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Abstract

This article explores some basic concepts of circle maps, and presents
numerical data on the dimension of unlocked sets in the parameter
spaces of critical circle maps. Specifically, sine-based highly critical
circle maps. Comparisons will be made to results from others’ papers
on similar topics.

1 Introduction

This paper and the work behind it are the result of the REU program at the
University of Michigan. I will try to share what I have learned working with
Professor Petrov and the results and methods of some computations that we
have done.

2 Circle Maps

The basic objects of study in this paper will be circle maps. Circle maps are
defined for our purposes as bijective, continuous, and orientation preserving
homeomorphisms from S1, the circle of unit circumference, onto itself. It is
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often convenient to talk about the lift of a circle map to the real line. A lift
of a circle map f is a (bijective and continuous) map F : R → R such that
there exists a covering map π : R → S1 such that f ◦ π = π ◦ F . For our
purposes, we will generally consider the projection map π to be the simple
quotient map by the integers, so if, for example f were a rotation by π/2
radians, then F (x) = x + 1

4
. Because we are interested in iterations of these

maps, we will use the notation f 2(x) = (f ◦ f)(x).
It is clear that F−Id is periodic since

F (x) mod 1 = F (x + k) mod 1 for k ∈ 1 arbitrary.

In addition, a point x on the circle will be referred to as periodic of period q
if f q(x) = x. This is equivalent to the statement (F q(x)− x) ∈ Z. A related
quantity of circle maps is their rotation number, ρ. The rotation number is
defined as the fractional part of

ρ0 := lim
n→∞

F n(x)

n
.

Furthermore, it is simple to prove that the limit exists. Note that ρ0 and
therefore ρ is independent of the choice of x since

|F n(x)− F n(y)| ≤ |(F n(x)− x)− (F n(y)− y)|+ |x− y| ≤ 1 + |x− y|

since F n(x)−x is periodic with period 1 since F n is a lift of fn, and also the
range of F (x)− x is of the form [z, z + 1] for some z ∈ R. Thus,

lim
n→∞

F n(x)

n
− lim

n→∞

F n(y)

n
= lim

n→∞

F n(x)− F n(y)

n
≤ lim

n→∞

1 + |x− y|
n

= 0.

So, remembering what we were showing, ρ0 and ρ are both independent of
the choice of x. This makes periodic points extremely useful for computing
the rotation number of a map. For example, if x is a periodic point of order
15, and in 15 iterations of f the point x rotates around the circle 4 times. In
this case, the rotation number of f is 4

15
, and x is a fixed point of f 15. This

method avoids the proper definition with lifts, but for all maps there is one
lift that is exceedingly convenient, namely, the lift with the image of [0, 1)
contained in [0, 2). This lift is convenient, since ρ0 = ρ, and if for some x it
happens that (F n(x) − x) = k for k ∈ Z then ρ = k

n
. In general, however.

it is necessary to account for the possible integer difference added on each
iteration by the lift. Also, fixed points of the circle map f q are period q
points of f .
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3 Phase locking, Arnol’d tongues, and the

Devil’s staircase
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Figure 1: Graph of Arnol’d maps for α = 0 and β = 1
4
, 1

2
, 3

4
, 1. Note that

the map for β = 1 is a critical map of order 3 since it has a zero derivative
at 1

2
, so the Taylor expansion around 1

2
has no linear or quadratic term.

3.1 Arnol’d Maps

Arnol’d maps are a family of circle maps with lifts of the following form for
α, β ∈ [0, 1):

Fα,β(x) = x + α +
β

2π
sin(2πx)
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Figure 2: The Devil’s Staircase for β = 1, the phase locking intervals at 1
2
,

1
3
, and 2

3
are quite clear. There are also large intervals for 0 and 1.

They will be considered here because they are simple and exhibit most
of the interesting properties of circle maps. The behavior of the rotation
number of these maps in relation to variations of α is interesting. Holding β
constant, for all rational numbers r ∈ [0, 1] there exist an interval Ir ⊂ [0, 1)
s.t. for all α ∈ Ir the rotation number ρα = r. The β will be left out of the
notation for simplicity.

3.2 Phase Locking

This phenomenon of the rotation number being unaffected by small changes
to the parameters of the map is called Phase Locking. Phase locking produces
a very distinctive graph of the rotation number against the parameter value
that is referred to the Devil’s Staircase. It earned the name by possessing the
unpleasant quality of being locally constant wherever the rotation number is
a rational number, which produces a distinctive shape.
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Figure 3: Graph of Arnol’d tongues. It is easy to see how the locking intervals
grow from nothing when β = 0 on the x axis to β = 1. The parameter α is on the
horizontal axis.

