Problem 1. [A bead on a rotating hoop]

A bead of mass m can slide without friction on a circular hoop of radius ℓ that rotates about a vertical diameter with constant angular speed Ω as shown in the figure.

The equation of motion of the bead can be shown to be

$$
\begin{equation*}
m \ell \frac{\mathrm{~d}^{2} \theta}{\mathrm{~d} t^{2}}=m \ell \Omega^{2} \cos \theta \sin \theta-m g \sin \theta \tag{1}
\end{equation*}
$$

where the angle θ belongs to the circle S^{1}, which is nothing but the the interval $(-\pi, \pi]$ with identified ends (if you are more versed in mathematics, you can write $S^{1}=\mathbb{R} /(2 \pi \mathbb{Z})$). By introducing the dimensionless time $\tau:=t \sqrt{\frac{g}{\ell}}$ and the non-negative dimensionless parameter $\mu:=\frac{\ell \Omega}{g} \geq 0$, we can rewrite (1) as the system

$$
\begin{equation*}
\frac{\mathrm{d} \theta}{\mathrm{~d} \tau}=\nu, \quad \frac{\mathrm{d} \nu}{\mathrm{~d} \tau}=(\mu \cos \theta-1) \sin \theta . \tag{2}
\end{equation*}
$$

The parameter μ is the square of the ratio of the angular velocity Ω of the hoop's rotation and the frequency $\sqrt{\frac{g}{\ell}}$ of the small oscillations of the bead when the hoop is not rotating.
(a) Find all fixed points (i.e., equilibrium solutions) of the system (2). Show that, if $\mu \leq 1$, there are two equilibria, while for $\mu>1$ there are four equilibria.
(b) Linearize (2) around the fixed point $(\pi, 0)$. What kind of fixed point is it? Is it hyperbolic?
Hint: If (2) is written as $\frac{d}{d \tau} \mathbf{x}=\mathbf{f}(\mathbf{x})$, then $D \mathbf{f}(\mathbf{x})=\left(\begin{array}{cc}0 & 1 \\ \mu\left(\cos ^{2} \theta-\sin ^{2} \theta\right)-\cos \theta & 0\end{array}\right)$.
(c) In the case $\mu<1$, linearize (2) around the fixed point $(0,0)$, and show that $(0,0)$ is a center (hence, non-hyperbolic). Find the period of the small periodic motion around this fixed point as a function of the parameter μ.
Hint: If $\lambda_{1,2}$ are the eigenvalues of the matrix of the linearized system (recall that λ_{1} is the complex conjugate of λ_{2}), then in the case of a center the period of the small periodic motions around the corresponding fixed point is $\frac{2 \pi}{\operatorname{Im} \lambda}$.
(d) In the case $\mu>1$, linearize (2) around the fixed point $(0,0)$. What kind of fixed point is $(0,0)$ in this case? Is it hyperbolic? Find its eigenvalues and eigenvectors.
(e) In the case $\mu>1$, linearize (2) around the fixed point ($\arccos \frac{1}{\mu}, 0$) and show that it is a center. Find the period of the small periodic motion around this fixed point as a function of the parameter μ.
(f) Sketch the position of the four equilibria as functions of μ (use solid line for the stable equilibria and dashed line for the unstable ones). Find the positions of the four equilibria in the limit $\mu \rightarrow \infty$. What is the physical explanation of your result (in particular, in the limit $\mu \rightarrow \infty)$?
(g) What is the physical explanation of the bifurcation occurring at $\mu=1$?
(h) Only if you take the class as 5103!

Use your results from (d) and (e) to sketch the phase portrait of the system in the case $\mu>1$.
Remark: The behavior of the system around the fourth fixed point, $\left(-\arccos \frac{1}{\mu}, 0\right)$, is the same as around $\left(\arccos \frac{1}{\mu}, 0\right)$.
(i) Only if you take the class as 5103!

Let $\mu(\Omega)$ be the frequency of the small oscillations of the bead around the stable equilibrium solutions as a function of the rotation frequency Ω. Plot $\mu(\Omega)$ for $\Omega \in\left[0,3 \omega_{0}\right]$. Show that $\mu(\Omega)$ has a singularity of a cusp type at $\Omega=\omega_{0}$ (i.e., that $\lim _{\Omega \rightarrow \omega_{0}-} \mu(\omega)=-\infty$ and $\left.\lim _{\Omega \rightarrow \omega_{0}+} \mu(\omega)=\infty\right)$. What does this imply for the period, $T(\Omega):=\frac{2 \pi}{\mu(\Omega)}$?

