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Abstract Renormalization group has become a standard tool for describing universal properties of
different routes to chaos – period-doubling in unimodal maps, quasiperiodic transitions in circle maps,
dynamics on the boundaries of Siegel disks, destruction of invariant circles of area-preserving twist
maps, and others. The universal scaling exponents for each route are related to the properties of the
corresponding renormalization operators.

We propose a Principle of Approximate Combination of Scaling Exponents (PACSE) that organizes
the scaling exponents for different transitions to chaos. Roughly speaking, if the combinatorics of a
transition is a composition of two simpler combinatorics, then the scaling exponents of the combined
combinatorics is approximately equal to the product of the scaling exponents, both in the parameter
space and in the configuration space, corresponding to each of these two combinatorics. We state PACSE
quantitatively as precise asymptotics of the scaling exponents for combined combinatorics, and give
convincing numerical evidence for it for each of the four dynamical systems mentioned above.

We propose an explanation of PACSE in terms of the dynamical properties of the renormalization
operators – in particular, as a consequence of certain transversal intersections of the stable and unstable
manifolds of the operators corresponding to different transition to chaos.
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1 Introduction

One important discovery from the 1970’s is that several bifurcation diagrams present universal scaling
exponents. In the words of [9, p. 40], “the whole bifurcation diagram is crisscrossed by an infinity of
asymptotically universal ratios”. These scaling relations can happen among parameter values or among
spatial features of the diagram. The word “universal” means that if we change the family of maps without
altering its “essential features”, we will obtain bifurcation diagrams that exhibit the same bifurcations
and the same scaling exponents.
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Quite remarkably, the existence of these scaling relations happens in very different scenarios, the most
widely know ones being:

– unimodal maps [18,19,62,15];
– higher dimensional maps with disipation [11,13];
– period doubling in area-preserving maps of the plane [10,16];
– maps of the circle with critical points [51,20,50];
– boundaries of Siegel disks in the complex plane [42,64];
– invariant circles in conservative maps in two dimensions [52,40];
– non-twist (a.k.a. shearless) invariant tori in area-preserving maps [6,2,23].

Many of these exponents were related to properties of fixed points of renormalization group operators.
The goal of this paper is to investigate some order among the many exponents that have been

computed or studied rigorously. More precisely, we formulate a new principle that we call the Principle
of Approximate Combination of Scaling Exponents, or PACSE for short, and present convincing numerical
evidence for it in several contexts. By the word “principle” we mean some regularity that can be expected
to happen and, therefore, can be used as guidance in numerical explorations. Of course, the validity of
this principle can be rigorously deduced from some other hypotheses that can in turn be established.

Roughly speaking, PACSE asserts that good approximations to some scaling exponents can be ob-
tained by taking products of other exponents. The mathematically precise formulation of what is meant
by an approximate relation is somewhat subtle – it has to involve some limit in which it becomes ex-
act and, if possible, the rate at which this limit is approached. PACSE is concerned not only with the
existence of the limit, but also with the rate of convergence. To study PACSE, we have followed two
approaches – an experimental one and a mathematically rigorous one. The experimental approach –
developed in this paper – consists of performing highly accurate numerical computations of many expo-
nents in different cases. Because of the variety of phenomena studied and the need for high precision,
the computations are quite challenging.

In a companion paper [35], we present some rigorous results that establish PACSE as a consequence
of global properties of renormalization group operators. The mathematical result in [35] is a variation on
the theme that heteroclinic cycles generate complicated behaviour. This is, of course, very well known
in finite dimensions, but in our case the operators we need to consider act in infinite-dimensional spaces,
and there are some complications due to the fact that the operators are not invertible (they are compact).
We also need to obtain quantitative staments on the geometry of the orbits generated by the homoclinic
connections. We hope that these results could also be useful in other contexts (e.g., parabolic PDEs),
where similar problems appear.

We think that it is worthwhile to test the numerical methodology in places where there is a firm
mathematical basis, so that it can be used to suggest new mathematical discoveries. Of course, one
can also argue that taking some mathematical results into concrete high precision calculations is an
enhancement as well.

We also note that the numerical verification of PACSE is an indication that the global properties of
the renormalization operators hold [35], and this can serve as a motivation to undertake a more delicate
study either by analytical methods or by a computer assisted proof (a similar study was undertaken in
[17]).

PACSE is perhaps somewhat related to the possibility mentioned by Wilson in the final words of his
famous paper on renormalization group and critical phenomena [65] that “the solutions of the renormal-
ization group equations might approach a limit cycle or go off to infinity or go into irregular oscillations
(ergodic or turbulent?)”.

We note that observations of particular cases of PACSE have occurred in the literature. In the context
of unimodal maps, this was noticed by Derrida et al in their seminal papers [14,15]. Cvitanovic et al
[12] published some scaling exponents for critical circle maps with eventually periodic rotation numbers
and discussed some universality properties. A more systematic study for unimodal maps appeared in
[8], who also offered an explanation in terms of “periodic approximations”. In the case of twist maps,
it was observed in a paragraph in the Ph.D. thesis of one of the authors [46, Section IV.5.4, page 82].
Ge et al [26] and Ketoja and Kulkijärvi [32] observed some scalings of the widths of the windows in the
bifurcation diagram of unimodal maps with different kneading sequences.

We have published a preliminary announcement of our results in [36].
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2 Formulation of PACSE

2.1 Generalities

In the subsequent sections, we will give more details on the formulation of PACSE for each of the partic-
ular renormalization scenarios that we study, but it will be useful to start with a general overview. The
precise meaning of the structures defined here will become clearer in the particular cases considered later,
and we hope they will be easily recognizable to those familiar with one of the standard renormalization
scenarios.

In each renormalization scenario, one selects a one-parameter familiy of maps in a certain class
(e.g., unimodal maps of the interval with some non-degeneracy properties). Once we fix a family fµ in
this class, we look for a sequence of parameter values µn for which the map has orbits of increasingly
complex combinatorial descriptions K1, K2, K3, . . .; we will refer to the Kj ’s shortly as combinatorics. In
the unimodal map case, Kn are the kneading sequences and µn are the parameter values for which the
map has a superstable periodic orbit with kneading sequence Kn. Let K stand for the set of all allowed
combinatorics. We consider a sequence of combinatorics Kj that is obtained by some combinatorial
construction:

Kj+1 = CA(Kj) .

The operation CA : K → K that increases the complexity has an extra combinatorial parameter A
which belongs to some set K0 ⊆ K that will be specified in each cases we consider.

Let µj be the value for which the map fµj
has orbits of combinatorics Kj . It is often found that the

parameters µj thus obtained satisfy some scaling relations of the form

µj ≈ µ∞ + a δ−j
A , (1)

where δA it is independent of the family fµ within a certain class of maps – hence it is said to be universal.
The other two numbers, µ∞ and a, generally depend on the family. The precise meaning of (1) is usually
taken to be

µj+1 − µj

µj − µj−1
→ δ−1

A as j →∞ , (2)

where the limit is approached exponentially fast. The number δA is called the parameter-space scaling
exponent; the subscript A means that δA depends on the combinatorial parameter A.

It is observed at the same time that the orbits of fµj have some spatial characteristic `j that satisfies
`j ≈ b α−j

A , which stands for
`j+1

`j
→ α−1

A as j →∞ (3)

for some universal αA and family-dependent b. We refer to αA as the spatial (or configugation-space)
scaling exponent; again, αA depends on A.

A crucial ingredient in the formulation of PACSE is that there is an operation ? such that

CA ◦ CB = CA?B . (4)

Since composition is associative – but in general not commutative – so will be the ? operation.
The renormalization operator RA is defined for maps f with combinatorics K(f) = CA(B) for some B.

In such a case, the combinatorics of the renormalized map RA(f) is K(RA(f)) = B:

K(f) = CA(B) ⇒ K(RA(f)) = B . (5)

In summary, to formulate PACSE in a particular scenario, we need to supply:

(i) a class of maps;
(ii) a combinatorial description K ∈ K of some dynamical behavior that allows to select the parameters

in a family;
(iii) a combinatorial transformation CA : K → K (with A ∈ K0) that increases the combinatorial

complexity;
(iv) a combinatorial operation ? satisfying (4);
(v) a definition of parameter-space scaling exponents δA (2) and spatial scaling exponents αA (3).
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2.2 Precise formulation of PACSE

We use the associativity of the composition ? to introduce the notations A?1 := A and A?k := A?A?(k−1).

Principle of Approximate Combination of Scaling Exponents. Within a given class of maps,

(a) there exist positive constants C1 and C2 such that

C1 ≤
δA?B

δA δB
≤ C2 and C1 ≤

αA?B

αA αB
≤ C2 ,

where the constants Ci depend only on some crude properties of A and B;
(b) for any A and B from K0, the ratios

Dk :=
δA?k?B

(δA)k δB
and Ak :=

αA?k?B

(αA)k αB
(6)

converge as k →∞;
(c) for fixed A and B, the ratios Dk and Ak in (6) approach their limiting values D∞ and A∞ exponen-

tially, i.e., there exist constants ξA > 0 and ηA > 0 (depending only on A) such that

|Dk −D∞| ≈ const · (ξA)k , |Ak −A∞| ≈ const · (ηA)k . (7)

As an illustration of the properties of A and B alluded to in part (a), we consider the case of quasiperi-
odic renormalization. In this case, the constants Ci depend only on the maximum max{a1, . . . , ap, b1, . . . , bq}
of the partial quotients of the continued fraction expansions of the rotation numbers A = 〈(a1 . . . ap)∞〉
and B = 〈(b1 . . . bq)∞〉 (the notations are introduced in Section 4.2). This dependence is very mild.

3 PACSE for unimodal maps of the interval

In this section we start the description of steps (i)-(v) of the construction outlined in Section 2.1 in
the particular case of unimodal maps of the interval, and the three subsequent sections contain the
constructions in three other concrete scenarios.

3.1 Definitions from kneading theory

We consider unimodal maps f from the interval [−1, 1] to itself that satisfy the following conditions:
f ∈ C([−1, 1]), f ∈ C3((−1, 1)), f ′ > 0 on [−1, 0), f ′ < 0 on (0, 1], f(0) = 1, the Schwarzian derivative
of f (defined, e.g., in [9, Section II.4]) is negative on (−1, 0) ∪ (0, 1). We will also assume that the maps
are even, f(x) = f(−x). It is known that this can be done without any loss of generality and simplifies
several formulas.

