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Abstract. Problems related to symmetries and dimensional reduction
are common in the mathematical and physical literature, and are in-
tensively studied presently. As a rule, the symmetry group (“reducing
group”) and its orbits (“external dimensions”) are compact, and this is
essential in models where the volume of the orbits is related to physical
quantities. But this case is only a part of the natural problems related
to dimensional reduction.

In the present paper, we consider an action of a (generally non-
compact) Lie group on a vector bundle, construct a formalism of reduced
bundles for description of all invariant sections of the original bundle,
and study the algebraic structures that occur in the reduced bundle.
We show that in the case of a non-compact reducing group it is possible
that the reduction is non-standard (“non-canonical”), and construct an
explicit obstruction for canonical reduction in terms of cohomology of
groups. We consider in detail the reduction of tangent and cotangent
bundles, and show that, in general, the duality between the two is vio-
lated in the process of reduction. The reduction of the tensor product
of tangent and cotangent bundles is also discussed. We construct exam-
ples of non-canonical dimensional reduction and of violation of duality
between the tangent and cotangent bundles in the reduction.

1. Introduction

In this paper we present a geometric methodology for dimensional reduction
of objects invariant under an action of a Lie group. Techniques for dimensional
reduction exist in the literature, but in many of them the geometric aspects
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are not quite explicit or they treat particular problems, while our approach
is quite general. Clearly, the price we pay for the generality of our approach
is that sometimes the information we obtain is not as detailed as from the
particular methods designed for attacking one particular problem.

Here is our general setup. We consider a Lie group G acting by bundle
morphisms on a vector bundle ξ over a finite-dimensional base B (all objects
and mappings are assumed to be C∞). Let C∞(ξ)G stand for the set of all
sections of ξ that are invariant with respect to the action of G. We propose a
natural geometric procedure for constructing a reduced bundle ξG, the set of
whose sections, C∞(ξG), is in a bijective correspondence with the G-invariant
sections of ξ, C∞(ξ)G.

If some general assumptions on the group actions (Conditions A and B
in Section 2.2) are satisfied, the reduced bundle can be constructed explicitly.
The reduced bundle is constructed from local charts, so that we do not require
that ξ or ξG be globally trivial. We prove that the arbitrariness in the choice
of local charts in the construction of ξG does not affect the global object.

In the process of dimensional reduction of short exact sequences of vec-
tor bundles we need to use some facts from theory of cohomology of groups
(briefly reviewed in the paper). It turns out that sometimes the reduced
bundle has a simple structure – or, as we say, in this case the dimensional
reduction is canonical (the rigorous definition is given in Section 3.3). We
give explicitly the obstruction to canonical reduction in terms of certain co-
homology groups, and show that for a compact group G this obstruction is
zero, hence for compact G the dimensional reduction is always canonical. We
construct a simple explicit example of a non-canonical reduction.

We pay special attention to the case of dimensional reduction of the
tangent and cotangent bundles and their tensor products. In the case of a
non-compact group G, the reductions of the tangent and cotangent bundles
may exhibit some interesting phenomena, which is illustrated on a particular
example.

In a second part of the paper (in preparation), we develop a technique
for dimensional reduction of invariant differential operators based on the jet
bundle description. Within the jet bundle language, the geometry of dimen-
sional reduction becomes very explicit, and the operations on differential
operators are reduced to simple algebraic manipulations.

The main novelty in our paper is establishing a clear connection between
the procedure of dimensional reduction and cohomology of groups (Theo-
rem 3.7) that makes explicit the distinction between the cases of canonical
and non-canonical dimensional reduction (Definition 3.6 specifies the mean-
ing of “canonical”). In particular, we construct explicitly an obstruction to
canonical dimensional reduction and an example of a non-canonical reduc-
tion. Another novelty is the complete treatment of the dimensional reduction
of the tangent and cotangent bundles to a smooth manifold and their tensor
products (undertaken in Section 4).



Dimensional Reduction – I 3

Some of the techniques developed in this paper and its sequel have been
used in our papers [1, 2, 3, 4, 5], but in this paper we consider the problem
in full generality. We have not, for example, considered particular cases when
the vector bundles are of a certain type or are endowed with some particular
structure. In the procedure described in this paper, the arbitrariness in the
choice of a base of the reduced manifold is not essential for the procedure –
choosing a different base would amount merely to a reparametrization, but
this would not change the essential features of the reduced objects. However,
this choice would be important if additional structures are present in the
original setup – for example, in the case of Riemannian manifolds, there will
be other things that have to be taken into account, like the equations of
Gauss-Codazzi-Mainardi related to the isometric embeddings of Riemannian
manifolds (see [6, Sections 3–5]; these issues are the subject of the recent
paper [7]). We do not discuss such issues in the present paper.

