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Figure 1: Linear interpolation of f(x) = 1
x on the interval [1, 2] (the function f is plotted with a

thick solid line, and the interpolating polynomial with a dashed line).

(b) Let
E := max

x∈[1,2]
|f(x)− P1(x)|

be the true error of the first order Lagrange interpolation. Find the numerical value of E.

Hint: You first have to find the value x∗ of the argument that maximizes the expression
|f(x)− P1(x)|. Note that f is concave up, so that the graph of P1 lies above the graph of f ,
therefore |f(x)− P1(x)| = P1(x)− f(x).

(c) Find the rigorous error bound of the linear interpolation on [1, 2] given by Theorem 3.3 in
Section 3.1 of the book:

|f(x)− Pn(x)| ≤ 1

(n+ 1)!
max
x∈[1,2]

∣∣∣f (n+1)(ξ(x))
∣∣∣ n∏
j=0

|x− xj |

 . (3)

Since that you do not know the value of ξ(x) in this bound, the only thing you can do to
end up with a rigorous upper bound is to take maximum over ξ ∈ [1, 2] and over x ∈ [1, 2]
separately, and use the obvious inequality

max
x∈[1,2]

∣∣∣f (n+1)(ξ(x))
∣∣∣ n∏
j=0

|x− xj |

 ≤ max
ξ∈[1,2]

∣∣∣f (n+1)(ξ)
∣∣∣ max
x∈[1,2]

n∏
j=0

|x− xj |

(food for thought: why is this obvious?). Computing the expressions in the right-hand side
is quite easy in the case n = 1 which you are considering; note that, for x ∈ [x0, x1] := [1, 2],

1∏
j=0

|x− xj | = |x− 1| |x− 2| = (x− 1)(2− x) .
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Find the exact value of this bound (i.e., of the expression in the right-hand side of (3)), and
compute its numerical value. Compare with the exact value of the error found in part (b);
discuss briefly.

(d) Now find the Lagrange interpolating polynomial of f over the interval [2, 3], and write your
results from parts (a) and (c) together in the form

Ppiece−lin(x) =

{
b1x+ c1 , x ∈ [1, 2] ,

b2x+ c2 , x ∈ [2, 3] .

(e) Use your result from part (d) to compute Ppiece−lin(1.25), and compare its value with f(1.25).

(f) Finally, compute the Taylor series of f around x0 = 1. Does it converge for x = 2?

Hint: Note that
1

x
=

1

1 + (x− 1)
=

1

1− [−(x− 1)]
, and use the formula for the sum of a

geometric series; for which values of |x− 1| does this series converge?

Problem 3. [Quadratic Lagrange interpolation]

This problem is a continuation of Problem 2.

(a) Construct the Lagrange interpolating polynomial of degree at most 2, P2(x), to the function
f(x) given by (2) in the interval [1, 3]. The polynomial P2(x) is the only quadratic function
whose graph goes through the points (1, f(1)) = (1, 1), (2, f(2)) = (2, 12) and (3, f(3)) = (3, 13).

(b) Use the quadratic Lagrange interpolating polynomial found in part (a) to compute the approx-
imate value of P2(1.25). Find the numerical value of the absolute error |f(1.25)− P2(1.25)|.

Problem 4. [Using Lagrange interpolants to find approximate value of integrals]

This problem is a continuation of Problems 2 and 3. Let

Iexact :=

∫ 3

1

1

x
dx , Ipiece−lin :=

∫ 3

1
Ppiece−lin(x) dx , Iquadr :=

∫ 3

1
P2(x) dx

be the definite integrals from 1 to 3 of the function f(x) = 1
x given by (2), and the piecewise-linear

and the quadratic interpolating functions you computed in Problems 2 and 3.

(a) Without computing anything , decide which of the numbers Iexact and Ipiece−lin is larger. A
(hand-drawn) picture and a couple of sentence of explanation are enough.

(b) Compute the numerical values of Iexact, Ipiece−lin, and Iquadr. Was your prediction in part (a)
correct?

(c) Compute the numerical values of the absolute errors in approximating Iexact by Ipiece−lin and
by Iquadr.
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Problem 5. [Newton’s divided differences interpolating polynomial]

The purpose of this problem is to construct and study the Newton’s divided difference form of the
interpolating polynomial,

Pn(x) = f [x0] +
n∑
k=1

f [x0, . . . , xk]
k−1∏
j=0

(x− xj) ,

to the function f(x) = cos(πx). The points xi, i = 0, 1, 2, 3 used to construct the interpolating
polynomial are given in the table below. Figure 2 shows the graphs of the function f(x) = cos(πx)
and the interpolating polynomials P0(x), P1(x), P2(x), and P3(x).

(a) Compute the missing entries in the divided differences table below. Write your calculations
clearly and leave the coefficients in symbolic form (i.e., do not compute the numerical values
of things like 12(8

√
2− 11)).

xi 0th order 1st order 2nd order 3rd order

x0 = 0 f [x0] = 1

f [x0, x1] =?

x1 = 1
3

f [x1] =
1
2

f [x0, x1, x2] =?

f [x1, x2] =? f [x0, x1, x2, x3] = 12(8
√
2− 11)

x2 = 1
2

f [x2] = 0 f [x1, x2, x3] = 12(2
√
2− 3)

f [x2, x3] = −2
√
2

x3 = 1
4

f [x3] =?

(b) Write down the interpolating polynomial P0(x) based on the values in the divided differences
table above. (P0(x) should “agree” with f(x) at the point x0.)

(c) Similarly to part (b), write down the interpolating polynomial P1(x) based on the values in
the divided differences table above. (P1(x) should “agree” with f(x) at the points x0 and x1.)

(d) Similarly to part (b), write down the interpolating polynomial P2(x) based on the values in
the divided differences table above. Do not expand it – just substitute the coefficients in the
Newton’s divided difference interpolating polynomial with the corresponding entries from the
table. (P2(x) should “agree” with f(x) at the points x0, x1, and x2.)

(e) Similarly to part (b), write down the interpolating polynomial P3(x) based on the values in
the divided differences table above. Do not expand the polynomial!
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Figure 2: Graphs of the function f(x) (the dashed line) and the interpolating polynomials P0(x),
P1(x), P2(x), and P3(x).
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