In our numerical studies we used the 1-parameter family of maps with a quadratic maximum, fµ :
[0, 1] → [0, 1],

fµ(x) = 1− µx2 , µ ∈ [0, 2] , (8)

and the 1-parameter family of maps with a quartic maximum, gµ : [0, 1] → [0, 1],

gµ(x) = 1− µx4 , µ ∈ [0, 2] . (9)

In the explanations below we will use f to denote both fµ or gµ.
Since we will be dealing only with superstable periodic orbits of unimodal maps, we will introduce

only the tools for combinatorial description of such maps, referring the reader to [14,15] or Part II of [9]
for the general case. We assume that the only critical point of the maps considered is c = 0 (as for
the maps (8) and (9)). Let f(0), f2(0), . . ., fp−1(0), fp(0) = 0 be a superstable periodic orbit of f of
length p. For x ∈ [−1, 1], define

J (x) =

L if x ∈ [−1, 0) ,
C if x = 0 ,
R if x ∈ (0, 1] .
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Then the kneading sequence A of f is defined as the sequence of (p− 1) symbols L or R

A =
(
J (f(0)),J (f2(0)), . . . ,J (fp−1(0))

)
.

By definition, the length, |A|, of this kneading sequence is p, the length of the superstable periodic orbit
(although A consists of (p − 1) symbols). If f j(0) 6= 0 for any j ∈ N, then the kneading sequence of a
map f is defined as the infinite sequence

(
J (f(0)),J (f2(0)),J (f3(0)), . . .

)
of L’s and R’s.

The assumption that the Schwarzian derivative of f is negative guarantees that the orbit that realizes
the kneading sequence is unique [55] (see also [9, Section II.4]). Let µA be the value for which fµA

has
a superstable periodic orbit with kneading sequence A; for brevity, we will write fA for fµA

. Clearly,

f
|A|
A (0) = 0 and

(
f
|A|
A

)′
(0) = 0.

The composition operation ? (4) in the set of kneading sequences is usually denoted by ∗. It was
introduced in [14] as follows. Let AB = a1a2 . . . ap−1b1b2 . . . bq−1 stand for the concatenation of the
kneading sequences A = a1a2 . . . ap−1 and B = b1b2 . . . bq−1 (where ai and bi are L’s or R’s); and let
Ak := AA · · ·A (k copies). Then A ∗ B (of length |A ∗ B| = pq) is defined as follows (for |A| ≥ 2):

– if A contains an even number of symbols R, then A ∗ B := Ab1Ab2A · · ·Abq−1A;
– if A contains an odd number of symbols R, then A ∗ B := Ab̌1Ab̌2A · · ·Ab̌q−1A, where Ľ = R, Ř = L.

The ∗ operation is associative, but not commutative, as mentioned in Section 2.1.
In the notations of Section 2.1, K is the set of all kneading sequences (finite or infinite), while K0 is

the set of all finite kneading sequences.
The importance of the ∗ composition law is that it creates a more complicated kneading sequence

A ∗ B from two simpler kneading sequences A and B, embedding the dynamics of B into the dynamics
of A, so that A describes the large-scale dynamics and B describes the small-scale dynamics (embedded
in the dynamics of A) of the map fA∗B. In other words, one can decompose the superstable orbit of fA∗B
(of length |A||B|) into |A| clusters, each consisting of |B| adjacent points. Then the map fA∗B acting on
the clusters has dynamics described by A. Within each cluster, the iterated map f

|A|
A∗B has dynamics given

by the sequence B. For an example, see [15, p. 273].
The ∗ operation reveals the internal similarity of the set of all kneading sequences, i.e., the fact that

there exists an order-preserving map (for the definition of the ordering see the references cited above)
of the set of all kneading sequences K into one of its subsets: CA : K → K : B 7→ CA(B) := A ∗ B as
discovered in [14].

We note that a unimodal map f is in the domain of the renormalization operator RA if and only if
its keading sequence can be written K(f) = A ∗ B, then, according to (5), we have K(RA(f)) = B, so
that the renormalized map RA(f) may fail to be renormalizable. One can think that the renormalization
operator RA is expanding in the combinatorics because it maps a very reduced domain (the kneading
sequences of the form A ∗ B for arbitrary B) onto all the kneading sequences.

In the notations introduced above, the universality discovered by Feigenbaum-Coullet-Tresser [18,19,
62] corresponds to one particular sequence of kneading sequences, namely, R∗k, k ∈ N. PACSE generalizes
this for all cascades of kneading sequences of the form A∗k ∗ B, k ∈ N.

3.2 Scaling exponents and renormalization operators for unimodal maps

Following [15], we define below scaling exponents for unimodal maps. By “order of the maximum” we
mean the order of the first term in the Taylor expansion of [fµ(x) − fµ(0)] around its maximum c = 0.
We will focus on orders 2, a quadratic maximum [18,19,62], and 4, a quartic maximum [63]. We will
assume that all maps in a family have the same order of their maximum.

For a given family fµ, given kneading sequences A and B, and for each k ∈ {0, 1, 2, . . .}, the map f
|A|k
A∗k∗B

has a superstable periodic orbit of period |B|. The key numerical observation of [18,19,62,15] is that the

maps f
|A|k
A∗k∗B, appropriately rescaled, converge as k →∞. More precisely, if βA∗k∗B :=

[
f
|A|k
A∗k∗B(0)

]−1

, then

the maps βA∗k∗B f
|A|k
A∗k∗B

(
x

βA∗k∗B

)
(each of which has a superstable periodic orbit of period |B|) converge

as k →∞. The ratios of two consecutive rescaling constants,
β

A∗(k+1)∗B

β
A∗k∗B

, also converge to a constant α−1
A

depending only on A (and the order of the maximum of the family). Led by this observation, one can
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define a renormalization operator RA as follows:

(RAf)(x) = βf f |A|
(

x

βf

)
,

where βf is the appropriate rescaling constant (recall that we are considering only even maps; otherwise,
one would have to consider including a sign in the definition).

Scaling exponents corresponding to A with |A| ≥ 3 are much less popular than the ones coming from
the first period-doubling cascade R∗k. The reasons for this are perhaps that they occur for parameter
values greater than µR∗∞ , and that they are not adjacent in the bifurcation diagram. Nevertheless, they
have been computed by several authors ([15], [7], [56], among others), and have even found their place
in the collection of mathematical constants in [21].

Now we are ready to define the scaling exponents for unimodal maps. To avoid repetition, we will
always talk about maps with the same order of their maxima, and will not write the order of the
maximum in the notation for the scaling exponents, except in the tables with the numerical values of
these exponents.

(a) Parameter-space scaling exponent δA. If µA∗k∗B stands for the value of the parameter for which
the map has a superstable periodic orbit, then

δ−1
A := lim

k→∞

µA∗(k+1)∗B − µA∗k∗B
µA∗k∗B − µA∗(k−1)∗B

,

where δA is universal, i.e., depending only on A and the order of the maximum of the map, but is
otherwise independent of the map f when the maps range over a small enough neighborhood.

(b) Configuration-space (real-space) scaling exponent αA is defined as the limiting value of the
ratio of two consecutive rescaling factors defined above:

α−1
A := lim

k→∞

βA∗(k+1)∗B
βA∗k∗B

;

αA is universal (in the same sense as for δA).

3.3 Numerical methods for the scaling exponents of unimodal maps

Since the ideas used to compute the values of the scaling exponents are the same for the families fµ (8)
and gµ (9), below we use fµ as an example.

The main task is to find the value of the parameter µA for which the map fµ has superstable periodic
orbit with kneading sequence A = a1a2 . . . ap−1. Since for our maps the critical point c is always 0, this
means that we are looking for µA for which 0 belongs to a periodic orbit of length p such that the iterates
of 0 follow the sequence A, i.e., for j = 1, 2, . . . , p− 1,

f j
µA

(0) ∈
{

[−1, 0) if aj = L
(0, 1] if aj = R .

We define two inverses, f−1,L
µ and f−1,R

µ , of the map fµ:

f−1,L
µ (y) := −

√
1− y

µ
and f−1,R

µ (y) := +
√

1− y

µ
, for y < 1 .

With this notation, µA must satisfy the equation

f−1,a1
µ ◦ f−1,a2

µ ◦ . . . ◦ f−1,an−2
µ ◦ f−1,an−1

µ (0) = f(0) = 1 .

Taking fµ of both sides and noticing that fµ(1) = 1− µ, we see that µA must satisfy

Φ(µ) := f−1,a2
µ ◦ . . . ◦ f−1,an−2

µ ◦ f−1,an−1
µ (0)− 1 + µ = 0 .

To solve the equation Φ(µ) = 0 with high accuracy, we used the Brent zero-finding algorithm [4, Chapter
4]. This method is quadratically convergent, so it is practical even for calculations with several hundred
digits. At the same time, it brackets the solution, so that we always know that the interval we consider
contains a solution. We implemented the above algorithm by using GMP – the freely available GNU
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Multiple Precision Arithmetic Library [1] which allows numerical computations with arbitrary accuracy.
We performed the computations using about 600 decimal digits of accuracy.

Using this method, we found the values of µA∗n for several n, and used them to compute the ratios
µ

A∗(n+1)−µA∗n

µA∗n−µ
A∗(n−1)

. If this could be done for several values of n, we used multiple Aitken’s extrapolation to
find the value of δA. To compute the values of αA, we found the scaling of the closest returns of the orbit
of the critical point to itself, which is similar to the definition of the configuration-space scaling exponent
for the case of circle maps (see equation (11) below). In principle, if µA∗∞ = lim

n→∞
µA∗n , then one can

study the closest returns to the critical point of the orbit of the critical point under the map fµA∗∞ ,

which occur if the map is iterated |A∗n| times. If dn :=
∣∣∣f |A∗n|

µA∗∞ (0) − 0
∣∣∣ are these closest returns, then

αA is computed from α−1
A = lim

n→∞

dn

dn−1
(compare this with the definition (11) of the configuration-space

scaling exponent for circle maps). In practice, instead of using µA∗∞ , we computed µA∗N for some large N ,
and then used this value instead of µA∗∞ in the computations of the closest returns dn. In the numerical
example in Table 1 below, we took N = 10, computed d1, . . ., d9, and used these ratios to find αA. As
one can see from the table, as n increases, the ratios dn−1

dn
first start stabilizing, but when n approaches

N = 10, the convergence seems to break down. This is easy to explain – in the computation of dn, we
should have used the exact value µA∗∞ instead of the approximate one, µA∗N . This introduces a small
error for low iterates, but is fatal for high ones.

