
MATH 3423 Homework 9 Due Thu, 11/14/19

Problem 1. As we mentioned in class, one can define different norms in the same linear

space. In this problem you will study different norms in R2. Let u =
(u1
u2

)
= u1i+u2j ∈ R2.

(a) Define the norm ‖u‖2 by ‖u‖2 :=
√
u21 + u22. Draw the unit disk in R2 in this norm,

i.e., the set of vectors {v ∈ R2 : ‖v‖2 ≤ 1}.

(b) Define the norm ‖u‖1 by ‖u‖1 := |u1|+ |u2|. Draw the unit disk in R2 in this norm,
i.e., the set of vectors {v ∈ R2 : ‖v‖1 ≤ 1}.

(c) Define the norm ‖u‖∞ by ‖u‖∞ := max{|u1|, |u2|}. Draw the unit disk in R2 in this
norm, i.e., the set of vectors {v ∈ R2 : ‖v‖∞ ≤ 1}.

(d) Two norms ‖ ‖ and ‖ ‖′ on the same linear space are said to be equivalent if there exist
positive constants C1 and C2 such that C1 ‖u‖ ≤ ‖u‖′ ≤ C2 ‖u‖ for any vector u ∈ V .
Here we will prove that the norms ‖ ‖2 and ‖ ‖∞ on R2 are equivalent:

‖u‖∞ = max{|u1|, |u2|} ≤
√
|u1|2 + |u2|2 = ‖u‖2 ,

and

‖u‖2 =
√
|u1|2 + |u2|2 ≤

√
2 max{|u1|2, |u2|2} =

√
2 max{|u1|, |u2|} =

√
2 ‖u‖∞ .

The inequalities ‖u‖∞ ≤ ‖u‖2 ≤
√

2 ‖u‖∞, mean that the norms ‖ ‖2 and ‖ ‖∞ are
equivalent (the values of the constants are C1 = 1 and C2 =

√
2).

Show that the norms ‖u‖1 and ‖u‖∞ are equivalent (you have to find the corresponding

constants C̃1 and C̃2 such that C̃1 ‖u‖1 ≤ ‖u‖∞ ≤ C̃2 ‖u‖1).

(e) Use the fact that the norms ‖ ‖2 and ‖ ‖∞ are equivalent and the fact (proved in
part (d)) that the norms ‖ ‖1 and ‖ ‖∞ are equivalent to prove that the norms ‖u‖1
and ‖u‖2 are equivalent. In other words, you have to find constants C ′1 and C ′2 such
that C ′1‖u‖1 ≤ ‖u‖2 ≤ C ′2 ‖u‖1. This won’t require any additional calculations –

simply express the constants C ′1 and C ′2 in terms of C1, C2, C̃1, and C̃2.

Problem 2. Let Vn(a, b;w(x)) stand for the linear space of polynomials of degree no greater
than n endowed with the inner product

〈P,Q〉 =

∫ b

a

P (x)Q(x)w(x) dx .

We want to construct polynomials P0, P1, . . ., Pn satisfying the following conditions:

1



(i) the polynomial Pk is of degree k;

(ii) then coefficient of xk in Pk is equal to 1 (such polynomials are called monic);

(iii) the polynomials P0, P1, P2, . . ., Pn form an orthogonal basis in the space of polynomials
Vn(0,∞;w(x) = e−x).

In the solution of this problem the following identity will be handy:∫ ∞
0

xk e−x dx = k!

(where, by definition, 0! = 1).

(a) Clearly, P0(x) = 1 for each x ∈ [0,∞). Find the only monic polynomial P1 of degree 1
that is orthogonal to P0. Clearly, P1 should have the form P1(x) = x+α, where α is a
constant whose value you have to find. (The coefficient multiplying x is 1 because we
want the polynomials Pk to be monic.)

(b) Find the only monic quadratic polynomial P2 that is orthogonal to both P0 and P1.
The polynomial P2 should have the form P1(x) = x2 + βx + γ, where β and γ are
constants whose values you have to find. (Hint: I obtained that γ = 2.)

(c) Show that the polynomial Q(x) = x2 + 3 can be represented as a linear combination
of the polynomials P0, P1 and P2 as follows: Q = P2 + 4P1 + 5P0.

(d) Show by direct integration that 〈P0, P0〉 = 1, 〈P1, P1〉 = 1, 〈P2, P2〉 = 4.

