
MATH 5763 Homework 7 Due Fri, 4/1/11

Problem 1. [Do NOT turn it in, just read it and think about it!]

A sequence a = {an}∞n=0 of real numbers can contain a lot of information. One concise way
of storing this information is to wrap up the numbers an together in a “generating function”.
For example, let us define the (ordinary) generating function of the sequence a in the function
Ga defined by

Ga(s) =
∞∑
n=0

ans
n for those s ∈ R for which the sum converges .

The sequence a may be reconstructed from the function Ga by setting an = 1
n!
G

(n)
a (0),

where f (n) denotes the nth derivative of the function f . Generating functions are considered
in many books on combinatorics, discrete mathematics, and probability (among others);
a readable and freely available book is Herbert Wilf’s generatingfunctionology (its second
edition is freely available at www.math.upenn.edu/~wilf/DownldGF.html).

The convolution of the sequences a = {an}∞n=0 and b = {bn}∞n=0 is the sequence c = {cn}∞n=0

defined by

cn =
n∑
k=0

akbn−k

(
=

n∑
k=0

an−kbn

)
.

Sometimes the convolution of a and b is denoted by a ∗ b.

(a) Let zn = (cos θ+ i sin θ)n, where i =
√
−1, and θ is a fixed real number. Show that the

generating function of the sequence z = {zn}∞n=0 is

Gz(s) =
1

1− s(cos θ + i sin θ)
for |s| < 1 .

(b) Prove that, if a and b have generating functions Ga and Gb, then the generating
function of c = a ∗ b is Gc(s) = Ga(s)Gb(s).

(c) Obtain the combinatorial identity
N∑
k=0

(N
n

)2

=
(2N
N

)
, where N ∈ N, by noticing that

its left-hand side can be thought of as the convolution of the sequence

an =


(N
n

)
for 0 ≤ n ≤ N

0 for n ≥ N + 1

with itself, and using the fact proved in part (b) about Ga∗a.
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(d) It is a well-known fact from elementary probability (and an easy exercise for you) that
if X and Y are independent random variables taking values in Z+ = {0, 1, 2, 3, . . .},
then the probability mass function of their sum, Z = X + Y , is the convolution of the
probability mass functions of X and Y : pZ = pX ∗ pY . Here we think of a p.m.f. pX as
a sequence a with an = pX(n) = P(X = n).

Let X and Y be independent Poisson random variables with parameters λ and µ,
respectively. Compute explicitly the probability generating functions

GX(s) =
∞∑
n=0

pX(n) sn and GY (s) =
∞∑
n=0

pY (n) sn ,

and use them to show thatX+Y is a Poisson random variable and to find the parameter
of the distribution of X + Y .

Problem 2. The (probability) generating function of a random variable X taking values in
Z+ = {0, 1, 2, . . .} is defined to be the generating function of its probability mass function pX :

GX(s) = E[sX ] =
∞∑
n=0

pX(n) sn

(
=
∞∑
n=0

P(X = n) sn

)
.

(a) Let X1, X2, . . . be a sequence of independent identically distributed random variables
(with values in Z+) with common generating function GX . Let N be a random variable
taking values in Z+ which is independent of the Xj’s, and let GN be the generating
function of N . Define the random variable YN by YN = X1+X2+· · ·+XN if N ≥ 1 and
YN = 0 ifN = 0. Show that YN has generating function given byGYN (s) = GN(GX(s)).

(b) Let Z be a Poisson random variable with parameter Λ, where Λ is a Poisson random
variable with parameter µ. Compute GZ and E[Z].

Hint: The generating function of Λ ∼ Poisson(µ) is GΛ(s) = eµ(s−1).

(c) Let V be a Poisson random variable with parameter Θ, where Θ is an exponential
random variable with parameter ν. Show that V + 1 has a geometric distribution, and
find the parameter of this distribution by using two methods:

– direct computation of the p.m.f. of V + 1;

– computing the generating function GV or GV+1 (and then convincing me that
your result indeed implies the desired conclusion).

Hint: If Θ ∼ Exponential(ν), then fΘ(x) = νe−νxχ[0,∞)(x); if W ∼ Geometric(p), then

pW (n) = (1− p)n−1p for n ∈ N = {1, 2, 3, . . .}, and GW (s) =
ps

1− (1− p)s
.
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Problem 3. A coin is tossed repeatedly, and on each individual toss heads turns up with
probability p ∈ (0, 1) (and tails with probability 1− p). Let hn be the probability of an even
number of heads in the first n tosses, with the convention that 0 is an even number:

hn = P(0 or 2 or 4 or 6 or . . . heads in the first n tosses) .

(a) What is h0 and why?

(b) Show that for n ∈ N, the numbers hn satisfy the following difference equation:

hn = (1− p)hn−1 + p(1− hn−1) .

Hint: Condition on the outcome of the first toss. In other words, use that the events
{heads on the first toss} and {tails on the first toss} form a partition of the sample
space, and use the law of total probability.

(c) Deduce that the generating function of the sequence h = {hn}∞n=0 is

Gh(s) =
1

2

(
1

1 + 2ps− s
+

1

1− s

)
.

Hint: Multiply the identity derived in (b) by sn and sum over n = 1, 2, 3, . . . to show
that Gh(s)− 1 = (1− 2p)sGh(s) + ps

1−s .

(d) Use the formula for the sum of a geometric series to compute hn from Gh.