3.4 Numerical results on PACSE for unimodal maps

We performed numerical computations of the scaling exponents δ
(2)
A and α

(2)
A for the family fµ (8) of

unimodal maps with a quadratic maximum, and the scaling exponents δ
(4)
A and α

(4)
A for the family gµ

(9) of unimodal maps with a quartic maximum.
A major problem in our computations was the extremely fast growth of the length of the kneading

sequences we needed to use in order to compute the scaling exponents. For example, to compute δ
(2)

A∗k∗B
for some k ∈ N, we need to find the parameter values µ

(2)

(A∗k∗B)∗n∗C for several n ∈ N and some (arbitrary)
kneading sequence C (for the family fµ). But the length of the kneading sequence (A∗k ∗ B)∗n ∗ C is
(|A|k|B|)n|C|, which grows very fast with n even for small |A|. Using several tricks of indirect referencing,
we were able to do computations for kneading sequences of length several billions.

In Table 1 we illustrate the process of obtaining the value of the scaling exponents δ
(2)
RL∗R and α

(2)
RL∗R.

The computation took several hours in a current desktop computer. The values of the parameters µ
(2)
A∗n

were computed with accuracy about 200 decimal digits, but since Table 1 is only for illustrative purposes,
the values given in the table are truncated.

Table 1 Illustration for the computations of δ
(2)
RL∗R and α

(2)
RL∗R; A = RL ∗ R = RLLRL, |A| = |RL ∗ R| = 6.

n |A∗n| = |A|n µ
(2)
A∗n

µ
(2)
A∗n − µ

(2)

A∗(n−1)

µ
(2)

A∗(n+1) − µ
(2)
A∗n

dn :=
˛̨̨
f
|A∗n∗B|
µ
(2)
A∗10

(0)− 0
˛̨̨

dn−1

dn

1 6 1.7728929033816237994341 3.0137075740399× 10−2

2 36 1.7811787074030578136618 218.4825169765562 1.4377337517394× 10−3 20.963144712
3 216 1.7812166317373985934503 218.4160488238348 6.8695738489866× 10−5 20.929029074
4 1,296 1.7812168053708588863245 218.4118631956149 3.2823832718048× 10−6 20.928616069
5 7,776 1.7812168061658407053173 218.4117960517258 1.5683712952838× 10−7 20.928610987
6 46,656 1.7812168061694805353694 218.4117951520684 7.4939101336644× 10−9 20.928610875
7 279,936 1.7812168061694972003579 218.4117951406393 3.5807009726033× 10−10 20.928600279
8 1,679,616 1.7812168061694972766587 218.4117951404967 1.7108927323015× 10−11 20.926283815
9 10,077,696 1.7812168061694972770080 218.4117951404949 8.1548635942729× 10−13 19.980028819

10 60,466,176 1.7812168061694972770096 0

Table 2 displays the values of the scaling exponents of the quadratic unimodal family fµ (8). The
column “Max length used” gives the maximum length of the kneading sequence used in the computa-
tions of the particular scaling exponents. Although it was often difficult to estimate the error in our
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computations, we believe that the error of most of the numerical values does not exceed 2 in the last
significant digit, unless indicated otherwise; (±?) means that the error could not be estimated. We also
obtained the following values of the scaling exponents for the family fµ (8) that were needed to compute
the ratios of the scaling exponents in Table 4 below: δ

(2)
R = 4.66920160910299, δ

(2)
RL = 55.247026588672,

δ
(2)
RLL = 981.594976534071, α

(2)
R = 2.50290787509590, α

(2)
RL = 9.2773411156, α

(2)
RLL = 38.81907429719690.

Table 2 Scaling exponents for the quadratic unimodal family fµ (8).

A B k Max length used δ
(2)

A∗k∗B α
(2)

A∗k∗B
R RL 1 610 = 60,466,176 218.411795140495 20.9286109
R RL 2 127 = 35,831,808 1071.42166411881 53.468926
R RL 3 245 = 7,962,624 5002.0407 133.7057
R RL 4 484 = 5,308,416 23384 334.80
R RL 5 963 = 884,736 109200 (±?) 837 (±?)
R RLL 1 89 = 134,217,728 2304.55784444859 66.38970
R RLL 2 166 = 16,777,216 12355.7086904746164 176.757
R RLL 3 324 = 1,048,576 57319.69 ± 0.10 440.332
R RLL 4 643 = 262,144 268400 1102.32 (±?)
R RLL 5 1283 = 2,097,152 1253400 (±?) 2761 (±?)
RL R 1 610 = 60,466,176 218.411795140495 20.9286109
RL R 2 186 = 34,012,224 12389.010675300 196.582
RL R 3 544 = 8,503,056 683380 ± 10 1822.35
RL R 4 1623 = 4,251,528 37760000 ± 30000 16907 (±?)
RL RLL 1 127 = 35,831,808 49344.980718870504 343.029984
RL RLL 2 364 = 1,679,616 2745043.1 3193.15
RL RLL 3 1083 = 1,259,712 151586000 ± 4000 29616 (±?)

Table 3 shows the computed values of the scaling exponents of the quartic unimodal family gµ (9).
The notations are the same as in Table 2. We also obtained the following values of the scaling exponents
for the family (9) that were needed to compute the ratios in Table 4 below: δ

(4)
R = 7.2846862170733434,

δ
(4)
RL = 85.7916290913561, δ

(4)
RL = 1275.1129946531598071, α

(4)
R = 1.69030297; α

(4)
RL = 3.15215735; α

(4)
RLL =

6.191800569.

Table 3 Scaling exponents for the quartic unimodal family gµ (9).

A B k Max length used δ
(4)

A∗k∗B α
(4)

A∗k∗B
R RL 1 610 = 60,466,176 465.2710814026 4.93533166
R RL 2 127 = 35,831,808 3615.136820 8.47054
R RL 3 245 = 7,962,624 26031.25 14.2755
R RL 4 484 = 5,308,416 190000± 20 24.1707
R RL 5 963 = 884,736 1380000 (±?) 39.8 (±?)
R RLL 1 89 = 134,217,728 3306.0917724 8.03318
R RLL 2 166 = 16,777,216 29689.5614 14.2896
R RLL 3 324 = 1,048,576 207679.9 23.9058
R RLL 4 643 = 262,144 1523400 (±?) 40.475 (±?)
R RLL 5 1283 = 2,097,152 11080000 (±?) 68.38 (±?)
RL R 1 610 = 60,466,176 465.2710814026 4.93533166
RL R 2 186 = 34,012,224 43008.44 ± 0.04 15.845786 ± 0.000005
RL R 3 544 = 8,503,056 3644000 49.79 (±?)
RL R 4 1623 = 4,251,528 313000000 (±?) 157 (±?)
RL RLL 1 127 = 35,831,808 91623.170130 18.6618
RL RLL 2 364 = 1,679,616 8112000 59.29 (±?)
RL RLL 3 1083 = 1,259,712 692000000 (±?) 186 (±?)
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Table 4 shows the ratios

D(d)
k =

δ
(d)

A∗k∗B(
δ
(d)
A

)k

δ
(d)
B

and A(d)
k =

α
(d)

A∗k∗B(
α

(d)
A

)k

α
(d)
B

, d = 2, 4

for the data from Tables 2 and 3. These ratios provide numerical evidence for parts (a) and (b) of PACSE
for unimodal maps. The fact that the ratios D(d)

k and A(d)
k seem to converge as k → ∞ is even more

striking if one takes into account that some of the exponents used to compute these ratios were very
large – up to several hundred million! Part (c) of PACSE cannot be seen from these tables because of the
extremely fast growth of the length of the kneading sequences. We will show numerical evidence for the
exponential rate of convergence of D(d)

k and A(d)
k in other cases – critical (Section 4.4) and non-critical

(Section 4.5) circle maps, and dynamics on the boundary of Siegel disks (Section 5.2).

Table 4 Ratios of the scaling exponents (5.2) for the quadratic (d = 2) and quartic (d = 4) unimodal families.

A B k D(2)
k A(2)

k D(4)
k A(4)

k
R RL 1 0.846690238310410 0.90130548 0.744475304148 0.92628344
R RL 2 0.889541596766076 0.920000801 0.7940687858 0.940533
R RL 3 0.88942725 0.9191614 0.7849058 0.937756
R RL 4 0.89052 0.91956 0.78644 0.93934
R RL 5 0.8907 (±?) 0.918 (±?) 0.784 (±?) 0.915 (±?)
R RLL 1 0.50282013432097 0.683299 0.35592245110 0.767549
R RLL 2 0.57736450402003890 0.72684 0.438766449 0.807744
R RLL 3 0.5736455 0.723437 0.4213211 0.799452
R RLL 4 0.5753 ± 0.0005 0.72357 0.42425 (±?) 0.80078 (±?)
R RLL 5 0.5754 (±?) 0.7241 (±?) 0.4236 (±?) 0.8004 (±?)
RL R 1 0.846690238310410 0.90130548 0.744475304148 0.92628344
RL R 2 0.8693130162750 0.91254 0.8021445 0.9434816
RL R 3 0.86794 0.911835 0.7922 0.9404 (±?)
RL R 4 0.8681 ± 0.0007 0.91186 (±?) 0.793 (±?) 0.941 (±?)
RL RLL 1 0.9099169335611600 0.9524964880 0.83755189927 0.956156
RL RLL 2 0.9162184 0.955712 0.8643 0.9637 (±?)
RL RLL 3 0.91580 0.95546 (±?) 0.859 (±?) 0.959 (±?)

