Problem.

Let \mathbf{F} be a vector field on \mathbb{R}^{3} defined as follows:

$$
\mathbf{F}(\mathbf{r})=\mathbf{F}(x, y, z)=2 x y^{2} \mathrm{e}^{3 z} \mathbf{i}+\left(2 x^{2} y \mathrm{e}^{3 z}+z^{5} \cos y\right) \mathbf{j}+\left(3 x^{2} y^{2} \mathrm{e}^{3 z}+5 z^{4} \sin y+7\right) \mathbf{k} .
$$

(a) Show that \mathbf{F} is a conservative vector field. Please explain clearly how you did it. Hint: You used two properties of \mathbf{F}. Which ones?
(b) Find a potential function $f(\mathbf{r})$ of the vector field \mathbf{F}, i.e., a function f such that $\mathbf{F}=\nabla f$.
(c) Find the value of the integral $\int_{C} \mathbf{F} \cdot \mathrm{~d} \mathbf{r}$, where C is the segment of a straight line starting at $(0,0,0)$ and ending at $\left(3, \frac{\pi}{2}, 2\right)$.

