
MATH 5763 Homework 6 Due Fri, 3/11/11

Problem 1. Recall that in class we showed that a Poisson process {Nt}t≥0 of rate λ can be
constructed as follows. Let X1, X2, . . . be i.i.d. exponential random variables with parameter
λ, i.e., Xm ∼ Exp(λ); these random variables play the role of the inter-event time intervals
(i.e., the time intervals between two consecutive events). Then the time of the nth event is

Tn =
n∑

m=1

Xm, and the Poisson process {Nt} can be obtained by Nt = max{n ∈ Z+ : Tn ≤ t}.

We proved that the time Tn of the nth event is a Γ(n, λ) random variable. It is not too difficult
to prove by induction that the c.d.f. of Tn ∼ Γ(n, λ) is

FΓ(n,λ)(t) =


0 , if t < 0 ,

1− e−λt
n−1∑
m=0

(λt)m

m!
, if t ≥ 0 .

In this problem you will relate the Poisson process {Nt} with the Γ random variables in a
way different from the one we used in class.

(a) Explain why Nt = n is equivalent to Tn ≤ t < Tn+1.

(b) For any value of t ≥ 0, how are the events {Tn+1 ≤ t} and {Tn ≤ t} related?

(c) For any value of t ≥ 0, express the event {Nt = n} in terms of the events {Tn+1 ≤ t}
and {Tn ≤ t}.

(d) Assume that you know that Tn ∼ Γ(n, λ) and also know the explicit expression for
FΓ(n,λ) (given above), and use your result from part (c) to find P(Nt = n).

Problem 2. Let Wt and Mt be the number of women, respectively men, entering a big store
in the time interval [0, t]. Assume that W = {Wt}t≥0 and M = {Mt}t≥0 are independent
Poisson processes with intensities ω and µ, respectively.

(a) Prove that the total number of people, Nt := Wt + Mt, entering the store forms a
Poisson process and find its intensity. Explain briefly why your result is obvious.

(b) Find the conditional probability P(Mt = m |Nt = n), for 0 ≤ m ≤ n, and show that
Mt ∼ Bin(Nt,

µ
ω+µ

). Why is this result obvious? What is the conditional expectation

E[Mt |Nt]? (To answer the last question, you can use what you know about binomial
random variables.)

Hint: To find P(Mt = m |Nt = n), use that, for a Poisson process with rate λ,

pij(t) = e−λt (λt)j−i

(j−i)! for j ≥ i, and pij(t) = 0 for j < i (which follows easily from

Problem 1(d) above). Also, recall that the conditional expectation E[Mt |Nt] will be a
function of Nt and possibly some parameters related to the problem.
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Problem 3. Let N = {Nt : t ≥ 0} be a (time-homogeneous) Poisson process with rate λ.
Define the flip-flop process X = {Xt : t ≥ 0} with state space X = {0, 1} by

Xt =
1

2
+ (−1)Nt

[
X0 −

1

2

]
,

where X0 is a random variable with values in X independent of the Poisson process N . In
other words, the flip-flop process switches between the states 0 and 1 at each event of N .

Since N is a Markov chain, X is also a Markov chain. Let Pt =

(
p00(t) p01(t)
p10(t) p11(t)

)
be the

stochastic semigroup of the process X, and G be the generator of Pt.

(a) Find the short-time transition probabilities pij(h) = P(Xt+h = j|Xt = i) and show

that the generator of the stochastic process X is G =

(
−λ λ
λ −λ

)
.

(b) To find the time evolution of the chain X – i.e., to find the stochastic semigroup

Pt = etG =
∞∑
n=0

tn

n!
Gn ,

one needs to find Gn for n ∈ N (of course, G0 = I, the identity matrix).