4 PACSE for for circle maps

4.1 Preliminaries

We start with a brief collection of definitions and facts about circle maps (for details see, e.g., [30, Ch. 11,
12] or [44, Ch. 1]). Let T = R/Z stand for the circle and π : R → T : x 7→ π(x) := xmod1. If F : R → R
is a map satisfying F (x + 1) = F (x) + 1, then the map f : T → T that satisfies f ◦ π = π ◦ F is a map
of the circle T, and F is called a lift of f . We will always assume that f is an orientation-preserving
homeomorphism. The rotation number of f is defined as

τ(f) :=
(

lim
n→∞

Fn(x)− x

n

)
mod1;

τ(f) exists and is independent of the choice of F and x ∈ T.
Two circle maps f and g are topologically (respectively Ck, smoothly, analytically) conjugate if there

exists a homeomorphism (respectively Ck, C∞, analytic diffeomorphism) h of the circle such that f =
h−1 ◦ g ◦ h. The map h is called the conjugacy between f and g. If the τ(f) is irrational and the orbit
of some point is dense in T, then f is topologically conjugate to the rigid rotation rτ(f) : T → T : x 7→
(x + τ(f))mod 1.

There is a multitude of results concerning the regularity of the conjugacy h between f and rτ(f) [3,
45,29,54,31,68,66,57,33] (the proofs in [54,57,33] used renormalization ideas). These regularity results
guarantee that if f is a regular enough circle diffeomorphism with rotation number that is Diophantine,
then f is smoothly conjugate to a rigid rotation (the regularity of the conjugacy depends on the regularity
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of f and the Diophantine properties of τ(f)). One immediate consequence of this is that the scaling
exponents of a family of circle diffeomorphisms and the corresponding family of rigid rotations are the
same; we use this fact in Section 4.5 to find explicit expressions for the scaling exponents in this case.

An important topic in the theory of circle maps is the dynamical behavior of critical circle maps, i.e.,
analytic circle homeomorphisms that have a critical point c at which f ′(c) = 0. Obviously, the Taylor
expansion of such a map around c has the form f(x) = f(c) + 1

n!f
(n)(c)(x − c)n + · · · , where n = 3

(cubic critical), 5 (quintic critical), . . .. In [67] it is shown that these maps are topologically conjugate
to rotations. Clearly, the conjugacy h cannot even be Lipschitz. The Hölder regularity of the conjugacy
was investigated numerically by two of the authors of the present paper in [37], where one can find many
references on critical circle maps and their conjugacies.

4.2 Rotation numbers – notations

Let A = (a1, a2, . . . , ap) be a sequence of p natural numbers aj ∈ N; we will usually omit the commas
and write A = (a1a2 . . . ap). Let |A| = p be the length of A. If B = (b1b2 . . . bq) is another such sequence,
let AB := (a1a2 . . . apb1b2 . . . bq) stand for the concatenation of A and B. Let ABn denote the sequence
ABB · · ·B (B repeated n times), and AB∞ := ABB · · · . Denote by

〈B〉 = 〈b1b2 . . . bq〉 :=
1

b1 +
1

b2 +
1

. . . +
1
bq

the continued fraction expansion (CFE) whose partial quotients are the numbers constituting B; the
meaning of 〈ABn〉 := 〈ABB · · ·B〉 is analogous, and 〈AB∞〉 := lim

n→∞
〈ABn〉. Let G : (0, 1) → (0, 1) be the

Gauss map,

G(x) :=
1
x
−
⌊

1
x

⌋
,

which satisfies G(〈a1a2 · · · an · · · 〉) = 〈a2 · · · an · · · 〉.
We are especially interested in studying numbers with CFEs of the form

〈HT∞〉 := lim
n→∞

〈HTn〉 ,

which are called eventually periodic. A number is of this type if and only if it is a root of a quadratic
equation with integer coefficients (see [28, Theorems 176 and 177]), so such numbers are also called
quadratic irrationals. We will call H the head and T∞ the tail, T the periodic part, and |T| the length of
the periodic part of the CFE. Clearly, after removing the head H by applying the Gauss map |H| times,
the resulting number G|H| (〈HT∞〉) = 〈T∞〉 is periodic for the Gauss map: G|T| (〈T∞〉) = 〈T∞〉. If two
quadratic irrationals have the same tail, they are said to be equivalent.

4.3 Scaling exponents and renormalization for circle maps

To define the scaling exponents for circle maps, consider the archetypal circle map,

fω,γ(x) = (x + ω + γg(x)) mod 1 ,

where g is a 1-periodic analytic function. We will be interested mainly in critical maps, in which case
we assume that there exists only one point c ∈ T for which f ′ω,γ(c) = 1 + γg′(c) = 0. Assume also that
the rotation number of the map is eventually periodic: τ(fω,γ) = 〈HT∞〉 ∈ (0, 1) \ Q. For a fixed value
of γ, define the phase locking intervals, In(γ), as the intervals of the parameter ω for which the rotation
number of the map is equal to the rational approximant Pn

Qn
= 〈HTn〉 of the rotation number (hence, the

map has a periodic orbit of period Qn):

In(γ) :=
{

ω ∈ (0, 1) : τ(fω,γ) =
Pn

Qn

}
.
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Since 〈HT∞〉 is irrational, the iterates of every point x ∈ T fill the circle densely and never come back to
x, but lim

n→∞
fQn(x) = x. Now we are ready to define the scaling exponents for a circle map f with one

critical point c.

(a) Parameter-space scaling exponent δT. For a given value of γ, the lengths |In(γ)| of the phase-
locking intervals scale as

|In(γ)| ≈ Cδ−n
T , (10)

where δT is a universal number, i.e., a number that depends only on T and the order of the critical
point c, but is otherwise independent of the map f when the maps range over a small enough
neighborhood.

(b) Configuration-space scaling exponent αT. For a critical circle map with rotation number 〈HT∞〉,
the rate at which the iterates of the critical point c return to it is given by

|fQn(c)− c| ≈ Cα−n
T , (11)

where αT is a universal number (in the same sense as for δT).

Since the scaling exponents depend on the order of the critical point, we will put a superscript to
indicate the order, using N for non-critical, C for cubic critical, and Q for quintic critical maps. In the
notations above we tacitly assumed that the scaling exponents depend only on the tail T of 〈HT∞〉 –
this fact is one of the consequences of the existence of renormalization group.

The scaling exponents for cubic critical circle maps were introduced in [51], where it was found that
for rotation numbers of the form 〈H1∞〉 these scaling exponents do not depend on the particular map and
on the head H. Soon after that, a renormalization operator acting on critical circle maps was constructed
(at a “physical” level of rigor) in [50] and [20] in order to explain the findings of [51].

4.4 PACSE for circle maps – formulation, numerical methods and results

PACSE for circle maps is a particular case of the general formulation given in Section 2.2; we only need
to specify that for circle maps, the operation ∗ (4) is defined as concatenation:

A ∗ B = AB , A∗k ∗ B = AkB . (12)

In these notations, for example, δC
AkB is the universal number that comes from studying the lengths of

the phase-locking intervals In(γ) (10) for a cubic critical map with rotation numbers 〈H(AkB)n〉, n ∈ N
(the scaling exponents do not depend on the head H).

The formulation of PACSE for circle maps is a particular case of the general statement given in
Section 2.2; in particular, we are interested in the behavior for large k of the ratios

D•
k :=

δ•AkB

(δ•A)k δ•B
and A•

k :=
α•AkB

(α•A)k α•B
, • = N, C, Q . (13)

To compute the parameter-space scaling exponents for rotation numbers of the form 〈T∞〉 for T =
(t1t2 . . . tp) (with tj ∈ N), we used the following method (similar to the one two of the autors of the
present paper used in [37]). Let fω,β be the circle map and Fω,β be its lift. Let Fn be the Fibonacci-like
sequence generating T = (t1t2 . . . tp): F0 = 0, F1 = 1, F1/F2 = 1

tp+(F0/F1)
, F2/F3 = 1

tp−1+(F1/F2)
, . . ., and

let In(β) stand for the phase-locking interval where the rotation number of fω,β equals Fn/Fn+1. To find
the ends of the interval In(β), we used the fact that when ω enters In(β), the map x 7→ (Fω,β)Fn+1(x)−Fn

undergoes a tangent bifurcation. To determine these values, we used the subroutines fmin and zeroin
from [22], and the doubledouble software package [5] providing about 30 decimal digits of accuracy.

In our computations we studied the following families of circle maps:

– the cubic critical (C) family (0 ≤ β < 4
3 , we used β = 0.3)

fC
ω,β(x) =

[
x + ω − 1

2π (β sin 2πx + 1−β
2 sin 4πx)

]
mod1 ,

where the coefficients are chosen in such a way that for every β, fC
ω,β(x) = ω + 2π2(4−3β)

3 x3 +O(x5);
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– the quintic critical (Q) family ( 1
2 ≤ β < 3

2 , we used β = 0.6)

fQ
ω,β(x) =

[
x + ω − 1

2π (β sin 2πx

+ 9−8β
10 sin 4πx + 3β−4

15 sin 6πx)
]
mod1 ,

where the coefficients are chosen in such a way that for every β, fQ
ω,β(x) = ω + 8π4(3−2β)

5 x5 +O(x7);
– the maps

f(x) = x + ω − b

2π

sin 2πx

a− cos 2πx
(14)

with (a, b) = (2, 1), for which f is cubic critical [f(x) ≈ ω + 8
3π2x3 +O(x5)]; and (a, b) = (−2,−3),

for which f is quintic critical [f(x) ≈ ω + 4
45π4x5 +O(x7)].

Since the maps (14) with a fixed order of critical point do not contain any free parameter, we only
computed the α exponents. This was to reassure us that the results and the numerics apply to
functions with infinitely harmonics. The form of the function (14) is chosen to have infinitely many
harmonics with few evaluations of trigonometric functions.

We give numerical data for the scaling exponents for the C and Q cases in Tables 5 and 6, and for
the ratios Dk and Ak (13) in Tables 7 and 8. In the calculations of the ratios of the exponents, we used
the following computed values: δC

1 = 2.8336106559, αC
1 = 1.28857456, δQ

1 = 3.04337774, αQ
1 = 1.193857.