Phase locking, in addition to the devil’s staircase, creates another fun
looking graph with a silly name. Namely, Arnol’d tongues. This is another
way of illustrating the concept of phase locking, except that it clearly shows
that the length of the locking intervals grow as β increases. As β approaches
1, the total length of the locking intervals for all rationals between 0 and 1
approaches 1.

3.3 Critical Points

Indeed, it has been proposed by Lanford [6] based on numeric observation
and proven rigorously by Świa̧tek [4] that at β = 1 the total length of the
locking intervals is 1. It is not, however, the case that the union of the locking
intervals is the interval (0, 1). At β = 1 the Arnol’d family develops a critical
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point where the first derivative is zero at some point and the function ceases
to be diffeomorphic, but remains a homeomorphism. For β > 1 it is in fact
no longer a homeomorphism. We are interested in the behavior at β = 1
since this specific case is a prototype for what happens more generally when
a circle map ceases to be diffeomorphic.

Thanks to Świa̧tek [7], we know that it is true more generally that for
families of circle maps with critical points ft(x) = f(x) + t they will exhibit
phase locking and that the devils staircase will also have a total length of
1, but the Hausdorff dimension of the region for which values of t contained
therein result in irrational rotation numbers is bounded away from 0 by 1

3
.

Most of my work was in this area, looking at the dimension of the complement
of the Devil’s Staircase as the order of the critical point increases.

4 Numerical methods for computing the phase

locking intervals

4.1 General method

In order to find the dimension of the complements of the Devil’s Staircases,

C := [0, 1)\(
⋃

r∈([0,1]
T

Q)

Ir)

it is desirable to compute the widths of an exceedingly large number of phase
locking intervals (I used some 85,000 in the cubic critical case). The com-
putations were done to 28 digits of precision on an Apple Powerbook with
a 1.25 Gigaherz G4. Up to denominators of 530, 296, 271, 246, 220, and
200 were computed for the degree 3, 5, 7, 9 , 11, 13 cases, respectively. For
the curious, the computations took approximately 84 hours total, with much
of that being the 11 and 13 degree critical cases. The algorithm for find-
ing the width of the locking interval makes use of two subroutines written
by Forsythe, Malcom, and Moler [3], namely zeroin and fmin (referred to
as fmin2 in my code, since the C standard libraries now contain a function
already called fmin).

The mechanism by which we found the widths of the phase locking interval
is to start with the rotation number for which we are trying to find the
width of the phase locking interval. The rotation number is defined by the
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numerator p and denominator q. Then we set up a function called ns that
returns f q

α(x) − x − p, so that zeros occur at the periodic points of period
q where f q

α rotates x p times around the circle. The lower endpoint of the
phase locking interval is then the value of α where the minimum of ns is
zero, and the upper endpoint is the value of α for which the maximum of
ns is zero. Because we have a convenient function to return the minimum
of functions, the maximum is computed by computing the minimum of the
negative of ns, which is called mns as it is minus ns.
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Figure 4: The graphs of the critical Arnol’d map for the minimal and maximal
values of α for which there is a fixed point of f 2

α. This illustrates the method
used to find the phase locking intervals, since these are the Arnol’d maps
corresponding to the two endpoints of the locking interval for 1

2
. It is clear

that anywhere outside this interval, f 2
α would not intersect the graph of the

identity function, i.e. the diagonal. There would therefore be no points of
period 2, so the function would not have rotation number 1

2
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4.2 Implementation of the method

1
2 DBL width_locking( DBL beta, DBL num, DBL den)
3 {
4 beta_global = beta;
5 num_global = num;
6 den_global = den;
7
8 /* zeroin( zero, one, ming, tol_zeroin) is the right end
9 of the phase-locking interval for rotation number p/q

10 for this value of beta, and
11 zeroin( zero, one, maxg, tol_zeroin) is the left end
12 of the same interval
13 */
14 return( zeroin( zero, one, ming, tol_zeroin) \
15 - zeroin( zero, one, maxg, tol_zeroin) );
16 }/************************************************************/
17

This is the function that is called first in order to find the length of
the phase locking interval. It uses zeroin to find a zero between zero and
one (they are merely appropriately named variables, since it is easier to use
variables when maintaining high precision is important) of ming and maxg

respectively. These functions, ming and maxg, are functions of α.
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1 DBL ming( DBL x)
2 {
3 alpha_global = x;
4 return ( ns( fmin2( zero, one, ns, tol_fmin) ) );
5 }/************************************************************/
6
7 DBL maxg( DBL x)
8 {
9 alpha_global = x;

10 return ( mns( fmin2( zero, one, mns, tol_fmin) ) );
11 }/************************************************************/
12

Here we see ming and maxg in all of their glory. They simply return the
minimum value of ns or mns respectively for x ∈ [0, 1].