(e) Obtain hn by solving the difference equation from (b) directly.

Hint: The equation in (b) can be written in the form of a linear nonhomogeneous
recurrence relation: hn = (1− 2p)hn−1 + p. One way to solve it is to write this relation
and the relation following from it by replacing n by n + 1, then subtract the two
equations to derive a homogeneous recurrence relation involving hn+1, hn, and hn−1,
and use the methods described in Problem 5 of Homework 3.

Problem 4. Let X1, X2, . . . be a sequence of independent Uniform(0, 1) random variables.
Let t ∈ (0, 1], and

N(t) := min

{
n ∈ N :

n∑
k=1

Xk > t

}
be the smallest number of X’s that need to be added so that their sum exceeds t, as shown
in Figure 1 (where N(t) = 4). Define M(t) := E[N(t)]. From the definition, it is clear that
N(t) is a random variable taking values in N.

(a) Explain why, for any x1 ∈ (0, 1],

E
[
N(t)

∣∣X1 = x1

]
=

{
1 for t < x1 ,

1 +M(t− x1) for x1 ≤ t .
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Figure 1: Covering the interval [0, t] with lines with random lengths Xm.

Hint: This question does not require any calculation! Draw a picture and think about
the following questions. If t < x1 = X1, how many X’s do you need in order to cover
the interval [0, t]? If X1 = x1 ≤ t, then how many X’s do you need in addition to X1

in order to cover [0, t]?

(b) Show that M(t) satisfies the integral equation

M(t) = 1 +

∫ t

0

M(t− x1) dx1 . (1)

Hint: Use the Tower Rule by conditioning on X1. Don’t forget that t ∈ (0, 1].

(c) Solve the integral equation for M(t) by first converting it to a differential equation.

First change variables in the integral to rewrite (1) in the form M(t) = 1 +

∫ t

0

M(y) dy

(write explicitly the change of variables). Differentiate both sides of this equation to
derive a differential equation for M(t). What is the initial condition for M(0) that the
function M(t) should satisfy (justify your answer with a couple of sentences). Solve
the initial value problem for M(t) you have obtained.

(d) Now solve the integral equation for M(t) by using Laplace transform. You can use
the following facts about Laplace transform, without proving them: if h(x) = xn, for
n ∈ N, then L[h](ξ) = n!

ξn+1 , ξ > 0; if h(x) = eax (for any a ∈ R), then L[h](ξ) = 1
ξ−a ,

ξ > a; if A(t) =
∫ t

0
M(t− x1) f(x1) dx1, then L[A](ξ) = L[m](ξ)L[f ](ξ).

Problem 5. The toll collected from the traffic passing through the toll booth on Highway 44
between Oklahoma City and Tulsa can be modeled for the hours between 9 a.m. and 5 p.m.
by a compound Poisson process. Assume that the toll booth serves the arriving vehicles
instantaneously, so that there are no waiting lines.

The vehicles can be divided into two big categories – personal vehicles and commercial
vehicles. The personal vehicles arrive at the toll booth with average frequency 7 personal ve-
hicles per minute, while the commercial vehicles arrive with average frequency 3 commercial
vehicles per minute.

There are three types of personal vehicles – 80 % of the personal vehicles are cars, 15 %
are SUVs and 5 % are RVs. There are four types of commercial vehicles – pick-up trucks,
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normal-size trucks, 18-wheelers, and busses; the probability with which a commercial vehicle
belongs to each of these four types is 40 %, 30 %, 20 %, and 10 %, respectively.

The toll rates are the following: car $1, SUV $3, RV $5; pick-up truck $3, normal-size
truck $5, 18-wheeler $8, bus $10.

Please answer the questions below. Define clearly your notations, and use the concrete
numbers given in this problem. You are allowed to use the theoretical results derived in
class, but please write explicitly what results you use.

(a) Think of the toll collected from the personal vehicles as a compound Poisson process
Y1(t), where at each arrival of a personal vehicle the collected toll is random. What is
the p.m.f. of the random variable describing the collected toll from a personal vehicle?
What is the rate of the Poisson process describing the moments of arrival of personal
vehicles?

(b) Find the moment generating function of the process Y1(t), and use your result to find
the average value of the toll collected in a period of 1 hour, and the variance of this
toll.

(c) Answer the same questions as in part (a) about the Poisson process Y2(t) describing
the toll collected from the commercial vehicles.

(d) Answer the same questions as in (b), but for the process Y2(t).

(e) Define the random process Y (t) = Y1(t) + Y2(t) of the toll collected from all vehicles
passing through the toll booth. We can think of this random process as a compound
Poisson process. What is the frequency of the Poisson process with which the events
of this random process occur? What is the p.m.f. of the toll collected from each vehicle
passing through the toll booth (without making a distinction between personal and
commercial vehicles)?

(f) Write explicitly the moment generating function of the random process Y (t), as well
as E[Y (t)] and the variance of Y (t). On average, how much toll will be collected from
10 a.m. to 11 a.m.?

Problem 6. The arrival of customers through the Walmart in Norman near I-35 can be
thought as a (simple, not compound) Poisson process with a time-dependent rate λ(t). If
we measure the time of the day in hours, starting at midnight, then the rate of the process
can be modeled by the function

λ(t) = 500

(
1− sin

2πt

24

)
persons per hour .

Let Y be the number of customers arriving at the store between 2 p.m. and 5 p.m. Find the
average value and the variance of this random variable.
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