We have not attempted to survey the vast literature related to reduction
for two reasons – firstly, the amount of literature makes it impossible for us
to give proper credit, secondly, we are still trying to understand the relation
between our method and the methods of other authors, and hope to discuss
these in future publications. We only point out how some classical examples of
dimensional reduction are related to the techniques developed in this paper.

We hope that our methods shed new light on the problem of symme-
try reduction in many contexts. In particular, we believe that they would
be useful in the study of the new structures occurring in the process of di-
mensional reduction (problems of Kaluza-Klein type), as well as for physical
applications in the case of non-canonical reduction of invariant tensor fields.

The paper is organized as follows. Section 2 is devoted to a detailed
explanation of the concept of a reduced vector bundle and the conditions
we impose on the actions of the Lie group on the bundles in order for our
construction to work. In Section 3 we introduce some facts from cohomology
of groups and their use in the reduction procedure, and in Section 4 we apply
this procedure to the case of reduction of the tangent and cotangent bundles
and their tensor products.

Throughout the paper we assume that all manifolds, bundles, and maps
are smooth (C∞), even if this is not said explicitly.

2. Reduced vector bundles

2.1. Local chart description of vector bundles

In this section we give the basic definitions and set up the notations con-
cerning the description of a vector bundle in coordinate charts, referring the
reader to [8, Section I.3] for more details.

Let ξ = (E, π,B) be a finite-dimensional vector bundle over the finite-
dimensional manifold B. Let ξb := π−1(b) be the fiber of ξ over the point b ∈
B.
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We will often need to restrict the base of a vector bundle to some sub-
manifold. Let C ⊆ B be a submanifold of the base B of ξ, and let i : C ↪→ B
be the natural embedding. Then by ξC , or sometimes ξ�C for clarity, we will
denote the bundle i∗ξ induced by i; in other words, ξC = (E′, π′, C) where
E′ := π−1(C), and π′ is the restriction of π to E′.

Let {Uα}α∈A be an open cover of the manifold B, and σα : Uα → Ũα

be diffeomorphisms from Uα to some manifolds Ũα. Whenever Uα ∩ Uβ 6= ∅,
we set

Ũα,β := σα(Uα ∩ Uβ) ⊆ Ũα (2.1)
and

fαβ := σα ◦ σ−1
β : Ũβ,α → Ũα,β . (2.2)

In this case we say that the manifold B is obtained from the manifolds
{Ũα}α∈A through gluing (or clutching in the terminology of [8]) them by
the diffeomorphisms fαβ .

For each α ∈ A , let ξα := (Eα, πα, Ũα) be a vector bundle over Ũα,
and ξα,β := ξα �eUα,β

. Let for each pair of indices α and β in A for which
Uα ∩ Uβ 6= ∅, there exists a vector bundle isomorphism

φαβ := (Fαβ , fαβ) : ξβ,α → ξα,β (2.3)

over fαβ (where Fαβ : π−1
β (Ũβ,α)→ π−1

α (Ũα,β) and πα ◦Fαβ = fαβ ◦πβ). Let
the transition isomorphism φαβ satisfy the cocycle conditions

φαβ ◦ φβγ = φαγ (2.4)

whenever Uα ∩Uβ ∩Uγ 6= ∅. We shall call the bundles ξα coordinate bundles.
The transition isomorphisms φαβ glue these coordinate bundles into a vector
bundle over B. More precisely, there exists a unique (up to isomorphism)
vector bundle ξ over B and isomorphisms φα : ξα → ξ �Uα such that the
diagram

ξα,β
� φαβ

ξβ,α

ξ�Uα∩Uβ

φβ�φα
- (2.5)

commutes (see Theorem 3.2 in Chapter I of [8]). Clearly, ξ and the coordinate
bundles ξα have the same standard fiber.

In these notations, defining a section ψ ∈ C∞(ξ) is equivalent to defining
sections ψα ∈ C∞(ξα) for all α ∈ A such that ψα are compatible with the
transition isomorphisms:

ψα = φαβ(ψβ) := Fαβ ◦ ψβ ◦ f−1
αβ . (2.6)

Similarly, one can define other geometric structures on ξ like metric, con-
nection, etc. – they have to be defined in every coordinate bundle ξα and
compatible with the transition isomorphisms φαβ .

