Sec. 9.2: problems 12, 17, 24(b).
Hint for Problem 9.2/12: By using that

$$
\sin (\alpha \pm \beta)=\sin \alpha \cos \beta \pm \cos \alpha \sin \beta
$$

one can derive the relation

$$
\sin \alpha \cos \beta=\frac{1}{2}[\sin (\alpha+\beta)+\sin (\alpha-\beta)],
$$

which is useful in finding integrals of the form $\int \sin a t \cos b t \mathrm{~d} t$.
Hint for Problem 9.2/17: You may use the integrals

$$
\int t \sin a t \mathrm{~d} t=\frac{1}{a^{2}}(\sin a t-a t \cos a t), \quad \int t \cos a t \mathrm{~d} t=\frac{1}{a^{2}}(\cos a t+a t \sin a t) .
$$

Sec. 9.3: problems 2, 17, 18, 19.
Hint for Problem 9.3/2: The hint for Problem 9.2/17 will be useful.
Hint for Problem 9.3/18: This problem illustrates the dangers in differentiating a Fourier series termwise (i.e., term by term). Differentiate the Fourier series of t^{2} on $t \in(0,2)$ given in the problem term by term. Compare your result with the Fourier series of the function $2 t$ on $t \in(0,2)$ which can be easily obtained from your result in Problem 9.2/17. Discuss your result. Which condition from Theorem 1 on page 601 was violated?
Hint for Problem 9.3/19: Use Theorem 2 on page 605.

Sec. 9.4: problem 1.
Hint: The Fourier series for $F(t)$ can be easily found from the result in Example 1 of Section 9.1 (page 585).

Additional problem 1. Let f be a periodic function of period 2π which for t between $-\pi$ and π is defined as

$$
f(t)= \begin{cases}0, & -\pi<t \leq 0 \\ t, & 0<t \leq \pi\end{cases}
$$

the graph of f is sketched in the figure below.

The Fourier series of f is the following (you do not have to prove this!):

$$
\begin{gathered}
f(t)=\frac{\pi}{4}-\frac{2}{\pi}\left(\cos t+\frac{\cos 3 t}{3^{2}}+\frac{\cos 5 t}{5^{2}}+\frac{\cos 7 t}{7^{2}}+\cdots\right) \\
+\sin t-\frac{\sin 2 t}{2}+\frac{\sin 3 t}{3}-\frac{\sin 4 t}{4}+\cdots .
\end{gathered}
$$

Let the function g be a periodic function of period 2π sketched in the figure below. Write $g(t)$ in terms of $f(t)$. Using the Fourier series of f, find the Fourier series of g.