Problem 2. ["Traveling front" solutions of a nonlinear PDE]

In this problem you will find the allowed range of solutions of a nonlinear equation. Consider the equation

$$
\begin{equation*}
\frac{\partial \widetilde{u}}{\partial \widetilde{t}}+\varepsilon \frac{\partial \widetilde{u}}{\partial \widetilde{x}}=D \frac{\partial^{2} \widetilde{u}}{\partial \widetilde{x}^{2}}+r \widetilde{u}\left(1-\frac{\widetilde{u}}{K}\right), \quad x \in \mathbb{R}, \quad t>0 \tag{3}
\end{equation*}
$$

Here ε, D, r, and K are positive constants. The solution \widetilde{u} can be interpreted as population or concentration, so we require that it is positive for any x and t.
(a) If \widetilde{u} is measured in kg (kilograms), \widetilde{x} is measured in m (meters), and \widetilde{t} is measured in s (seconds), what are the units of ε, D, r, and K ?
Hint: You can reason like this: the unit of $\frac{\partial \widetilde{u}}{\partial \widetilde{t}}$ is $\left[\frac{\partial \widetilde{u}}{\partial \widetilde{t}}\right]=\frac{[\widetilde{u}]}{[\widetilde{t}]}=\frac{\mathrm{kg}}{\mathrm{s}}$; similarly, the unit for measuring, say, $D \frac{\partial^{2} \widetilde{u}}{\partial \widetilde{x}^{2}}$ is $[D] \frac{\mathrm{kg}}{\mathrm{m}^{2}}$; these two units must be equal, so $\frac{\mathrm{kg}}{\mathrm{s}}=[D] \frac{\mathrm{kg}}{\mathrm{m}^{2}}$, therefore the unit of D is $[D]=\frac{\mathrm{m}^{2}}{\mathrm{~s}}$.
(b) Define new quantities, x, t, and u, as follows:

$$
\widetilde{u}=K u, \quad \widetilde{T}=\frac{t}{r}, \quad \widetilde{x}=\sqrt{\frac{D}{r}} x
$$

and show that the PDE (3) becomes

$$
\begin{equation*}
\frac{\partial u}{\partial t}+\mu \frac{\partial u}{\partial x}=\frac{\partial^{2} u}{\partial t^{2}}+u(1-u), \quad \mu=\text { const }>0 \tag{4}
\end{equation*}
$$

How is the new positive constant μ related to the original constants ε, D, r, and K ?
(c) Look for solutions of (4) that represent a traveling front with constant profile, i.e.,

$$
u(x, t)=U(x-c t)
$$

where $c=$ const >0 is a positive constant (the speed of the front), and U is a function of one variable satisfying the conditions

$$
\begin{equation*}
\lim _{z \rightarrow-\infty} U(z)=\text { const }, \quad \lim _{z \rightarrow \infty} U(z)=0, \quad U(z) \geq 0 \text { for all } z \in \mathbb{R} \tag{5}
\end{equation*}
$$

Start by expressing the derivatives $\frac{\partial u}{\partial t}, \frac{\partial u}{\partial x}$, and $\frac{\partial^{2} u}{\partial x^{2}}$, in terms of $U^{\prime}(z)$ and $U^{\prime \prime}(z)$ (where $z=x-c t$).
(d) Using your results from part (c), rewrite the PDE (4) for $u(x, t)$ as a second order ODE for $U(z)$.
(e) Define the new function $V(z):=U^{\prime}(z)$, and rewrite the second order ODE for $U(z)$ as the following system of two first order ODEs for the functions $U(z)$ and $V(z)$:

$$
\begin{align*}
& U^{\prime}(z)=V \\
& V^{\prime}(z)=-U(1-U)-(c-\mu) V \tag{6}
\end{align*}
$$

(f) The system (6) has two fixed points: $(0,0)$ and $(1,0)$. Show that the linearization of the system at the point $(1,0)$ is $\left(\begin{array}{cc}0 & 1 \\ 1 & -(c-\mu)\end{array}\right)$, find its eigenvalues and explain why the fixed point $(1,0)$ is always a saddle.
(g) Show that the linearization of the system at the point $(0,0)$ is $\left(\begin{array}{cc}0 & 1 \\ -1 & -(c-\mu)\end{array}\right)$, and write the characteristic equation for the eigenvalues λ.
(h) As we discussed in class, the condition that $U(z)$ be positive (recall (5)) is violated if the fixed point $(0,0)$ is a spiral (because then the trajectory of the system (6) in the (U, V)-plane will enter the region $\{U<0\})$. Find the condition on the speed c for nonexistence of "traveling front" solutions of the PDE (4). How does the "critical" speed c (below which there are no "traveling front" solutions) depend on the parameter μ ?