A common example of gluing is when the manifolds Ũα coincide with
Uα, and ξα are the trivial bundles πα : Uα × Rn → Uα. If Uα ∩ Uβ 6= ∅ and
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(b, u) ∈ (Uα∩Uβ)×Rn, then φαβ(b, u) = (b, gαβ(b)u), where gαβ : Uα∩Uβ →
GL(n,R) satisfy the cocycle conditions

gαβ(b) gβγ(b) = gαγ(b) for all b ∈ Uα ∩ Uβ .

2.2. Action of Lie groups on vector bundles

Let G be a Lie group (not necessarily compact) that acts from the left on
the vector bundle ξ = (E, π,B) by vector bundle morphisms. We denote this
action by (T, t), where

T : G× E → E , t : G×B → B , (2.7)

so that for each g ∈ G the following diagram commutes:

E
Tg- E

B

π

?
tg- B

π

?
(2.8)

(i.e., tg is the action of Tg on E projected to the base B), and Tg : ξb → ξtg(b)

is a linear isomorphism for any b ∈ B.
The action (T, t) of G on ξ induces a natural action of G on the set

C∞(ξ) of all sections of ξ by

g(ψ) = Tg ◦ ψ ◦ t−1
g , g ∈ G . (2.9)

If we think of C∞(ξ) as a vector space (where the multiplication by a number
and the addition are defined pointwise), then (2.9) determines an infinite-
dimensional linear representation of G. We say that a section ψ ∈ C∞(ξ) is
G-invariant or G-equivariant if g(ψ) = ψ, or, in more detail,

ψ(tg(b)) = Tg(ψ(b)) for all g ∈ G and b ∈ B . (2.10)

It would be more precise to say that a section is invariant with respect to the
action (T, t) of G, but we often use “G-invariant” for brevity.

Let C∞(ξ)G stand for the set of all G-invariant sections of ξ. Clearly,
C∞(ξ)G is a linear subspace of C∞(ξ). Obviously, the problem of complete
description of C∞(ξ)G for a general smooth action of a Lie group G is very
complicated and little can be said. Even in the degenerate case when B
consists of only one point b and T is a representation of G in the only fiber ξb,
the problem is not easy – it reduces to description of all invariants of the
finite-dimensional representations of G.

Remark 2.1. If (xµ, za) are local coordinates in ξ, the action (Tg, tg) of g ∈ G
has the form

Tg(xµ, za) = (tg(x)µ, ua
b(g, x) zb) ,

where u(g, x) ∈ GL(n,R) satisfies u(g1g2, x) = u(g1, tg2(x))u(g2, x) for all
g1, g2 ∈ G. The action (2.9) of G on the sections ψ ∈ C∞(ξ) becomes

g(ψ)a(x) = ua
b(g, tg−1(x))ψb(tg−1(x)) ,

and the invariance condition (2.10) reads ψa(tg(x)) = ua
b(g, x)ψb(x).
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To simplify the problem of the description of C∞(ξ)G, we will impose
two conditions which will be assumed to hold throughout the rest of the
paper.

2.2.1. Condition A (on the action of G on B). The first condition is on the
action t of the Lie group G on the base B of the vector bundle ξ.
Condition A. All orbits of the action t : G × B → B of G on the base B of
ξ are of the same type, and the quotient space B/G is a manifold. Moreover,
the orbits of the action t form a locally trivial G-bundle (B, p,N), where

p : B → N := B/G (2.11)

is the natural projection.
Let us discuss Condition A in more detail. First, note that N is just

a short notation for the base B/G of the bundle (2.11). The manifold N –
which will be the base of the reduced bundle in Section 2.3 – does not have a
canonical realization, so one of the tasks in constructing the reduced bundle
will be to glue N out of some concrete submanifolds of B.

To fully understand the meaning of Condition A, we recall some facts
(for more details, see [9, Chapters 1 and 2]). Let H ⊆ G be a closed subgroup
of G, and G/H be the space of left cosets of H in G; the canonical left
action of G on G/H is (g, [g1]) 7→ g[g1] := [gg1]. The group of G-equivariant
automorphisms of G/H,

AutG(G/H) = { f : G/H → G/H : f(g[g1]) = gf([g1]) } ,

is isomorphic to N (H)/H, where N (H) = { g ∈ G : gHg−1 ⊆ H } is the
normalizer of H in G. The isomorphism N (H)/H → AutG(G/H) is given by

N (H)/H → AutG(G/H) : [n] 7→ f[n] , f[n]([g]) := [gn−1] . (2.12)