To obtain each of the δ’s from Tables 5 and 6, we run our programs for one-two weeks. While computing
δ, we obtain with high accuracy the value of ω such that the rotation number of the circle map has
the desired rotation number. Having computed this value of ω, we computed the corresponding value
of α directly from the definition (11) (i.e., iterating Qn times and measuring the closest returns); the
computation of α took several hours in a desktop computer.

Although it is difficult to estimate the errors in the data, we believe that in most cases the error
does not exceed 2 in the last significant digit, unless we indicate otherwise. Despite the loss of accuracy
for large values of k, the ratios Dk and Ak clearly converge to some values. The existence of limits as
k → ∞ of Dk and Ak (as claimed by PACSE) is quite surprising since the numerical values of the
configuration-space and especially of the parameter-space scaling exponents are quite large for large k –
note, for example, for a quintic critical circle maps, δ1114 is about 14 million.

Table 5 Scaling exponents of cubic critical circle maps with rotation numbers 〈T∞〉, T = (1k2), (1k3), and
(1k4).

Cubic critical, T = (1k2) Cubic critical, T = (1k3) Cubic critical, T = (1k4)

k δC
1k2 αC

1k2 δC
1k3 αC

1k3 δC
1k4 αC

1k4
0 6.79922516 1.58682670 13.7602824 1.85507 24.620348 2.080122
1 17.66905276 1.9691355 31.6238761 2.1741151 50.76600 2.318910
2 52.04449 2.590589 98.324667 2.9453239 165.84861 3.2192538
3 145.425152 3.308635 269.10293 3.710008 444.9945 4.005393
4 414.51561 4.28301 774.0388 4.836417 1291.564 5.25380
5 1171.7123 5.5067 2179.327 6.196286 3621.50 6.70968
6 3323.73 7.1039 6193.4 8.0082 10312 8.68597
7 9413.7 9.14860 17526 10.30338 29152 11.16593
8 26681 11.7923 49693 13.28730 82670 14.4062
9 75590 15.1929 140800 17.1147 234200 18.5514

10 214000 19.579 399000± 400 22.058 663000 23.913
11 607900 25.230 1131000± 1000 28.421 1880000± 4000 30.809
12 1728000± 3000 32.51± 0.01 3210000± 6000 36.625 5340000± 6000 39.705

The exponential convergence of Dk and Ak to their limits (part (c) of PACSE) is a subtle effect, but

nevertheless it can be seen from our numerical data. Let DC,m
k =

αC
1km

(αC
1 )kαC

m
, AC,m

k =
αC

1km

(αC
1 )kαC

m
, and DC,m

∞

and AC,m
∞ be the corresponding limiting values as k →∞. In Figure 1 we show the plots of |DC,m

k −DC,m
∞ |

and |AC,m
k −AC,m

∞ | for different values of m. The limiting values used in the figure were obtained from the
data in Table 7 by Aitken extrapolation. The limiting values used to make the figure were the following:
DC,2
∞ = 0.94404, DC,3

∞ = 0.86869, DC,4
∞ = 0.80766, AC,2

∞ = 0.97756, AC,3
∞ = 0.94207, AC,4

∞ = 0.91074. In
plotting the error bars, we assumed that the absolute error in each of the values displayed in Table 7
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Table 6 Scaling exponents of quintic critical circle maps with rotation numbers 〈T∞〉, T = (1k2), (1k3), (1k4).

Quintic critical, T = (1k2) Quintic critical, T = (1k3) Quintic critical, T = (1k4)

k δQ

1k2
αQ

1k2
δQ

1k3
αQ

1k3
δQ

1k4
αQ

1k4
0 7.7912246 1.3791501 16.71149 1.53182 31.4178 1.6478
1 21.573320 1.5985 40.26195 1.700221 66.752 1.7657
2 68.620816 1.9392 136.407 2.1057 239.4 2.2208
3 205.43 2.2997 398.36 2.4738 685 2.5901
4 629.5 2.7536 1233.2 2.9740 2134 3.123
5 1910.6 3.2836 3727.6 3.541 6435± 5 3.7137
6 5820 3.9216 11370 4.231 19640± 50 4.440
7 17710 4.6815 34590 5.0503 59700± 100 5.299
8 53500 5.590 105000± 1000 6.029 181600 6.33
9 160000 6.677 322000 7.198 570000 7.555

10 500000 7.970 990000 8.595 1750000± 50000 9.02
11 1600000 9.53 3100000± 100000 10.26 5500000± 300000 10.76
12 4680000± 50000 11.36 9500000± 300000 12.25 13700000 (±?) 12.8

Table 7 Ratios of the scaling exponents of cubic critical circle maps for the data from Table 5.

Cubic critical, T = (1k2) Cubic critical, T = (1k3) Cubic critical, T = (1k4)

k
δC
1k2

(δC
1 )

k
δC
2

αC
1k2

(αC
1 )

k
αC

2

δC
1k3

(δC
1 )

k
δC
3

αC
1k3

(αC
1 )

k
αC

3

δC
1k4`

δC
1

´k
δC
4

αC
1k4`

αC
1

´k
αC

4

1 0.9170936095 0.96302276 0.811049901 0.909520 0.72767688 0.8651382
2 0.9533118 0.9832182 0.88992782 0.956210 0.83895234 0.9320673
3 0.940068655 0.9745199 0.85954882 0.934729 0.79440126 0.8999692
4 0.94562895 0.978997 0.8725186 0.945638 0.813694 0.916107
5 0.94332356 0.97682 0.866950 0.940206 0.805181 0.907956
6 0.944333 0.97793 0.86948 0.943012 0.80911 0.912162
7 0.94389 0.977368 0.86831 0.941575 0.80722 0.9099954
8 0.94411 0.977671 0.86885 0.94232 0.8078 0.911138
9 0.9439 0.977519 0.8688 0.94193 0.8077 0.910546

10 0.943 0.97761 0.8688 0.94212 0.807 0.91085
11 0.945 0.97765 0.869 0.94205 0.8075 0.91071
12 0.948 0.9776 0.870 0.94211 0.809 0.91083

Table 8 Ratios of the scaling exponents of quintic critical circle maps for the data from Table 6.

Quintic critical, T = (1k2) Quintic critical, T = (1k3) Quintic critical, T = (1k4)

k
δQ

1k2“
δQ
1

”k

δQ
2

αQ

1k2“
αQ

1

”k

αQ
2

δQ

1k3“
δQ
1

”k

δQ
3

αQ

1k3“
αQ

1

”k

αQ
3

δQ

1k4`
δQ
1

´k
δQ
4

αQ

1k4`
αQ

1

´k
αQ

4

1 0.9098198 0.97084 0.7916327 0.929705 0.69812 0.89755
2 0.9509078 0.98652 0.881271 0.96446 0.8227 0.94558
3 0.93539 0.97995 0.84565 0.94907 0.773 0.92375
4 0.94182 0.98283 0.86019 0.95570 0.7918 0.9329
5 0.93926 0.98170 0.85435 0.9531 0.7845 0.92926
6 0.940 0.98206 0.8563 0.9539 0.785 0.9306
7 0.9400 0.98199 0.8559 0.95377 0.786 0.9303
8 0.933 0.9822 0.8537 0.9537 0.7854 0.931
9 0.92 0.9826 0.860 0.9537 0.81 0.9306

10 0.94 0.982 0.87 0.9539 0.82 0.931
11 0.99 0.98 0.9 0.9538 0.8 0.930
12 0.95 0.982 0.9 0.9539 0.7 0.93

was 4 units in the last digit (which, of course, was just an estimate). One should have in mind that the
logarithmic scale may give a distorted idea about values very close to zero. Another effect that makes
the values for large k less reliable is that their computations involve quite a number of extrapolations.
Figure 1 provides an excellent confirmation of the fact that the ratios Dk and Ak approach their limiting
values exponentially, as claimed by PACSE (cf. (7)), especially if one takes into account that the data
represented in the table are very small differences which are extremely sensitive to numerical errors. Note
also that the approximate straight lines corresponding to 1k2, 1k3, and 1k4 for medium values of k are
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roughly parallel, as predicted. In our opinion it is quite remarkable that one glimpse into the exponential
convergence of the ratios of the scaling exponents because in some sense this is a third-order correction.
We also think that it is interesting that the asymptotic formula fits so well even for small values of k.

1 2 3 4 5 6 7 8 9

0.0001

0.001

0.01

0.1

1 2 3 4 5 6 7 8 9

0.0001

0.001

0.01

0.1

Fig. 1 Left: Log-linear plot of the differences |DC,2
k −DC,2

∞ | (thin lines), |DC,3
k −DC,3

∞ | (thick lines), |DC,4
k −DC,4

∞ |
(dashed lines) vs. k for k = 1, 2, . . . , 9; the notations are defined in the text. Right: Log-linear plot of the

differences |AC,2
k −AC,2

∞ | (thin lines), |AC,3
k −AC,3

∞ | (thick lines), |AC,4
k −AC,4

∞ | (dashed lines) vs. k for k = 1, 2, . . . , 9;
the notations are defined in the text.

4.5 Scaling exponents for non-critical circle maps

For critical circle maps one can only compute the scaling exponents numerically, which takes long time
(to find each value in Tables 5 and 6 we run the code for weeks) and the accuracy is limited. In the case
of non-critical circle maps, however, one can use the fact that the map is conjugate to a rigid rotation
(mentioned in Section 4.1) and either write a simple computer code or even do computations by hand.
Indeed, the case considered here can be obtained as a particular case of the general results in [35].

Here we will illustrate how one can find the parameter-space scaling exponents for rotation numbers
of the form 〈(1km)∞〉 for k ∈ N, m ≥ 2.