One way to compute Gn is to diagonalize it by a similarity transformation, G̃ =
M−1GM, using the tricks learned in Problem 4 of Homework 3. Then compute the
nth power of the diagonal matrix G̃ (which is very easy), and finally use that G̃n =

M−1GnM, so that Gn = MG̃nM−1. In fact, one can directly compute the diagonal

matrix etG̃, and then to use that

Pt = etG =
∞∑
n=0

tn

n!
Gn =

∞∑
n=0

tn

n!
MG̃nM−1 = M

∞∑
n=0

tn

n!
G̃nM−1 = M etG̃M−1 .

At the end, you should obtain that Pt =

(
1
2
(1 + e−2λt) 1

2
(1− e−2λt)

1
2
(1− e−2λt) 1

2
(1 + e−2λt)

)
, but I would

like to see the details of your computations.

(c) Now you will find Pt directly, without using the generator G. (Of course, you have to
pretend that you don’t know the answer.) One can do this using several methods.

The standard method is to solve the forward Kolmogorov equations, d
dt
Pt = PtG, with

appropriate initial conditions; we will do this in class, so you don’t need to do it here.

A trickier method for computing Pt (which works in this particular problem) is the
following. Note that p01(t) = P(Xs+t = 1 |Xs = 0) is equal to the probability that
there were an odd number of events of the Poisson process N of intensity λ in the
interval (s, s+ t]. Using the explicit expression for the probability of exactly k events
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of a Poisson process to occur in a time interval of length t, compute p01(t). Having
computed p01(t), you can easily find p00(t), p10(t), and p11(t) using the same tricks as
in part (c). (If you have found p00(t), p10(t), and p11(t) in part (c), there is no need to
do it again here.)

Hint: Note that
∑
j odd

αj

j!
=
∞∑
k=0

α2k+1

(2k + 1)!
=

1

2

(
eα − e−α

)
.

(d) Find the stationary distribution π by using the generator G.

(e) Now assume that initially the chain X is in state 0 (i.e., that X0 = 0). Determine the
probability distribution p(t) = (p0(t) p1(t)) (where pj(t) = P(Xt = j)) of the chain
X at time t by using your results above. As t goes to infinity, does p(t) tend to the
stationary distribution π?

(f) Define the generating functions ∆i(ξ, t) :=
1∑
j=0

pij(t) ξ
j, and show that ∆i satisfies the

first-order partial differential equation ∂∆i

∂t
+ 2λ(ξ− 1)∂∆i

∂ξ
= λ(ξ− 1). Since the proofs

for ∆0 and ∆1 are essentially the same, give a proof only for ∆0. You have to do this
by using the forward Kolmogorov equations, d

dt
Pt = PtG, i.e.,(

p′00(t) p′01(t)
p′10(t) p′11(t)

)
=

(
p00(t) p01(t)
p10(t) p11(t)

)(
−λ λ
λ −λ

)
.

(g) What are the initial conditions that ∆0 and ∆1 must satisfy? Why? (Recall that we
assumed that initially the chain is in state 0.)

One can show that the solution of the PDE above and the corresponding initial con-
ditions is

∆0(ξ, t) =
1

2

[
1 + ξ + (1− ξ)e−2λt

]
, ∆1(ξ, t) =

1

2

[
1 + ξ − (1− ξ)e−2λt

]
.

(h) From the very definition of ∆i(ξ, t), show that

E[Xt|X0 = i] =
∂∆i

∂ξ
(1, t)

and

Var[Xt|X0 = i] = E[X2
t |X0 = i]−E[Xt|X0 = i]2 =

∂2∆i

∂2ξ
(1, t)+

∂∆i

∂ξ
(1, t)−

[
∂∆i

∂ξ
(1, t)

]2

.

Hint: Recall Problem 4 from Homework 5.

(i) Use the concrete expressions for the generating functions ∆i(ξ, t) of the flip-flop prob-
lem (written in part (g)) in order to find the conditional expectation E[Xt |X0 = 0] and
the conditional variance var[Xt |X0 = 0], and sketch E[Xt |X0 = 0] and var[Xt |X0 = 0]
as functions of t. Do your results look reasonable in the limiting cases t → 0+ and
t→∞? Explain briefly.
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