MATH 4193/5103 Homework 6 Due 5/4/17 (Thursday)

Problem 1. [A bead on a rotating hoop]

A bead of mass m can slide without friction on a circular hoop of radius ¢ that rotates about
a vertical diameter with constant angular speed €2 as shown in the figure.
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The equation of motion of the bead can be shown to be
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where the angle 6 belongs to the circle S*, which is nothing but the the interval (—m, 7] with
identified ends (if you are more versed in mathematics, you can write S = R/(27Z)). By
introducing the dimensionless time 7 := t\/% and the non-negative dimensionless parameter
W= % > 0, we can rewrite (1) as the system
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The parameter p is the square of the ratio of the angular velocity 2 of the hoop’s rotation
and the frequency \/g of the small oscillations of the bead when the hoop is not rotating.

(a) Find all fixed points (i.e., equilibrium solutions) of the system (2). Show that, if u < 1,
there are two equilibria, while for ;1 > 1 there are four equilibria.

(b) Linearize (2) around the fixed point (7,0). What kind of fixed point is it? Is it
hyperbolic?
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Hint: If (2) is written as -x = f(x), then Df(x) = ( 1(cos?0 — sin? ) — cosf 0 )
(c) In the case u < 1, linearize (2) around the fixed point (0,0), and show that (0,0) is a

center (hence, non-hyperbolic). Find the period of the small periodic motion around
this fixed point as a function of the parameter .

Hint: If A5 are the eigenvalues of the matrix of the linearized system (recall that )\
is the complex conjugate of ), then in the case of a center the period of the small
periodic motions around the corresponding fixed point is Ii—”/\
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(d) In the case p > 1, linearize (2) around the fixed point (0,0). What kind of fixed point
is (0,0) in this case? Is it hyperbolic? Find its eigenvalues and eigenvectors.

(e) In the case p > 1, linearize (2) around the fixed point (arccos l%, 0) and show that it
is a center. Find the period of the small periodic motion around this fixed point as a
function of the parameter .

(f) Sketch the position of the four equilibria as functions of p (use solid line for the sta-
ble equilibria and dashed line for the unstable ones). Find the positions of the four
equilibria in the limit 4 — oco. What is the physical explanation of your result (in
particular, in the limit g — 00)?

(g) What is the physical explanation of the bifurcation occurring at p = 17

(h) ’ Only if you take the class as 5103! ‘

Use your results from (d) and (e) to sketch the phase portrait of the system in the case
w> 1.

Remark: The behavior of the system around the fourth fixed point, (— arccos i, 0), is
the same as around (arccos %, 0).

(i) ‘ Only if you take the class as 5103! ‘

Let 1(€2) be the frequency of the small oscillations of the bead around the stable equi-
librium solutions as a function of the rotation frequency 2. Plot () for 2 € [0, 3wy.
Show that p(£2) has a singularity of a cusp type at 2 = wy (i.e., that Qlirn p(w) = —o0
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and lim p(w) = 00). What does this imply for the period, T'(Q2) := —22-?
Q—wo+ H’(Q)

Problem 2. [“Traveling front” solutions of a nonlinear PDE]

In this problem you will find the allowed range of solutions of a nonlinear equation. Consider
the equation
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Here e, D, r, and K are positive constants. The solution u can be interpreted as population
or concentration, so we require that it is positive for any x and t.

(a) If 7 is measured in kg (kilograms), Z is measured in m (meters), and ¢ is measured in
s (seconds), what are the units of ¢, D, r, and K?
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Hint: You can reason like this: the unit of — is {E m = —g; similarly, the unit
S
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8—; is [D] —gz; these two units must be equal, so ?g = [D] &

therefore the unit of D is [D] = —.
S

for measuring, say, D —t



(b) Define new quantities, z, t, and u, as follows:
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8t+ua—x—w+u(1—u), p = const > 0 . (4)

How is the new positive constant y related to the original constants €, D, r, and K?

(c) Look for solutions of (4) that represent a traveling front with constant profile, i.e.,

u(z,t) =U(x —ct)

where ¢ = const > 0 is a positive constant (the speed of the front), and U is a function
of one variable satisfying the conditions

lim U(z) = const , lim U(z) =0, U(z) >0 forall zeR. (5)
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Start by expressing the derivatives 8_1;’ a—z, and a—;;, in terms of U'(z) and U"(z)

(where z = x — ct).

(d) Using your results from part (c), rewrite the PDE (4) for u(z,t) as a second order ODE

(e)

(f)

for U(z).

Define the new function V(z) := U’(z), and rewrite the second order ODE for U(z) as
the following system of two first order ODEs for the functions U(z) and V'(z2):

U'z) =V,
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The system (6) has two fixed points: (0,0) and (1,0). Show that the linearization of
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the fixed point (1,0) is always a saddle.

the system at the point (1,0) is ( ) ) , find its eigenvalues and explain why
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Show that the linearization of the system at the point (0, 0) is ( _01 (e p) ) , and
write the characteristic equation for the eigenvalues .

As we discussed in class, the condition that U(z) be positive (recall (5)) is violated if
the fixed point (0,0) is a spiral (because then the trajectory of the system (6) in the
(U, V)-plane will enter the region {U < 0}). Find the condition on the speed ¢ for non-
existence of “traveling front” solutions of the PDE (4). How does the “critical” speed ¢
(below which there are no “traveling front” solutions) depend on the parameter p?