Let F0 = 0, F1 = 1, Fn+1 = Fn + Fn−1 (n ∈ N) be the Fibonacci numbers the ratios of two

consecutive ones converge to the golden mean: lim
n→∞

Fn

Fn+1
= 〈1∞〉. The general form of Fn is Fn =

C+(µ+)n + C−(µ−)n, where µ± = 1
2

(
1±

√
5
)

are the roots of the quadratic equation µ2 − µ − 1 = 0,
and C± are constants; for our choice of initial conditions, they are C+ = −C− = 1√

5
. Let A = (1km) and

ω = 〈A∞〉. Note that Gj(ω) = 〈1k−jmA∞〉 for j = 1, . . . , k, and Gk+1(ω) = ω. One easily shows that

〈mA∞〉 =
1

m + ω
, 〈1jmA∞〉 =

Fj(m + ω) + Fj−1

Fj+1(m + ω) + Fj
, j = 1, . . . , k − 1 . (15)

If one takes j = k in (15), the right-hand side must equal ω. Using this, we solve the equation

ω = 〈1kmA∞〉 =
Fk(m + ω) + Fk−1

Fk+1(m + ω) + Fk
,

to obtain

ω =
1
2

(
−m +

√
m2 + 4

mFk + Fk−1

Fk+1

)
. (16)

To compute the parameter-space scaling exponent δ, we will use the fact that, if a number x is a
periodic point under the Gauss map, i.e., Gn(x) = x, then δ = (Gn)′(x). This fact is clear because the
efect of renormalization on the rotation number is just to apply Gn. Hence, the linearization of this

14



effect is precisely (Gn)′(x). Of course, for the family of rigid rotations, the parameter of the family is
the rotation number. For a more general family we note that, since Gn(x) = x, x is Diophantine and,
by Herman’s theorem [29], the map is smoothly conjugate to a rigid rotation. It is well known and not
difficult to prove that the rotation number is differentiable as a function of the parameter at this point
(the details appear in many places, a reference that also contain algorithms is [39]).

Recalling that G′(x) = − 1
x2 for x ∈ (0, 1) \ { 1

2 , 1
3 , . . .}, we obtain that the derivative of the (k + 1)st

iterate of the Gauss map at ω is equal to∣∣∣(Gk+1
)′

(ω)
∣∣∣ = k∏

j=0

∣∣G′ (Gj(ω)
)∣∣ = k∏

j=0

〈1jmA∞〉−2 = [Fk+1(m + ω) + Fk]2 .

Substituting ω from (16), we obtain the non-critical parameter-space scaling exponent for 〈(1km)∞〉:

δN
1km =

∣∣∣(Gk+1
)′

(ω)
∣∣∣ = [m

2
Fk+1

(
1 +

√
1 +

4
m2

mFk + Fk−1

Fk+1

)
+ Fk

]2

. (17)

Using (17) and the fact that δN
1 = 〈1∞〉−2 = µ2

+, δN
m = 〈m∞〉−2 = 1

2

(
m +

√
m2 + 4

)
, we obtain after

tedious algebraic manipulations that for large k,

Dk =
δN
1km(

δN
1

)k
δN
m

=
[

2√
5

2 + mµ+

m +
√

m2 + 4

]2
+ Cµ−2k

+ + · · · =: D∞ + Cµ−2k
+ + · · · ,

where C is a complicated expression depending on the form of the CFE studied but not on k. Therefore,
we obtain that the ratios Dk approach their limiting value D∞ exponentially:

|Dk −D∞| ≈ C(µ−2
+ )k ,

– compare this with (7).
This analysis can be easily generalized to rotation numbers of the form 〈(akm)∞〉. If

{
F
〈a∞〉
n

}∞
n=1

is
a Fibonacci-like sequence generating 〈a∞〉, then

F 〈a∞〉
n = C+

(
µ
〈a∞〉
+

)n + C−
(
µ
〈a∞〉
−

)n
,

where
µ
〈a∞〉
± =

1
2

(
a±

√
a2 + 4

)
are the roots of the quadratic equation µ2 − aµ − 1 = 0, and C+ and C− are constants that do not
depend on n. In this case the approach of Dk to its limit is given by

Dk = D∞ + C
(
µ
〈a∞〉
+

)−2k + · · · .

If ξN
a is the constant in (7) that characterizes the rate at which the ratios Dk approach their limiting

value D∞, then

ξN
a =

(
µ
〈a∞〉
+

)−2 =

(
a +

√
a2 + 4
2

)−2

=
a2 + 2−

√
a2 + 4

2
. (18)

In Figure 2 we present numerical data for |Dk−D∞| vs. k in the non-critical case, for several rotation
numbers. To obtain these values, we used that a non-critical map with an eventually periodic rotation
number is smoothly conjugate to a rigid rotation, which allowed us to compute the numerical values
of the scaling exponents quickly and with arbitrarily high accuracy. We computed the parameter-space
scaling exponents for rotation numbers 〈(1k2)∞〉, 〈(1k7)∞〉, and 〈(1k22)∞〉 (drawn with straight lines in
Figure 2), as well as for 〈(3k2)∞〉 and 〈(3k7)∞〉 (drawn with straight lines in Figure 2). We measured
the slopes of the straight lines in the figure and found them to be approximately −0.417975 for the
cases 〈(1kB)∞〉 and −1.037758 for the cases 〈(3kB)∞〉. These values are in excellent agreement with
the theoretical predictions for the slopes which, according to (18), should be log10 ξN

1 = log10
3−

√
5

2 and
log10 ξN

3 = log10
11−3

√
13

2 . In the figure we also plotted the data for 〈(1k22)∞〉 to show that the slope in
this case is the same as for 〈(1k2)∞〉 and 〈(1k7)∞〉.
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Fig. 2 Log-linear plot of |Dk −D∞| vs. k for non-critical circle maps with rotation numbers 〈(1k2)∞〉 (circles
and solid line), 〈(1k7)∞〉 (squares and solid line), 〈(3k2)∞〉 (circles and dashed line), 〈(3k7)∞〉 (squares and
dashed line), 〈(1k22)∞〉 (pluses and solid line).

5 PACSE for dynamics on boundaries of Siegel disks

5.1 Preliminaries

Let f be a holomorphic map of the complex plane C of the form

f(z) = e2πiσz +O(z2) ; (19)

σ ∈ [0, 1) is called the rotation number of f . By a theorem of Siegel [53](see also [30, Sec. 2.8]), if σ
satisfies some Diophantine conditions, then there exists a unique analytic map h, called conjugacy, from
an open disk B(0, r) around the origin to C such that h(0) = 0, h′(0) = 1, and f ◦ h(z) = h(e2πiσz). We
will be interested only in eventually periodic rotation numbers, in which case the Diophantine conditions
are satisfied.

Let RS be the radius of the largest open disk for around the origin, B(0, RS), for which the conjugacy
h exists; RS is called the Siegel radius. The Siegel disk, DS, is the image of B(0, RS) under h: DS =
h(B(0, RS)). For r < RS, the image of ∂B(0, r) = {w ∈ C : |w| = r} under h is an analytic circle. The
dynamics of a point z with |z| = r < RS is very simple: the identity fn ◦ h(z) = h(e2πiσnz) guarantees
that the iterates fn(z) fill the analytic circle h(∂B(0, r)) densely with a smooth density (since the points
{e2πiσnz}n∈N fill ∂B(0, r) uniformly).

The boundary ∂DS of the Siegel disk, however, is not a smooth curve. It was discovered numerically
in [42] that the dynamics of the map f on ∂DS exhibits interesting scaling properties. Soon after this
observation, [64] suggested a renormalization-group explanation. The renormalization-group theory was
later developed in [60,59] and, more recently, in [24,25], among others. Recently, two of the authors of
the present paper studied some regularity properties of h on the boundary [38].

5.2 PACSE for the dynamics of iterates on ∂DS

In this section we define scaling exponents governing the dynamics of iterates on ∂DS, and give numerical
data in support of PACSE in this case. We will be interested only in eventually periodic rotation numbers,
σ = 〈HT∞〉, in which case a theorem from [27] guarantees that ∂DS contains a critical point c of f . We
study maps with only one critical point c ∈ ∂DS. We define the order of criticality d as the multiplicity
of the critical point c: f (k)(c) = 0 for k = 1, 2, . . . , d, and f (d+1)(c) 6= 0.

We studied only the the configuration-space scaling exponent which is defined as follows. Let f be
a holomorphic map of C of the form (19) with rotation number 〈HT∞〉, the point c be the only critical
point of f in ∂DS, and Pn

Qn
= 〈HTn〉 be rational approximants to 〈HT∞〉, then the configuration-space

scaling exponent αT is defined by

α−1
T = lim

n→∞

∣∣∣∣fQn+1(c)− c

fQn(c)− c

∣∣∣∣ . (20)
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We emphasize that, according to our definition, αT is a real number. Since in the Siegel disk case it is
not easy to change parameters, we do not consider the parameter-space scaling exponents.

The formulation of PACSE in this case is identical to that for circle maps (see Sections 2.2 and 4.4).
We studied the following family of maps:

fm,σ,ζ(z) =
1
ζ
e2πiσ [gm+1(z)− (1− ζ)gm(z)] , (21)

where m ∈ N, ζ ∈ C, and the function gm : C → C is defined as

gm(z) =
1

m + 1
[
1− (1− z)m+1

]
.

For the map (21),

f ′m,σ,ζ(z) = e2πiσ(1− z)m

(
1− z

ζ

)
,

so that fm,σ,ζ(0) = 0, f ′m,σ,ζ(0) = e2πiσ. If ζ is large enough so that it is outside the closure of the Siegel
disk, then the point c = 1 is the only critical point in ∂DS. In this case the order of criticality of c is
d = m. If ζ = 1, then d = m + 1.

We computed the scaling exponents α
(d)
T for orders of criticality d = 1 and d = 2 for rotation numbers

of the form 〈T∞〉 for T = (1k2), T = (1k3), and T = (1k4). The results of our computations are collected
in Table 9, and their ratios are given in Table 10.

Table 9 Configuration-space scaling exponents α
(d)
T (20) for dynamics on ∂DS for orders of criticality d = 1

and d = 2 and rotation numbers 〈T∞〉, with T = (1k2), (1k3), and (1k4).