(e) Find the orthogonal projection, projP0+2P1
Q, of the polynomial Q(x) = x2 +3 onto the

“ straight line”
` := {t(P0 + 2P1) | t ∈ R}

in the 3-dimensional inner product linear space V2(0,∞; e−x). If you have solved part
(c), then finding this orthogonal projection should be easy.

Hint: If u and v are vectors in the inner product linear space V , then the orthogonal
projection of the vector u onto the straight line in the direction of v is the vector

projvu =
〈u,v〉
〈v,v〉

v

– see the picture below.

projv u

u

v

2



(f) Finally, let P̃k := µkPk, where µk > 0 is a constant (depending on k) such that the
norm, ∥∥∥P̃k∥∥∥ :=

√〈
P̃k, P̃k

〉
,

of the polynomial P̃k is 1. Find the explicit expressions for P̃0(x), P̃1(x), and P̃2(x).

Problem 3. As you know, one way to approximate a function f of one variable is to replace
it by its tangent line at some point of interest, or by the “best fitting” parabola at this point
(these approximations correspond to using the first- or second-order Taylor polynomial of
the function f at this point). This type of approximation, however, works very well only
near this point, and can be very inaccurate over an entire interval.

One way to approximate a function f (of one variable) on an entire interval is the following.
Choose some class of functions H, say all linear functions. Then look for a function h
from this class H for which the “distance” between f and h is the smallest possible. The
“distance” – which is usually called “error” – can be defined in many different ways. If we
want to approximate f by a function h ∈ H on the interval [a, b], and we want |f(x) −
h(x)| to be small for all x ∈ [a, b], then an appropriate definition for the “error” would be

E∞ := max
x∈[a,b]

|f(x)− h(x)|. Another choice is to minimize E1 :=

∫ b

a

|f(x)− h(x)| dx, but the

expressions for E∞ and E1 cause technical difficulties if one tries to use them in practice.
The most convenient for numerical purposes expression for the error is

E2 :=

∫ b

a

[f(x)− h(x)]2 dx ,

which we will use below. Incidentally, the cryptic notations E∞, E1, and E2 are similar to
the notations for the norms ‖ ‖∞, ‖ ‖1, and ‖ ‖2.
In this problem you will find the best approximation of the function f(x) = x3 by a linear
function, hµ,ν(x) := µx+ ν, over the interval [0, 1] if the “error” is given by the integral

Ef (µ, ν) :=

∫ 1

0

[f(x)− hµ,ν(x)]2 dx . (1)

In other words, you have to choose the values of the constants µ and ν that minimize the
error Ef (µ, ν) given by (1).

Hint: Here is a useful fact:

∫ 1

0

[x3 − (µx+ ν)]2 dx =
1

7
− 2

5
µ+

1

3
µ2 − 1

2
ν + µν + ν2 .

Problem 4. In this problem you will solve in a geometric way the problem of finding the
linear function that is “closest” to the function x3 in the sense that it minimizes the “error”
(1). Let V3(0, 1) stand for the linear space of polynomials on the interval [0, 1] of degree no
greater than 3, endowed with the inner product

〈P,Q〉 =

∫ 1

0

P (x)Q(x) dx , P ∈ V3(0, 1) , Q ∈ V3(0, 1) .
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Below we will use the “quantum mechanical notation”

〈P |Q〉 := 〈P,Q〉 ,

where 〈P | is the “bra-vector” corresponding to the “ket-vector” |P 〉.
It is easy to show directly that the polynomials

N0(x) = 1

N1(x) = x− 1

2

N2(x) = x2 − x+
1

6

N3(x) = x3 − 3

2
x2 +

3

5
x− 1

20

form an orthogonal basis of the space V3(0, 1); the norms of these vectors are

‖N0‖ =
√
〈N0, N0〉 = 1 , ‖N1‖ =

1√
12

, ‖N2‖ =
1√
180

, ‖N1‖ =
1√

2800
;

you do not need to do any of these calculations. This basis has the property that Nk is a
polynomial of degree k.

Let Q ∈ V3(0, 1) be the polynomial
Q(x) = x3 .

As in Problem 3, we want to find a linear function, i.e., a polynomial of degree no more
than 1 that is “closest” to Q; such polynomials form a subspace of V3(0, 1) which we will
denote by V1(0, 1):

V1(0, 1) = {L : [0, 1]→ R | L(x) = µx+ ν , µ ∈ R, ν ∈ R } .