1 DBL ns (DBL x)
2 {
3 int i;
4 DBL xin = x, x0 = x;
5 for ( i = 0 ; i < den_global ; i++ ) x0 = ones(x0);
6 return (x0 - 1.0*num_global - xin);
7 }/************************************************************/
8
9 DBL mns (DBL x)

10 {
11 int i;
12 DBL xin = x, x0 = x;
13 for ( i = 0 ; i < den_global ; i++ ) x0 = ones(x0);
14 return (1.0*num_global + xin - x0);
15 }/************************************************************/
16

These are the ns and mns functions that iterate the function and subtract
off the numerator of the rotation number that is being checked. They both
call the cryptically named ones function, which is simply the Arnol’d function
which also depends upon the globally defined α and β. This means that this
function has a minimum, or maximum, at zero only when α is at the lower,
or upper end of the phase locking interval.
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1 for ( den = 1; den < (n +1) ; den ++)
2 {
3 for (num = 1 ; num < den ; num++)
4 {
5 k = 0;
6
7 for ( i = 1; i <= num && k != 1 ; i++)
8 {
9 if ( (floorl(num/i) == num/i) && \

10 (floorl(den/i) == den/i) && i != 1 )
11 {
12 k = 1;
13 }
14 }
15 if ( k == 0 )
16 {
17 printf( "%.1Lf %.1Lf ", num, den);
18 t = width_locking( beta, num, den);
19 printf ( "%.40Lf\n", t);
20 s+= t;
21 }
22 }
23 }

4.3 Comments

In order to find all of the rotation numbers for which to find the phase
locking intervals, ideally it would be possible to find all the phase locking
intervals above a certain length. Unfortunately, there is no known way to do
this, so we fall back on simply computing them for all denominators below
some value. There are many efficient ways to do this, but there is also a
phenomenally inefficient but very easy way. The inefficient way consists of
counting up through denominators an starting at a numerator of 1 on every
one and checking every numerator between 1 and the denominator to see
if the fraction is unique. This can be seen in the section of code above.
I’ve chosen the inefficient way for two reasons. First, the amount of time
the computer spends in this part of the program is miniscule. For each
phase locking interval the computer minimizes a function that contains a
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sine function iterated up to 500 times to 30 digits of precision.
I actually wrote a much better version of this part of the program, using

Farey series (A Farey series consists of all the rationals, that are between 0
and 1 with denominator less than some value, in ascending order) that should
have sped up this part approximately 20 times. There was, however, no
noticeable difference in speed between the two methods up to a denominator
of 50. I assume that at some point the difference would have been noticeable,
but probably at a much larger denominator.

The other reason I went with the brute force method is that it leaves
you with useable data if you stop it early. Using Farey series, an early stop
would leave you with denominators up to the limit you had set, only up to
some point between 0 and 1. An early stop of the brute force method, on the
other hand, merely reduces the precision. Also, in order to obtain more data
with the brute force method, you can start up where you left off, instead of
having to recompute everything you did before.

There were, of course, several other programs, for determining the dimen-
sion and such. They however, were rather exceptionally uninteresting, and
so will not be included here.

5 Results on the dimension of the unlocked

set in parameter space

5.1 Box Dimension

In order to computer compute the dimension of C we first need to define what
we mean by dimension. We will use the simple notion of box dimension. Box
dimension is based on the idea of covering a set with n-dimensional cubes of
side length ε. Nε(S) is defined as the minimum number of such n-dimensional
cubes needed to cover the set S. The dimension is then defined as the number
d s.t. limε→0

Nε(S)
εd = k for some constant k. In the event that d exists, we

use the more useful definition

d = lim
ε→0

log k − log Nε(S)

log ε
= − lim

ε→0

log Nε(S)

log ε
.

The method I used to compute the dimension of C is the same as that
used by Jensen, Bak, and Bohr [5]. It yields the box dimension, which could
be considered a tad simplistic. But it is certainly useful and has the distinct
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advantage of being easy to compute. It can be computed by summing the
total length of all the phase locking intervals with lengths longer than r,

S(r) =
∑

p,q s.t. I p
q

>r

I p
q
.