Condition A requires that there exist a closed subgroup H of G such
that all orbits of the action t of G on B are homogeneous G-spaces that are G-
isomorphic to G/H (in the sense that, for any x ∈ N , if by this isomorphism
b 7→ [g1], then tg(b) 7→ g[g1] for any g ∈ G). Moreover, Condition A demands
that (B, p,N) be a G-bundle that is locally trivial in the following sense:
each point x ∈ N has a neighborhood U ⊆ N for which there exists a
diffeomorphism Φ : p−1(U)→ U × (G/H) satisfying

Φ(tg(b)) = (p(b), g(π2 ◦ Φ(b))) , (2.13)

where b ∈ p−1(U), g ∈ G, and π2 : U × (G/H) → G/H : (v, [g1]) 7→ [g1] is
the canonical projection. If {Uα}α∈A is a fine enough cover of N so that the
diffeomorphisms Φα : p−1(Uα)→ Uα× (G/H) satisfy (2.13) for each α ∈ A ,
then on Uα ∩ Uβ 6= ∅ the following condition holds:

Φα ◦ Φ−1
β (x, [g]) = (x, φαβ(x)([g])) ,

where φαβ : Uα ∩ Uβ → AutG(G/H) are the transition isomorphisms. The
bundle (2.11) can be defined as a bundle with fiber the homogeneous space
G/H and transition isomorphisms φαβ(x) ∈ AutG(G/H), x ∈ Uα ∩ Uβ 6= ∅.
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Remark 2.2. Via the isomorphism (2.12), φαβ(x) can be considered as an
element of the group N (H)/H as well as a transformation N (H)/H →
N (H)/H defined as a left multiplication: (φαβ(x), [n]) 7→ φαβ(x)[n]. Because
of this, the transition functions φαβ define a principal bundle P (N (H)/H,N)
with structure group N (H)/H and base N . Then the bundle (2.11) is as-
sociated with the principal bundle P (N (H)/H,N) through the action of
N (H)/H on G/H defined by (2.12).

Remark 2.3. Condition A is satisfied when G is compact according to the
Slice Theorem [9, Section 4.4].

Another result showing that Condition A is commonly encountered is
the Principal Orbits Theorem [9, Theorem 4.27]. This theorem states that ifG
is a compact Lie group and B/G is connected, then there exists a maximum
orbit type, G/H, in B, and the union of all orbits of type G/H (called
principal orbits) is open and dense in B.

Remark 2.4. Here we define some objects that will be needed in the con-
struction of the reduced bundle in Section 2.3. A diffeomorphism f : B → B
is said to be vertical (with respect to the projection p in (2.11)) if p ◦ f = p.
Let Diffv(B) stand for the group of all vertical diffeomorphisms.

The group of local actions of G is defined as follows:

Gloc. act. = { f ∈ Diffv(B) : ∀x ∈ N ∃ gx ∈ G s.t. f(b) = tgx(b), ∀ b ∈ p−1(x) }
(where N = B/G as in (2.11)). In other words, the restriction of f ∈ Gloc. act.

to each fiber p−1(x) coincides with the action of some element gx ∈ G. Each
map χ : N → G defines an element fχ ∈ Gloc. act. by

fχ(b) = tχ(p(b))(b) , b ∈ B . (2.14)

The elements of Gloc. act. are in a natural bijective correspondence with the
sections of a bundle of groups with fiber N (H)/H, associated with the prin-
cipal bundle P (N (H)/H,N) via the action Inn of N (H)/H on N (H)/H by
inner automorphisms: Inn[n]([n1]) = [nn1n

−1].

Remark 2.5. The paper [10] considers in detail some topological questions
related to Condition A.

2.2.2. Condition B (on the action of G on ξ). This condition concerns the
action T : G × E → E of G on the total space of ξ. For each point x ∈ N ,
p−1(x) ⊆ B is an orbit of the action t, and, hence, is a homogeneous G-
space which is G-isomorphic to G/H for some closed subgroup H ⊆ G. In
Condition B we want to impose restrictions on the structure of the vector
bundles ξp−1(x), x ∈ N . Firstly, we will require that all G-bundles ξp−1(x),
x ∈ N , be G-isomorphic to some “typical” G-bundle ζ := (E′, π′, G/H) over
G/H endowed with a left action (T ′, t′) of G. Let U be a small enough open
subset of N , and ξp−1(U) := ξ�p−1(U)= π−1 ◦ p−1(U). Since p−1(U) is foliated
by the orbits of the action t, we demand that the G-vector bundle ξp−1(U) be
modeled after the direct product U × ζ. In more detail, let

U × ζ := (U × E′, Id× π′, U × (G/H)) (2.15)
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be a bundle with projection

(Id× π′)(v, w) = (v, π′(w)) for (v, w) ∈ U × E′ .

