
MATH 4193/5103 Homework 6 Due 5/4/17 (Thursday)

Problem 1. [A bead on a rotating hoop]

A bead of mass m can slide without friction on a circular hoop of radius ` that rotates about
a vertical diameter with constant angular speed Ω as shown in the figure.
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The equation of motion of the bead can be shown to be

m`
d2θ

dt2
= m`Ω2 cos θ sin θ −mg sin θ , (1)

where the angle θ belongs to the circle S1, which is nothing but the the interval (−π, π] with
identified ends (if you are more versed in mathematics, you can write S1 = R/(2πZ)). By
introducing the dimensionless time τ := t

√
g
`

and the non-negative dimensionless parameter

µ := `Ω
g
≥ 0, we can rewrite (1) as the system

dθ

dτ
= ν ,

dν

dτ
= (µ cos θ − 1) sin θ . (2)

The parameter µ is the square of the ratio of the angular velocity Ω of the hoop’s rotation
and the frequency

√
g
`

of the small oscillations of the bead when the hoop is not rotating.

(a) Find all fixed points (i.e., equilibrium solutions) of the system (2). Show that, if µ ≤ 1,
there are two equilibria, while for µ > 1 there are four equilibria.

(b) Linearize (2) around the fixed point (π, 0). What kind of fixed point is it? Is it
hyperbolic?

Hint: If (2) is written as d
dτ
x = f(x), then Df(x) =

(
0 1

µ(cos2 θ − sin2 θ)− cos θ 0

)
.

(c) In the case µ < 1, linearize (2) around the fixed point (0, 0), and show that (0, 0) is a
center (hence, non-hyperbolic). Find the period of the small periodic motion around
this fixed point as a function of the parameter µ.

Hint: If λ1,2 are the eigenvalues of the matrix of the linearized system (recall that λ1

is the complex conjugate of λ2), then in the case of a center the period of the small
periodic motions around the corresponding fixed point is 2π

Imλ
.
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(d) In the case µ > 1, linearize (2) around the fixed point (0, 0). What kind of fixed point
is (0, 0) in this case? Is it hyperbolic? Find its eigenvalues and eigenvectors.

(e) In the case µ > 1, linearize (2) around the fixed point (arccos 1
µ
, 0) and show that it

is a center. Find the period of the small periodic motion around this fixed point as a
function of the parameter µ.

(f) Sketch the position of the four equilibria as functions of µ (use solid line for the sta-
ble equilibria and dashed line for the unstable ones). Find the positions of the four
equilibria in the limit µ → ∞. What is the physical explanation of your result (in
particular, in the limit µ→∞)?

(g) What is the physical explanation of the bifurcation occurring at µ = 1?

(h) Only if you take the class as 5103!

Use your results from (d) and (e) to sketch the phase portrait of the system in the case
µ > 1.

Remark: The behavior of the system around the fourth fixed point, (− arccos 1
µ
, 0), is

the same as around (arccos 1
µ
, 0).

(i) Only if you take the class as 5103!

Let µ(Ω) be the frequency of the small oscillations of the bead around the stable equi-
librium solutions as a function of the rotation frequency Ω. Plot µ(Ω) for Ω ∈ [0, 3ω0].
Show that µ(Ω) has a singularity of a cusp type at Ω = ω0 (i.e., that lim

Ω→ω0−
µ(ω) = −∞

and lim
Ω→ω0+

µ(ω) =∞). What does this imply for the period, T (Ω) := 2π
µ(Ω)

?

Problem 2. [“Traveling front” solutions of a nonlinear PDE]

In this problem you will find the allowed range of solutions of a nonlinear equation. Consider
the equation

∂ũ

∂t̃
+ ε

∂ũ

∂x̃
= D

∂2ũ

∂x̃2
+ rũ

(
1− ũ

K

)
, x ∈ R , t > 0 . (3)

Here ε, D, r, and K are positive constants. The solution ũ can be interpreted as population
or concentration, so we require that it is positive for any x and t.

(a) If ũ is measured in kg (kilograms), x̃ is measured in m (meters), and t̃ is measured in
s (seconds), what are the units of ε, D, r, and K?

Hint: You can reason like this: the unit of
∂ũ

∂t̃
is

[
∂ũ

∂t̃

]
=

[ũ][
t̃
] =

kg

s
; similarly, the unit

for measuring, say, D
∂2ũ

∂x̃2
is [D]

kg

m2
; these two units must be equal, so

kg

s
= [D]

kg

m2
,

therefore the unit of D is [D] =
m2

s
.
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(b) Define new quantities, x, t, and u, as follows:

ũ = Ku , T̃ =
t

r
, x̃ =

√
D

r
x ,

and show that the PDE (3) becomes

∂u

∂t
+ µ

∂u

∂x
=
∂2u

∂t2
+ u (1− u) , µ = const > 0 . (4)

How is the new positive constant µ related to the original constants ε, D, r, and K?

(c) Look for solutions of (4) that represent a traveling front with constant profile, i.e.,

u(x, t) = U(x− ct) ,

where c = const > 0 is a positive constant (the speed of the front), and U is a function
of one variable satisfying the conditions

lim
z→−∞

U(z) = const , lim
z→∞

U(z) = 0 , U(z) ≥ 0 for all z ∈ R . (5)

Start by expressing the derivatives
∂u

∂t
,
∂u

∂x
, and

∂2u

∂x2
, in terms of U ′(z) and U ′′(z)

(where z = x− ct).

(d) Using your results from part (c), rewrite the PDE (4) for u(x, t) as a second order ODE
for U(z).

(e) Define the new function V (z) := U ′(z), and rewrite the second order ODE for U(z) as
the following system of two first order ODEs for the functions U(z) and V (z):

U ′(z) = V ,

V ′(z) = −U(1− U)− (c− µ)V .
(6)

(f) The system (6) has two fixed points: (0, 0) and (1, 0). Show that the linearization of

the system at the point (1, 0) is

(
0 1
1 −(c− µ)

)
, find its eigenvalues and explain why

the fixed point (1, 0) is always a saddle.

(g) Show that the linearization of the system at the point (0, 0) is

(
0 1
−1 −(c− µ)

)
, and

write the characteristic equation for the eigenvalues λ.

(h) As we discussed in class, the condition that U(z) be positive (recall (5)) is violated if
the fixed point (0, 0) is a spiral (because then the trajectory of the system (6) in the
(U, V )-plane will enter the region {U < 0}). Find the condition on the speed c for non-
existence of “traveling front” solutions of the PDE (4). How does the “critical” speed c
(below which there are no “traveling front” solutions) depend on the parameter µ?
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