Order of criticality d = 1 Order of criticality d = 2

k α
(1)

1k2
α

(1)

1k3
α

(1)

1k4
α

(2)

1k2
α

(2)

1k3
α

(2)

1k4
0 1.7208355451952 2.0638087530123 2.354977763868 1.4576963100 1.64668352299 1.7913966317
1 2.22549030564756 2.5112478301746996 2.721163460566 1.7361660641 1.869697973 1.957675854
2 3.06380245567 3.55743499210 3.94372251939 2.17513015 2.39443077 2.54730947
3 4.0942962273 4.69458675007 5.14895784724 2.659144280 2.8983004 3.05945269
4 5.5404202266 6.38899852 7.0402706951 3.2845585 3.5949893 3.80691370
5 7.4542574779 8.57315493 9.425443522 4.038873± 0.000003 4.412764 4.666404
6 10.055427659 11.578952 12.743216 4.975503± 0.000005 5.439646 5.755377
7 13.54775 15.5911804 17.14996481 6.12528± 0.00001 6.6955± 0.0001 7.08306
8 18.2634765 21.024061 23.1315797 7.54226 8.2443± 0.0001 8.72188
9 24.61390 28.33045 31.1665389 9.28679 10.152 10.740

10 33.1769 38.18889 42.014 11.434 12.50± 0.01 13.223
11 44.715 51.469 56.623 14.079 15.39 16.283
12 60.270 69.37± 0.01 76.322 17.335± 0.005 18.95± 0.01 20.048
13 81.233 93.503 102.86 21.345± 0.005 23.334± 0.004 24.686

The values of the configuration-space scaling exponents for dynamics on ∂DS (Table 9) can be com-
puted numerically with good accuracy. The fact that the values of Ak approach A∞ exponentially –
which is the content of part (c) of PACSE expressed in equation (7) – can be seen very clearly in Fig-

ure 3. If A(d),m
k =

α
(d)
1km

(α
(d)
1 )kα

(d)
m

and A(d),m
∞ be the limiting value of A(d),m

k as k → ∞, then the values we

used to plot Figure 3 are A(1),2
∞ = 0.974388, A(1),3

∞ = 0.935178, A(1),4
∞ = 0.901625, A(2),2

∞ = 0.97939,
A(2),3
∞ = 0.94778, and A(2),4

∞ = 0.92166 (we found them by Aitken extrapolation from the corresponding
values in Table 10). The error bars were plotted under the assumption that the error was 4 units in the
last digit displayed in Table 10. Again, although the values represented graphically in Figure 3 are ex-
tremely sensitive to numerical errors, the exponential convergence of Ak to its limit (part (c) of PACSE)
is clear from the figure.

From the data presented in Table 10 we could even extract quite accurately the values of the constants
η
(d)
A characterizing the rate at which the ratios Ak approach their limits; we define these constants as

in (7): ∣∣∣∣∣ α
(d)

AkB(
α

(d)
A

)k
α

(d)
B

− lim
j→∞

α
(d)
AjB(

α
(d)
A

)j
α

(d)
B

∣∣∣∣∣ ≈ CA,B,d

(
η
(d)
A

)k
,
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Table 10 Ratios of the α’s for the data from Table 9.

Order of criticality d = 1 Order of criticality d = 2

k
α

(1)

1k2`
α

(1)
1

´k
α

(1)
2

α
(1)

1k3`
α

(1)
1

´k
α

(1)
3

α
(1)

1k4`
α

(1)
1

´k
α

(1)
4

α
(2)

1k2`
α

(2)
1

´k
α

(2)
2

α
(2)

1k3`
α

(2)
1

´k
α

(2)
3

α
(2)

1k4`
α

(2)
1

´k
α

(2)
4

1 0.959512368101934 0.902785059057004 0.8572984892172 0.96730802917 0.9221507023 0.8875434331
2 0.980053691355 0.948846586560 0.921824011949 0.984236263 0.959120808 0.937931507
3 0.97170090800 0.929010524787 0.892946092480 0.9772295695 0.94287693 0.914900238
4 0.97557416743 0.938037696 0.90585670054 0.98032998 0.94983856 0.924578126
5 0.97383687199 0.933882881 0.8997796718 0.9790301 0.9468986 0.9204358
6 0.97464533584 0.93580473 0.90256329 0.9795203 0.9479905 0.9219885
7 0.974262 0.934887205 0.9012101866 0.979361 0.94767 0.921538
8 0.974446477 0.93532182 0.901846013 0.979398 0.94769 0.921601
9 0.9743595 0.9351089 0.901529436 0.97941 0.94778 0.92172

10 0.974403 0.93521184 0.90167 0.97935 0.9478 0.92160
11 0.97436 0.93515 0.90160 0.97938 0.9477 0.92170
12 0.97439 0.9351 0.90164 0.97936 0.9477 0.92165
13 0.97438 0.93517 0.90156 0.97939 0.94778 0.92169

1 2 3 4 5 6 7 8 9

0.0001

0.001

0.01

1 2 3 4 5 6 7 8 9

1e-05

0.0001

0.001

0.01

Fig. 3 Log-linear plots of
˛̨̨
A(d),m

k −A(d),m
∞

˛̨̨
vs. k for maps of Siegel disk with orders of criticality d = 1 (left)

and d = 2 (right) with rotation numbers 〈(1k2)∞〉 (thin solid lines), 〈(1k3)∞〉 (thick lines), 〈(1k4)∞〉 (dashed

lines); see the text for the notations and the values of A(d),m
∞ for the different cases.

or, in the short notations introduced above (for A = 1, B = m = 2, 3, 4, d = 1, 2),

|A(d),m
k −A(d),m

∞ | ≈ C1,m,d

(
η
(d)
1

)k
.

We performed an exponential regression on the data from Table 10 for k = 2, 3, 4, and 5, where, as
one can see from Figure 3, the exponential convergence has already developed but the data are still not
contaminated by numerical errors. From each line in the plots from Figure 3 we found the value of the
corresponding η

(d)
1 , and obtained the following numerical values:

η
(1)
1 =

0.458± 0.005 for m = 2 (left plot, thin solid line) ,
0.457± 0.002 for m = 3 (left plot, thick line) ,
0.454± 0.008 for m = 4 (left plot, dashed line) ;

η
(2)
1 =

0.422± 0.011 for m = 2 (right plot, thin solid line) ,
0.426± 0.002 for m = 3 (right plot, thick line) ,
0.423± 0.002 for m = 4 (right plot, dashed line) .

There is an excellent agreement among the three values for each η
(d)
1 that were obtained from different m.

Furthermore, the numerical data for η
(d)
1 and η

(2)
1 differ by a comfortable margin, which makes it clear

that the rate of convergence depends on the order of criticality d of the critical point of the map.
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6 PACSE for area-preserving twist maps

6.1 Preliminaries

Let f : T × R → T × R be an area-preserving twist map (APTM), i.e., a C1 diffeomorphism from the
cylinder to itself that preserves area, orientation, and the topological ends of T × R, and satisfies the
twist condition,

∂x

∂y
> 0 , where (x, y) = f(x, y) .

Let F stand for the lift of f to R2, the universal cover of the cylinder. We will consider a “standard-like”
one-parameter family fµ of APTMs,

x = x + y , y = y + g(x) ,

where g is a periodic function of period 1. We also assume that
∫ 1

0
g(x) dx = 0 (the zero flux condition),

which guarantees that the oriented area between any non-contractible circle and its image under f is
zero. In our numerical simulations we used the so-called standard (or Chirikov-Taylor) map, {fµ}µ,

x = x + y , y = y +
µ

2π
sinx . (22)

The rotation number, τ(x, y), of the orbit {fn(x, y)}∞n=0 of (x, y) is defined as lim
n→∞

1
n

π1[Fn(x, y)− x],

where π1 : R2 → R is the projection onto the first coordinate. In contrast with the case of circle maps,
this limit may not exist, and it depends on the point (x, y). A periodic orbit of f of period q has rotation
number p

q (with p, q ∈ N) if F q(x, y) = (x, y) + (p, 0).
Any topologically nontrivial invariant circle of f is the graph of a Lipschitz function [43]. For any

Diophantine rotation number ρ, there exists a critical value µρ such that for µ < µρ there exists a
topologically nontrivial invariant circle of rotation number ρ, while for µ > µρ such circle does not exist.
In early 1980’s, a renormalization group description of the dynamics of the APTM in a neighborhood of
the critical value µρ has been developed in [40,41]; a mathematical discussion of this description can be
found in [58,61]. The scaling properties are related also to the regularities of certain functions associated
with the invariant circles, as shown in [47].

The renormalization group description is based on certain assumptions. The renormalization operator
has an attractive fixed point (trivial) and a hyperbolic (non-trivial) fixed point. The hyperbolic fixed
point has only one unstable direction.

The obstruction criterion [48,49] is a method to determine the non-existence of invariant circles for a
one parameter family of APTM. This criterion is consistent with the renormalization group assumptions,
as shown in [34]. The obstruction criterion can be formulated briefly as follows. Assume that f has
hyperbolic periodic points zn and zn′ of rotation numbers pn

qn
and pn′

qn′
, respectively, with pn

qn
< ρ < pn′

qn′
.

Assume, moreover, that the stable manifold of zn intersects the unstable manifold of zn′ . Then, there is
no homotopically non-trivial invariant circle with a rotation number ρ ∈ [pn

qn
, pn′

qn′
], as shown in [48,49].

The obstruction criterion allows us to define a codimension-one bifurcation manifold (in an appropri-
ately defined function space of APTMs) which has a transversal intersection with the unstable manifold
of the nontrivial point of the renormalization operator Rρ [34]. The bifurcation manifold is defined as
the set of maps such that the local stable manifold W s

zn
of zn has exactly one point of tangency with the

local unstable invariant manifold W u
zn′

of zn′ . Let the rotation numbers pn

qn
and pn′

qn′
be two consecutive

rational approximants of the Diophantine rotation number ρ and pn

qn
< ρ < pn′

qn′
. When the local invariant

manifolds W s
zn

and W u
zn′

has two transversal intersection, we can define a lobe which is enclosed by the
two segments of W s

pn
and W u

pn′
bounded by the two heteroclinic intersection points, as shown in Figures

2 and 4 of [34]. In this way we can define a foliation of codimension-one surfaces of APTMs for which
the area of the lobe is exactly An. These surfaces approach the bifurcation manifold when the area of
the lobe goes to zero.