The bundle U × ζ is a G-vector bundle with action (T ′′, t′′) of G defined by

T ′′g (v, w) = (v, T ′g(w)) for (v, w) ∈ U × E′ .

Now Condition B can be stated as follows.
Condition B. We assume that all G-vector bundles ξp−1(x), x ∈ N , are iso-
morphic to one another and to the “typical” G-vector bundle ζ = (E′, π′, G/H)
endowed with a left action (T ′, t′) of G.

The collection of vector bundles
{
ξp−1(x)

}
x∈N

forms a locally trivial G-
vector bundle over N in the sense that each point x ∈ N has a neighborhood
U ⊆ N such that ξp−1(U) = π−1 ◦ p−1(U) is isomorphic as a G-vector bundle
to U × ζ (2.15). In other words, there exists a vector bundle isomorphism
Ψ : π−1 ◦ p−1(U)→ U × E′ satisfying

Ψ(Tg(e)) = (x, T ′g(w)) ,

where e ∈ π−1 ◦ p−1(U) and Ψ(e) = (x,w) ∈ U × E′ with x = p ◦ π(e).

Remark 2.6. Condition B implies Condition A, but we considered Condi-
tion A independently because of its importance.

2.2.3. Reducible vector bundles.

Definition 2.7. For b ∈ B, let

Gb := { g ∈ G : tg(b) = b } ⊆ G

be the stationary (or isotropy) group of b with respect to the action t of
G on B. Define the stationary subspace of ξb (with respect to the linear
representation T of Gb in the fiber ξb) as

st ξb := {u ∈ ξb : Tg(u) = u ∀ g ∈ Gb } ⊆ ξb .

Condition B guarantees that the family of vector spaces st ξb ⊆ ξb form a
smooth vector subbundle of ξ which we denote by st ξ and call the stationary
subbundle of ξ (with respect to the action (T, t) of G on ξ).

Definition 2.8. We say that the vector bundle ξ with action (T, t) of G on
it is a reducible G-vector bundle if the actions t and T satisfy Conditions A
and B.

2.3. Reduced vector bundles: construction

Let ξ be a reducible G-vector bundle, i.e., the action (T, t) (2.7) of G on ξ
satisfies Conditions A and B from Section 2.2. Then the space C∞(ξ)G of all
G-invariant sections of ξ has the structure of the space of all sections in some
bundle ξG which we will call the reduced vector bundle. In other words, one
can construct and a natural bijective correspondence

θ : C∞(ξG)→ C∞(ξ)G (2.16)
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Figure 1. Left: Constructing the base N = B/G of the
reduced bundle ξG by gluing it from the manifolds {Ũα}α∈A ;
Ũα = σα(Uα) is transversal to the orbits of tg (the orbits of
tg are drawn with dashed lines). Right: Constructing the
reduced bundle ξG by gluing it from the coordinate bundles
{ξα}α∈A ; each ξα is a vector bundle with base Ũα and fiber
(ξα)σα(x) = st ξσα(x) over σα(x) ∈ Ũα.

between all sections of ξG and all G-invariant sections of ξ. Below we describe
the explicit construction of ξG and θ.

We start with an explicit construction of the base N = B/G of the
reduced bundle by gluing it (as explained in Section 2.1) from explicitly
defined submanifolds of B. Let {Uα}α∈A be a fine enough open cover of N .
For each α ∈ A we choose a (smooth) local section σα of the bundle (2.11)
whose graph

Ũα := σα(Uα) (2.17)

is transversal to the fibers of the bundle (2.11) (recall that the fibers of
(2.11) are the orbits of the action t of G on B). Clearly, σα : Uα → Ũα are
diffeomorphisms, and the maps σα ◦ σ−1

β : Ũβ,α → Ũα,β glue the manifold
N from the manifolds {Ũα}α∈A ; here, as before, Ũα,β := σα(Uα ∩ Uβ) (cf.
(2.1) and (2.2)). This construction is pictorially represented in the left part
of Fig. 1.

Now we will construct the coordinate bundles ξα (over Ũα) of the re-
duced bundle ξG. First of all, it is easy to see from (2.10) that if ψ is a
G-invariant section of ξ, then ψ(b) ∈ st ξb, so that C∞(ξ)G is a subset of
C∞(st ξ). We define the coordinate bundles

ξα := st ξ�eUα
(2.18)

as the restrictions of the base of the stationary bundle st ξ to the manifolds
Ũα; see the right part of Fig. 1.

