
MATH 4163 Homework 7 Due on Mon, Oct 22, in 4W138

Problem 1. Consider the following BVP for the heat equation on the interval [0, π] with
time-dependent Dirichlet BCs:

ut(x, t) = uxx(x, t) , x ∈ [0, π] , t > 0 ,

u(0, t) = 0 ,

u(π, t) = π cos t ,

u(x, 0) = x .

(a) Introduce the reference temperature distribution r(x, t) as suggested on page 351 of
the book, in order to transform the BCs to homogeneous ones. What BVP do you
obtain for the new unknown function, v(x, t) = u(x, t) − r(x, t)? (Do not forget to
transform the ICs.)

(b) Write down the system of functions {Xn} in which you will expand the unknown
function v(x, t):

v(x, t) =
∑
n

Tn(t)Xn(x) . (1)

Since we have done this many times, just give me the result, no need to derive it.

(c) Substitute the expansion (1) in the BVP for v(x, t) found in part (a) and write down
the system of initial value problems (IVPs) for the functions Tn(t).

Hint: You may use that x sin t = 2 sin t
∞∑
n=1

(−1)n+1

n
sinnx for x ∈ (0, π), t ∈ R.

(d) Write down the general solutions of the ODEs for the functions Tn(t).

Hint: You may use (without deriving it) the fact that the general solution of the ODE
φ′(t) + n2φ(t) = b sin t is

φ(t) =


b

2
(sin t− cos t) + Ce−t for n = 1 ,

b

1 + n4
(n2 sin t− cos t) + Ce−n

2t for n = 2, 3, . . . .

(e) Impose the initial conditions on the functions Tn(t) from in part (d) in order to obtain
the solutions of the IVPs (from part (c)) for the functions Tn(t). (Clearly, you have to
do this separately for n = 1 and for n = 2, 3, . . ..)

(f) Write down the expression for v(x, t).

(g) Write down the expression for u(x, t).
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Problem 2. Nonlinear equations are very difficult to solve because for them the Principle
of Superposition does not hold, and separation of variables does not work. Some nonlinear
equations, however, can be simplified by means of a clever transformation. In this problem
you will solve the following BVP for a nonlinear PDE for the function u(x, t):

ut = uxx + u2x , x ∈ [0, π] , t > 0 ,

u(0, t) = 0 ,

u(π, t) = 0 ,

u(x, 0) = ln
(
1 + 1

2
sin 3x

)
(“ln” is the natural logarithm) .

(2)

(a) Perform the Hopf-Cole transformation, i.e., define the new function w(x, t) as

w(x, t) = eu(x,t) . (3)

Use the Chain Rule and the Product Rule to obtain expressions for wt, wx, and wxx,
and show that w(x, t) satisfies the ordinary heat equation,

wt(x, t) = wxx(x, t) , x ∈ [0, π] , t > 0 . (4)

(b) Use (3) to derive the BCs and the IC for the new unknown function w(x, t) from the
BVP (2) for u(x, t).

(c) Use the suggested on page 348 of the book method of “homogenizing” the BCs of a
BVP for w(x, t). It is quite easy to see that the “equilibrium” temperature distribution
will be w∞(x) = 1, so that you have to look for solution of the BVP for w(x, t) in the
form

w(x, t) = 1 + v(x, t) .

What BVP does the function v(x, t) satisfy?

(d) Use that the solution of the heat equation vt = vxx for x ∈ [0, π] with homogeneous
Dirichlet BCs has the form

v(x, t) =
∞∑
n=1

Ane−n
2t sinnx .

to solve to BVP for v(x, t) derived in part (c).

Hint: You will obtain that the expression for v(x, t) will consist of a single term.

(e) Write down the function w(x, t) and the solution u(x, t) of the original BVP (2).