6.2 Scaling exponents and PACSE for APTMs

Here we will define the scaling exponents on the example of the one-parameter family (22), following [34].
There the authors define a foliation of codimension-one manifolds {Λn,γ}n∈N in the function space as
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Table 11 Scaling exponets for the standard map (22) with rotation numbers 〈T∞〉, T = (21k), (31k), and (32k).

k δ21k α21k δ31k α31k δ32k α32k

0 2.44159 14.60 3.34437 40.12 3.34437 40.12
1 3.77840 59.54 4.79135 146.93 8.03772 591.54
2 6.29843 284.53 8.27110 652.71 19.7013 10197
3 10.1680 1,141.4 13.1775 2,909.7 47.6478 13,523
4 16.6101 4,935.4 21.5442 11,623 111.980 1,649,000
5 27.0411 21,356 34.6905 54,284 301.401 34,543,000
6 43.9826 94,282 62.3650 214,010 ? ?

Table 12 Ratios of the scaling exponents from Table 11.

k
δ21k

δ2 (δ1)k

α21k

α2 (α1)k

δ31k

δ3 (δ1)k

α31k

α3 (α1)k

δ32k

δ3 (δ2)k

α32k

α3 (α2)k

1 0.950553 0.9398 0.880003 0.8440 0.984344 1.0099
2 0.973287 1.0351 0.933103 0.8641 0.988183 1.1924
3 0.965125 0.9569 0.913146 0.8877 0.978844 1.0830
4 0.968416 0.9536 0.917016 0.8172 0.942187 0.9046
5 0.968397 0.9509 0.906980 0.8796 1.038653 1.2979
6 0.967499 0.9675 1.001540 0.7992 ? ?

follows. Let
{

pn

qn

}
n∈N be a sequence of rational approximants to the quadratic irrational 〈T∞〉, pn

qn
= 〈Tn〉.

Consider a periodic orbit of rotation number pn

qn
, and let τn be the highest eigenvalue of Dfqn along this

periodic orbit. Choose some constant γ. Let the foliation {Λn,γ}n∈N be defined by the condition τn

τn+1
= γ.

For the one-parameter family (22), let µn be the value of the parameter µ for which fµn
∈ Λn,γ , and let

An be the corresponding lobe area.
The parameter values µn converge exponentially to a limit µ∞, at a rate given by the parameter-space

scaling exponent δT, i.e., µn ≈ µ∞ + aδ−n
T for some constant a (cf. (1)). The configuration-space scaling

exponent αT is defined through the ratios of two consecutive lobe areas: α−1
T = lim

n→∞

An+1

An
(cf. (3)).

For details about the definitions and a description of the sophisticated numerical methods used in the
computations we refer the reader to the paper [34].

The formulation of PACSE for twist maps is similar to that for circle maps given in Section 4.4. The
? operation among rotation numbers is defined as concatenation as in (12). We computed the scaling
exponents for rotation numbers of the form 〈T∞〉 for T equal to (21k), (31k), and (32k). Note that the
exponent for T = (21k) is the same as for T = (1k2) because the tail of a CFE is defined up to a cyclic
permutation. In the computations we used about 30 decimal digits of accuracy provided by the software
package doubledouble [5].

The values of the scaling exponents for APTMs are shown in Table 11, and the ratios Dk and Ak

(6) are collected in Table 12. In the computations of the ratios (Table 12), we needed the values of α1

and δ1, which we computed to be α1 = 4.33916 and δ1 = 1.62802. Since the computations of the scaling
exponents for APTMs is a result of a complicated multi-step procedure, it is impossible to even roughly
estimate the errors in the computations. Only in the case of the rotation numbers of the form 〈(21k)∞〉
the convergence of the ratios Dk and Ak to limits can clearly be seen from the values in Table 12, but
the fact that the ratios of such large numbers are so close speaks for itself.

7 Proposed renormalization-group interpretation of PACSE

Obtaining the numerical values of the scaling exponents, albeit interesting and challenging, was not our
primary goal. Our main interest is in interpreting these numerical results as consequences of some theo-
rems about the global behavior of the renormalization operators. We believe that PACSE indicates that
there exist global renormalization group descriptions for maps of all rotation numbers (or all kneading
sequences), and that it is possible that PACSE is an evidence for certain dynamical behavior of these
renormalization operators, i.e., the existence of a horseshoe with a one-dimensional unstable manifold
which, furthermore, satisfies some transversality conditions. We study these questions rigorously in a
companion paper [35], and here only give a brief sketch of our ideas.
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Let S stand for an appropriately chosen Banach space of functions, let A and B be finite symbolic
sequences, and DA ⊂ S and DB ⊂ S be disjoint sets in S . Let RA : DA → S and RB : DB → S be
renormalization operators corresponding to A and B, respectively. Define the renormalization operator
R : DA ∪DB → S by

R(f) =

{
RA(f) if f ∈ DA ,

RB(f) if f ∈ DB .
(23)

Let fA ∈ DA and fB ∈ DB (represented by full circles in Figure 4) be fixed points of the renormalization
operator:

R(fA) = fA , R(fB) = fB .

Assume that the fixed points fA and fB are hyperbolic, with one-dimensional unstable manifolds W u
A

and W u
B , and codimension-one stable manifolds W s

A and W s
B, respectively. We assume that W u

A intersects
transversely W s

B, and that W u
B intersects transversely W s

A, as shown in Figure 4. Let hA = W s
A ∩W u

B and
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Fig. 4 A schematic representation of the explanation of PACSE.

hB = W u
A ∩W s

B be the intersection points. The transversality of the intersection of the manifolds can be
expressed as

S = ThA
W s

A ⊕ ThA
W u

B , S = ThB
W u

A ⊕ ThB
W s

B .

The scaling exponents for a given symbolic sequence are related to the properties of the renormal-
ization operators corresponding to this symbolic sequence. We will briefly outline how PACSE follows
from the assumptions stated above about the geometric properties of the stable and unstable manifolds
of the renormalization operators RA and RB.

Let k and m be large enough positive integers, and let RA?k?B?m be the renormalization operator
corresponding to the combined symbolic sequence A?k?B?m. We will give an explicit construction of a
fixed point fA?k?B?m of RA?k?B?m . Let

k = k′ + k′′ + 1 , m = m′ + m′′ + 1 ,

where k′, k′′, m′ and m′′ are non-negative integers such that k′ ≈ k′′ and m′ ≈ m′′ (clearly, there is
arbitrariness in the choice of k′, k′′, m′ and m′′, but it will not affect our conclusions). Consider the
following sequence of (k + m) points in S :

ÕA?k,B?m :=
(

hA, RA(hA), R2
A(hA), . . . , Rk′

A (hA), R−k′′

A (hB), R−k′′+1
A (hB), . . . , R−1

A (hB),

hB, RB(hB), R2
B(hB), . . . , Rm′′

B (hB), R−m′

B (hA), R−m′+1
B (hA), . . . , R−1

B (hA)
)

(where Rn
A stands for the n-fold composition of the operator RA). In Figure 4 these points are represented

by the symbol x. Note that the backward iterates of RA and RB are well-defined. Let Õ(A?k,B?m)?∞ stand
for an infinite sequence of points obtained by repeating infinitely many times the sequence ÕA?k,B?m .
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The sequence of points
(
hA,RA(hA), . . . ,Rk′

A (hA),R−k′′

A (hB), . . . ,R−1
A (hB), hB

)
is a pseudoorbit of the

operator RA; morover, it is almost an exact orbit except for the jump from Rk′

A (hA) to R−k′′

A (hB). If k

is large enough, then both Rk′

A (hA) and R−k′′

A (hB) are close to fA, so that this jump is small, as shown
in Figure 4. We can, therefore, write RA?k(hA) = Rk

A(hA) ≈ hB.
Similarly, the sequence

(
hB,RB(hB), . . . ,Rm′′

B (hB),R−m′

B (hA), . . . ,R−1
B (hA), hA

)
is a pseudoorbit of

RB, which is an exact orbit everywhere except at the jump from Rm′′

B (hB) to R−m′

B (hA). The larger m,
the smaller this jump is because then both Rm′′

B (hB) and R−m′

B (hA) are close to fB (see Figure 4), hence
we can write RB?m(hB) = Rm

B (hB) ≈ hA.
We have, thus, constructed an approximate fixed point of the composition RA?k ◦ RB?m :

RA?k ◦ RB?m(hB) ≈ hB .

The sequence Õ(A?k,B?m)?∞ can be thought of as a pseudoorbit of the operator R (23) that is periodic
with period k + m.

Using the assumptions of hyperbolicity of the fixed points fA and fB and transversality of the inter-
section of the unstable manifold of each of these fixed points with the stable manifold of the other one,
we prove in [35] the existence of a fixed point of the renormalization operator RA?k?B?m corresponding
to the composition A?k?B?m. The proof is based on constructing a true periodic orbit O(A?k,B?m)?∞ of
period k + m of R (23), which is shadowed by the pseudo-orbit Õ(A?k,B?m)?∞ . The points of the periodic
orbit O(A?k,B?m)?∞ are represented by the symbol + in Figure 4. This orbit is used, in turn, to construct
the fixed point fA?k?B?m of the operator of RA?k?B?m .

The scaling exponent δA?k?B?m is equal to the unstable eigenvalue of the linearization of RA?k?B?m

around its fixed point fA?k?B?m . In turn, the fixed point fA?k?B?m is constructed from the pseudoorbit
ÕA?k,B?m . If we denote the k + m points of ÕA?k,B?m by Z1, Z2, . . ., Zk+m, then this implies that

DRA?k?B?m(fA?k?B?m) ≈
k+m∏
j=1

DR(Zj) .

From the dynamics of R it is intuitively clear that most of the points Zj are close to fA or to fB (a
precise quantitative statement is the main part of [35]). If k increases, then the new points added to the
pseudoorbit ÕA?k,B?m will be close to fA, while if m increases, the new points will be close to fB. For a
point Zj in a neighborhood of fA, DR(Zj) ≈ DRA(fA) = δA, and, similarly, for Zj in a neighborhood of
fB, DR(Zj) ≈ DRB(fB) = δB. This implies that

δA?k+1?B?m = DRA?k+1?B?m(fA?k+1?B?m) ≈ δA?k?B?m δA .

This reasoning gives some intuitive explanation of the fact that the ratio of the parameter-space
scaling exponents, δ

AkB

(δA)kδB
, tends to a limit as k tends to ∞ (see part (ii) of PACSE). The other parts of

PACSE can also be explained within this construction. We refer the reader to our paper [35] for more
details.
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