Then Nr(C) = (1−S(r))
r

. The box dimension of the C is

lim
r→0

(
log Nr(C)

(log 1
r
)

)
.

Then, if we graph log Nr(C) against log 1
r

and they form a straight line, the
slope would correspond to the box dimension.

For example, consider the standard middle third Cantor set, T . In order
to compute the dimension, we’ll consider r to be powers of 1

3
, so

lim
r→0

log Nr(T )

(log 1
r
)

= lim
n→∞

log N3n(T )

(log 3n)
= lim

n→∞

log
(1−S( 1

3n ))

r

(n log 3)

where S( 1
3n ) is the total length of intervals in the complement of the Cantor

set in the unit interval, or

S(
1

3n
) =

n∑
m=1

2n−1

3n
=

1

3

(
1

1− 2
3

−
2n

3n+1

1− 2
3

)
= 1− 2n

3n+1
.

So, substituting back into limn→∞
log

(1−S(3n))
r

(n log 3)
we get

lim
n→∞

log
( 2n

3n+1 )
1

3n

(n log 3)
= lim

n→∞

n log 2− (n + 1) log 3 + n log 3

(n log 3)
=

log 2

log 3

This method of computing agrees with Hausdorf on the simple middle
third Cantor set. Delbourgo and Kenny [1] have also computed dimensions
for similar circle maps, and they arrived at slightly different values. This
could, hopefully, but not likely, be because of the fact that I computed far
more locking intervals, or due to the specific maps used. The maps used
should not affect the results, however, since maps of the same criticality
always have the same associated dimension. Jensen [5] used the same method
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Criticality My Dimension Dimension from Delbourgo
and Kenny [1]

3 0.868± .001 .871± .001
5 0.815± .003 0.821± .001
7 0.791± .002 0.795± .002
9 0.771± .002 n/a
10 n/a 0.770± 0.002
11 0.765± .002 n/a
13 0.745± .001 n/a

as I did for computing the dimension, and he got a dimension of 0.8700 for
the cubic critical case, closer to Delbourgo and Kenny’s than to mine.

Delbourgo and Kenny studied the family of maps

f(θ) = Ω +
θ|2θ|z−1

2
,−1

2
< θ <

1

2
,

which has the added benefit of being of being able to evaluate critical maps
of arbitrary criticality (they give dimensions for 1.1, 1.5, 1.8, and 2.5 in their
paper). They do, however, have the disadvantage of not being analytic like
functions based on sine maps like the ones that I considered.

What is really interesting though, is the graph of the dimension against
the degree of criticality. The first 5 show a reasonable quasi-exponential decay
rate, but the order 13 criticality departs from this. It would be interesting to
see whether this is really the case, and how the dimensions of further degrees
of criticality behave.
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Figure 5: Plot of log N(r) vs. log 1
r
. The slope (dimension of C) decreases

with increasing severity of the criticality of the map.
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Figure 6: This shows the dimension of C of the maps corresponding to the
degree of criticality of the map.
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A Appendix

Sk := sin (kπx)

quintic critical map – for 4
5

< K < 8
5

fS(x) = x + ω − 1

2π

(
KS2 +

9− 8K

10
S4 +

3K − 4

15
S6

)
septimic critical map – for 4

5
< K < 8

5

fS(x) = x + ω − 1

2π

(
KS2 +

6− 5K

5
S4 +

45K − 64

105
S6 +

3− 2K

28
S8

)
≈ 32π6(8− 5K)

35
x7 + O(x9)

nonic critical map – for 1 < K < 5
3

fD(x) = x + ω − 1

2π

(
KS2 +

10− 8K

7
S4 +

27K − 40

42
S6 +

25− 16K

84
S8

+
5K − 8

210
S10

)
≈ 128π8(5− 3K)

63
x9 + O(x11)

order-11 critical map – for 8
7

< K < 12
7

fE(x) = x + ω − 1

2π

(
KS2 +

45− 35K

28
S4 +

105K − 160

126
S6 +

45− 28K

84
S8

+
1925K − 3168

25410
S10 +

5− 3K

396
S12

)
≈ 256π10(12− 7K)

231
x11 + O(x13)

order-13 critical map – for 5
4

< K < 7
4

fT(x) = x + ω − 1

2π

(
KS2 +

21− 16K

12
S4 +

9K − 14

9
S6 +

105− 64K

132
S8

+
25K − 42

165
S10 +

245− 144K

5148
S12 +

7K − 12

3003
S14

)
≈ 1024π12(7− 4K)

429
x13 + O(x15)
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