(f) Let the function s(x, t) be defined as s(x, t) = ux(x, t). Differentiate the PDE in the
BVP (2) with respect to x and rewrite the result as an BVP for the function s(x, t).
The equation you derived is called the Burgers’ equation; it is a popular simple model
for phenomena in gas dynamics and traffic flow.
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Problem 3. In this problem you will study the waves in a string of length L that is hanging
vertically down from a fixed point on the ceiling. Choose the origin of the coordinate system
to be at the point where the lower end of the string is when the string is hanging at rest,
i.e., the origin is at a distance L under the point where the string is suspended. Let the
positive direction of the x-axis be vertically upward. We assume that the string moves in
the (x, y)-plane, and its position at time t is described by the equation y = u(x, t).

One can show that the motion of the string is governed by the PDE

utt(x, t) = g
∂

∂x

[
xux(x, t)

]
, x ∈ [0, L] , t > 0 , (5)

where g = 9.8 m
s2

is the free-fall acceleration. Physical reasoning shows that the free end of
the string (at x = 0) satisfies a homogeneous Neumann BC,

ux(0, t) = 0 . (6)

(a) What BC does the string satisfy at x = L (i.e., at the suspension point)?

(b) We will change the variable x to a new variable, s, by

s = s̃(x) := 2

√
x

g
, (7)

or, equivalently,

x = x̃(s) =
g

4
s2 .

Here s̃ and x̃ are functions given by the explicit expressions above.

We define a new function, v(s, t), by

v(s, t) := u(x, t)|x=x̃(s) = u(x̃(s), t) , (8)

or, equivalently, by
u(x, t) = v(s, t)|s=s̃(x) = v(s̃(x), t) .

To write the PDE (5) in terms of the function v(s, t), we compute:

ut(x, t) =
∂

∂t
v(s̃(x), t) = vt(s̃(x), t) ,

ux(x, t) =
∂

∂x
v(s̃(x), t) = vs(s̃(x), t)

ds̃

dx
=

1
√
gx

vs(s̃(x), t) ,

∂

∂x

[
xux(x, t)

]
=

∂

∂x

[
x

1
√
gx

vs(s̃(x), t)

]
=

1
√
g

∂

∂x

[√
x vs(s̃(x), t)

]
=

1
√
g

[
1

2
√
x
vs(s̃(x), t) +

√
x vss(s̃(x), t)

ds̃

dx

]
=

1

2
√
gx

vs(s̃(x), t) +
1

g
vss(s̃(x), t) .
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Plugging all these expressions in the PDE (5), we obtain

vtt(s, t) =
1

s
vs(x, t) + vss(s, t) . (9)

Write down the interval where the new variable, s, is taking values, as well as the
BCs at the two ends of the string (coming from what you found in part (a) and the
condition (6)).

(c) Separate variables in the PDE (9) as usual: set v(s, t) = S(s)T (t). The sign of the
separation of variables constant must be such that the function T (t) must be oscillatory
(i.e., T (t) must have cosines and sines). What ODE does the function S(s) satisfy?

(d) Change variables as on pages 306–307 of the book and express the function S(s) in
terms of the Bessel functions J0(ξ) and Neumann functions Y0(ξ).

(e) Some of the functions obtained in part (d) behave non-physically. Which ones? Write
down the expression for S(s) if we want it to behave in a physically reasonable way.

(f) Does the function found in part (e) satisfy the BC at x = 0? Discuss briefly.

Hint: The graph of J0(ξ) for ξ ∈ [0, 20] is plotted in the figure below.

(g) Impose the BC at x = L, and obtain the values that the separation of variables
constant can take. Let ξ0k be the kth zero of J0(ξ), i.e., J0(ξ0k) = 0, ordered so that
ξ01 < ξ02 < · · · . The values of ξ0k are available in MAPLE and Mathematica; here
are the approximate values of the first several zeros: ξ01 = 2.40483, ξ02 = 5.52008,
ξ03 = 8.65373, ξ04 = 11.7915, ξ05 = 14.9309, . . . (look at the graph above).

(h) Write the functions Tn(t) and the solution of the BVP for v(s, t). (We have not imposed
initial conditions, so that your expression will contain arbitrary constants.)

(i) Write the function u(x, t) giving the position of the suspended string. (Again, it will
contain arbitrary constants.)
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