Math 3413.001: Physical Mathematics I

Homework 8, due March 26 (Thursday)

Lecture 17 (Mar 10) Due date 03/26/2020 : Section 7.6

1. Solve the initial value problem

 $x'' + 3x' + 2x = 7u_{11}(t) - 5\delta(t-2), \qquad x(0) = 2, \quad x'(0) = 1.$

- 2. This problem considers a mass m, initially at rest at the origin, that receives an impulse p at time t = 0.
 - (a) Find the solution $x_{\epsilon}(t)$ of the initial value problem

$$mx''(t) = pd_{0,\epsilon}(t), \qquad x(0) = 0, \quad x'(0) = 0,$$

where the function $d_{0,\epsilon}(t)$ is defined on page 485 of the book.

(b) Show that $\lim_{\epsilon \to 0+} x_{\epsilon}(t)$ agrees with the solution of the problem

$$mx''(t) = p\delta(t),$$
 $x(0) = 0,$ $x'(0) = 0.$

- (c) If x(t) is the solution of the IVP from part (b), show that mx'(t) = p.
- 3. In this problem you will give another proof of the fact that, for any a > 0, $u'_a = \delta_a$. Solve the IVP

$$x' = \delta_a(t), \qquad x(0) = 0$$

by using Laplace transform, and interpret your result.

4. This problem deals with a mass m on a spring (with elastic constant k) that receives an impulse $p_0 = mv_0$ at time t = 0; the mass is initially at rest. Show that the IVPs

$$mx'' + kx = 0,$$
 $x(0) = 0,$ $x'(0) = v_0$

and

$$mx'' + kx = p_0\delta(t), \qquad x(0) = 0, \quad x'(0) = 0$$

have the same solution. Thus the effect of the term $p_0\delta(t)$ is, indeed, to impart to the particle an initial moment p_0 .

Suggested problems from the book (DO NOT SUBMIT): Pg 492-493, #2, 6, 8, 19b

Lecture 18 (Mar 12) Due date 03/26/2020 : Section 9.1

1. Let f(t) be a periodic function with period 2π and

$$f(t) = \begin{cases} 0 & \text{if } -\pi < t \le 0; \\ \pi & \text{if } 0 < t < \pi. \end{cases}$$

Find the Fourier series of f(t).

- 2. Let f(t) be a periodic function with period 2π such that f(t) = t for $-\pi < t \le \pi$. Find the Fourier series of f(t).
- 3. Find the Fourier series of

$$f(t) = 2 + 3\cos(2t) - 5\sin(t).$$

Suggested problems from the book (DO NOT SUBMIT): Pg 572, #1, 3, 9, 11, 14, 20, 26