The isomorphisms φαβ (2.3) gluing the family {ξα}α∈A into the reduced
bundle ξG are constructed as follows. Let (α, β) be a pair of indices for which
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Uα ∩ Uβ 6= ∅, and define ξα,β := st ξ�eUα,β
. Let

χαβ : Uα ∩ Uβ → G (2.19)

be a map that satisfies

tχαβ(x)

(
σβ(x)

)
= σα(x) for all x ∈ Uα ∩ Uβ , (2.20)

as shown in Fig. 1. Similarly to (2.14), define the local action fχαβ
of G on

p−1(Uα ∩ Uβ) by

fχαβ
: p−1(Uα ∩ Uβ)→ p−1(Uα ∩ Uβ) : b 7→ fχαβ

(b) := tχαβ(p(b))(b) . (2.21)

The requirement (2.20) guarantees that fχαβ
(Ũβ,α) = Ũα,β .

Next, define the action Fχαβ
of G on π−1

(
p−1(Uα ∩ Uβ)

)
by

Fχαβ
: π−1

(
p−1(Uα ∩ Uβ)

)
→ π−1

(
p−1(Uα ∩ Uβ)

)
: e 7→ Fχαβ

(e) := Tχαβ(p(π(e)))(e) .
(2.22)

Clearly, the actions fχαβ
and Fχαβ

are compatible: π ◦ Fχαβ
= fχαβ

◦ π.
Therefore the pair

(
Fχαβ

, fχαβ

)
defines an isomorphism φαβ : ξβ,α → ξα,β : if

e ∈ ξβ,α = st ξ�eUβ,α
and x = p ◦ π(e) ∈ Uα ∩ Uβ , then

φαβ(e) = Tχαβ(x)(e) ∈ st ξσα(x) . (2.23)

The isomorphism φαβ does not depend on the arbitrariness in the choice
of χαβ in (2.19) and is uniquely defined for each pair of indices (α, β) for
which Uα ∩ Uβ 6= ∅. Indeed, if χ′αβ : Uα ∩ Uβ → G is another map satisfying
(2.20), then Tχ′αβ(x) = Tχαβ(x) ◦ Tχ−1

αβ(x) χ′αβ(x), but χ−1
αβ(x)χ′αβ(x) belongs to

the stationary group Gσβ(x), hence the operator Tχ−1
αβ(x) χ′αβ(x) is the identity

when acting on st ξσβ(x). It is easy to check that isomorphisms φαβ satisfy
the cocycle conditions (2.4), hence they glue the reduced bundle ξG from the
coordinate bundles {ξα}α∈A .

The construction of ξG makes the correspondence (2.16) explicit. A
section S ∈ C∞(ξG) of the reduced bundle corresponds to a family of sections
Sα ∈ C∞(ξα) compatible with the transition isomorphisms φαβ :

Sα = φαβ(Sβ) (2.24)

(using the notation of (2.6)). There exists a unique G-invariant section ψ =
θ(S) ∈ C∞(ξ)G whose values over Ũα coincide with the values of Sα, i.e.,
ψ(σα(x)) = Sα(σα(x)) for all α ∈ A and x ∈ Ũα. Namely, for each b ∈ B,
we define

ψ(b) := Tg(Sα(σα(x))) , (2.25)

where x = p(b) ∈ Uα for some α ∈ A , and g ∈ G is such that tg(σα(x)) = b.
Since Sα(x) ∈ st ξσα(x), the value of ψ(b) does not depend on the arbitrariness
in the choice of g; moreover, (2.23) and (2.24) imply that if x = p(b) ∈ Uα∩Uβ ,
the value of ψ(b) obtained as in (2.25) but by using Sβ instead of Sα would
give the same value.
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Conversely, given ψ ∈ C∞(ξ)G, its values belong to the stationary sub-
bundle st ξ and, therefore, the restrictions Sα ∈ C∞(st ξ �eUα

) = C∞(ξα),
defined by

Sα(σα(x)) := ψ(σα(x)) , (2.26)

are sections of the coordinate bundles ξα. Thanks to the G-invariance of ψ
(2.10), Sα satisfy (2.24), so they determine a section S = θ−1(ψ) ∈ C∞(ξG).

We summarize the above construction in the following

Theorem 2.9. Let ξ be a G-reducible vector bundle, i.e., the action (T, t) of
the Lie group G on ξ satisfy Conditions A and B from Section 2.2. Then
there exists a bijective correspondence θ (2.16) between all sections C∞(ξG)
of a vector bundle ξG (called the reduced vector bundle) and all G-invariant
sections C∞(ξ)G of ξ.