Since Nk is a polynomial of degree k, any polynomial of degree 1 – i.e., every L ∈ V1(0, 1) –
is a linear combination of N0 and N1, so that we can write

V1(0, 1) = span {N0, N1} = {L = αN0 + βN1 | α ∈ R, β ∈ R } . (2)

Recall that, for any vector P ∈ V3(0, 1), the operator

ΠP :=
|P 〉〈P |
‖P‖2

is the orthogonal projection of an arbitrary vector Q ∈ V3(0, 1) onto the direction of P :

ΠP |Q〉 =
|P 〉〈P |
‖P‖2

|Q〉 =
|P 〉〈P |Q〉
‖P‖2

.
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Similarly, since the vectors N0 and N1 are orthogonal to one another, the orthogonal projec-
tion onto the plane V1(0, 1) = span {N0, N1} is given by the operator

ΠV1(0,1) := ΠN0 + ΠN1 =
|N0〉〈N0|
‖N0‖2

+
|N1〉〈N1|
‖N1‖2

.

The projection of an arbitrary vector |Q〉 ∈ V3(0, 1) onto the plane V1(0, 1) is, therefore,
given by ΠV1(0,1)|Q〉 ∈ V1(0, 1). It can be shown that, among all vectors in V1(0, 1), the
vector ΠV1(0,1)|Q〉 is the one that is “closest” to |Q〉 ∈ V3(0, 1) in the sense, that norm of the
difference

|Q〉 − ΠV1(0,1)|Q〉

is the smallest. Note that, if |Q〉 ∈ V1(0, 1), then |Q〉 − ΠV1(0,1)|Q〉 = 0.

(a) Check that the vector Q ∈ V3(0, 1) defined by Q(x) = x3 can be written as a linear
combination of the vectors from the orthogonal basis {N0, N1, N2, N3} of V3(0, 1) as

Q =
1

4
N0 +

9

10
N1 +

3

2
N2 +N3

(i.e., x3 = 1
4
N0(x) + 9

10
N1(x) + 3

2
N2(x) +N3(x)).

(b) Show that the projection ΠV1(0,1)|Q〉 is equal to 1
4
N0 + 9

10
N1.

Hint: This is very easy if you use the result of part (a) and the fact that the basis
{N0, N1, N2, N3} of V3(0, 1) is orthogonal.

(c) Compare your answer to part (b) with the function hµ,ν that you found in Problem 3.

Problem 5. In this problem you will answer in a different way the same question as in
Problems 3 and 4.

Looking at the figure in Problem 4, we see that, the shortest distance from “the end“
of the vector Q to the plane V1(0, 1) is accomplished if the difference |Q〉 − ΠV1(0,1)|Q〉 is
perpendicular to the plane V1(0, 1). Since ΠV1(0,1)|Q〉 belongs to V1(0, 1) which was defined
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(recall (2)) as the span of the vectors N0 and N1, i.e., the set of all linear combinations of
N0 and N1. Therefore, we have

ΠV1(0,1)|Q〉 = a|N0〉+ b|N1〉 .

Therefore, the vector

|Q〉 − ΠV1(0,1)|Q〉 = |Q〉 − (a|N0〉+ b|N1〉) = |Q〉 − a|N0〉 − b|N1〉 (3)

must be orthogonal to any vector from V1(0, 1), which is equivalent to saying that it is
orthogonal to each of the vectors |N0〉 and |N1〉 that “generate” the plane V1(0, 1).

(a) Write down the conditions (
|Q〉 − ΠV1(0,1)|Q〉

)
⊥ N0 ,(

|Q〉 − ΠV1(0,1)|Q〉
)
⊥ N1

for Q(x) = x3 and N0 and N1 given in Problem 4, and derive a system of two equations
for the constants a and b in (3). Your calculations will be greatly simplified if you use
the representation of Q as a superposition of the vectors Nj that was derived in part
(a) of Problem 4.

(b) Solve the system obtained in part (a). Compare your result for the vector a|N0〉 +
b|N1〉 ∈ V1(0, 1) from (3) with the vector hµ,ν obtained in Problem 3 and the vector
ΠV1(0,1)|Q〉 obtained in Problem 4.
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