The base of ξG is the quotient space B/G. Let {Uα}α∈A be an open
cover of B/G, and, for each α ∈ A , σα : Uα → B be a local section of the
bundle (2.11) whose graph, Ũα (2.17), is transversal to the orbits of t in B.
Then the restrictions st ξ�eUα

are the coordinate bundles ξα from which the
reduced bundle ξG is glued via the isomorphisms φαβ (2.23).

The bijection θ (2.16) is given explicitly by (2.24), (2.25), and (2.26).

Remark 2.10. Since eachG-invariant function onB, f ∈ C∞(B)G, is constant
on each orbit of G in B, the set C∞(ξ)G of all G-invariant sections of ξ is a
module over C∞(B)G. From the construction of ξG above, it is clear that the
set of all its sections, C∞(ξG), is a module over the ring C∞(B/G). Then
the map θ (2.16) is obviously a homomorphism from the C∞(B/G)-module
C∞(ξG) to the C∞(B)G-module C∞(ξ)G.

2.4. Reduced vector bundles: algebraic properties

In this section we will prove several simple lemmata needed in Section 4.2.

Lemma 2.11. Let ξ1 and ξ2 be reducible G-vector bundles over the same base
B with the same action t of G on B. Then the Whitney sum ξ = ξ1 ⊕ ξ2 is
a reducible G-vector bundle, and

ξG = (ξ1 ⊕ ξ2)G = ξG
1 ⊕ ξG

2 . (2.27)

Proof. If (T1, t) and (T2, t) be corresponding actions, then the natural action
(T1 ⊕ T2, t) of G on ξ1 ⊕ ξ2 is defined by

(T1 ⊕ T2)g(a1 ⊕ a2) := T1,g(a1)⊕ T2,g(a2) ∈ (ξ1 ⊕ ξ2)tg(b) ,

where a1⊕ a2 ∈ (ξ1⊕ ξ2)b = ξ1,b⊕ ξ2,b. Clearly, st (ξ1⊕ ξ2) = st ξ1⊕ st ξ2, so
the coordinate bundles of (ξ1 ⊕ ξ2)G have the form (ξ1 ⊕ ξ2)α = ξ1,α ⊕ ξ2,α.
The transition isomorphisms φαβ – constructed through the action of G on ξ
by (2.19), (2.20), (2.23) – preserve the direct sum and, therefore, endow the
reduced bundle ξG with the structure of a Whitney sum of ξG

1 and ξG
2 . �
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Lemma 2.12. Let ξ1 and ξ2 be reducible G-vector bundles over the same base
B with the same action t of G on B, and let the action t be free. Then the
tensor product ξ = ξ1 ⊗ ξ2 is a reducible G-vector bundle, and

ξG = (ξ1 ⊗ ξ2)G = ξG
1 ⊗ ξG

2 . (2.28)

Proof. The proof is analogous to the proof of Lemma 2.11. The requirement
for the action t to be free guarantees that st (ξ1 ⊗ ξ2) = st ξ1 ⊗ st ξ2 because
the fact that Gb is trivial for all b ∈ B guarantees that st ξ1 = ξ1 and
st ξ2 = ξ2. �

In general, if the action t of G on B is not free, one can only claim that
st ξ1⊗ st ξ2 ⊆ st (ξ1⊗ ξ2). The simplest example to keep in mind is when the
common base of the vector bundles ξ1 and ξ2 is a single point, the group G
is the multiplicative group of all non-zero numbers, and its actions T1 and T2

on ξ1 and ξ2 are given respectively by T1,g(a1) := g · a1 and T2,g(a2) := 1
g · a2

(where g ∈ R\{0}, and the dot stands for multiplication). Then, clearly, st ξ1
and st ξ2 consist of the zero vectors only, while st (ξ1 ⊗ ξ2) = ξ1 ⊗ ξ2.

If the action t of G on B is not free, the representation of Gb in the
fiber st ξ1,b⊗ st ξ2,b is a tensor product of the representations T1 and T2, and
finding all vectors fixed with respect to this representation becomes a problem
of Clebsch-Gordan type of finding all stationary vectors in (st (ξ1 ⊗ ξ2)b.

Another useful lemma is the following.

Lemma 2.13. Let ξ1 and ξ2 be reducible G-vector bundles over the same base
B and with the same action t of G on B. Let the action of G on ξ2 be such
that st ξ2 = ξ2. Then ξ = ξ1 ⊗ ξ2 is a reducible G-vector bundle, and

ξG = (ξ1 ⊗ ξ2)G = ξG
1 ⊗ ξG

2 . (2.29)

2.5. Dimensional reduction of a group action

Let ξ = (E, π,B) be a reducible G-vector bundle on which another Lie group
K acts by vector bundle morphisms F : K × E → E, f : K × B → B, i.e.,
π ◦ Fk = fk ◦ π for any k ∈ K, and Fk : ξb → ξfk(b) is a linear isomorphism
for any b ∈ B. Since the actions of G and K commute, the action of K
maps G-invariant sections of ξ into G-invariant sections. In other words,
C∞(ξ)G is a K-invariant subset of C∞(ξ). Because of this we can define in a
natural way a G-reduced action (FG, fG) of K on the reduced bundle ξG =
(st ξN , πG, N) as follows. Recall that the base N of the G-reduced bundle is
glued from submanifolds of B as explained in Section 2.3. We consider the
case of only one global chart N ⊆ B leaving out the details about the case
when a global chart does not exists – the general case follows the same ideas,
mutatis mutandis. Let k ∈ K, b ∈ N , and let σ ∈ (ξG)b = st ξb be a vector
in the fiber over b that is stationary with respect of action of the stationary
group Gb of b. In general, fk(b) does not necessarily belong to N . Let g ∈ G
be such that tg ◦ fk(b) ∈ N , and define the G-reduced action (FG, fG) of K
by

(fG)k(b) := tg ◦ fk(b) ∈ N , (FG)k(σ) := Tg ◦ Fk(σ) ∈ (ξG)(fG)k(b) .
(2.30)
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The action kG of k ∈ K on the sections of the reduced bundle, C∞(ξG), is
given by

kG : C∞(ξG)→ C∞(ξG) : S 7→ kG(S) := θ−1 ◦ k ◦ θ ◦ S ,

where the action k : C∞(ξ) → C∞(ξ) is defined as k(ψ) = Fk ◦ ψ ◦ f−1
k (cf.

(2.9)), and θ is the bijection (2.16). It is an easy exercise to check that the
non-uniqueness of g ∈ G in (2.30) is immaterial for the above procedure.

3. Cohomology of groups and dimensional reduction of short
exact sequences of vector bundles

3.1. Splittings of short exact sequences

In this section we collect some elementary facts concerning short exact se-
quences of vector spaces and G-modules which will be needed later.

Let

0 −−−−→ L0
i−−−−→ L

j−−−−→ L1 −−−−→ 0 (3.1)

be a short exact sequence of vector spaces (i.e., i and j are linear maps
satisfying ker i = {0}, im j = L1, and im i = ker j). The middle term L
is isomorphic to L0 ⊕ L1, but this isomorphism is not defined naturally.
The choice of such an isomorphism – called a splitting of the short exact
sequence (3.1) – is equivalent to defining a subspace of L that is transversal to
i(L0) ⊆ L. This can be achieved by specifying a linear map S ∈ Hom (L1, L)
satisfying j ◦ S = IdL1 or, equivalently, a linear map F ∈ Hom (L,L0) that
satisfies F ◦ i = IdL0 ; since we will refer to these properties often, we collect
them here:

j ◦ S = IdL1 , F ◦ i = IdL0 . (3.2)
If (3.2) are satisfied, kerF and imS are transversal to i(L0). The isomorphism
L ∼= L0 ⊕ L1 is given by the pair of embeddings (i, S) of L0 and L1 into L
or, equivalently, by the pair of projections (F, j) from L onto L0 and L1; the
isomorphism is given by L = i(L0)⊕S(L1) = ker j⊕kerF . Clearly, the maps
S and F define the same splitting of (3.1) if and only if kerF = imS; in this
case, if S is known, the map F is given by F = i−1 ◦ (Id − S ◦ j). On the
other hand, given S, we have S(v1) = (Id − i ◦ F )(v), where v ∈ L is such
that j(v) = v1. Although giving either S or F defines a splitting completely,
for convenience we will often say “splitting (F, S)” meaning that F and S
are a pair of maps corresponding to the same splitting. A splitting (F, S) of
(3.1) gives us the following decomposition of the identity in L as a sum of
projection operators onto the subspaces i(L0) and S(L1):

IdL = i ◦ F + S ◦ j . (3.3)

If S1, S2, F1, and F2 define splittings of (3.1), then

S2 = S1 + i ◦ s , F2 = F1 + f ◦ j , (3.4)

where s and f are linear maps from L1 to L0. In other words, the set of
all splittings of the short exact sequence (3.1) is an affine space with linear
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group Hom (L1, L0). One can easily see that if (S1, F1) and (S2, F2) are two
splittings, then the maps s and f in (3.4) are related by s = −f .

Let D0, D and D1 be representations of the group G in L0, L and L1,
respectively, and let the operators i and j in (3.1) be intertwining, i.e.,

D(g) ◦ i = i ◦D0(g) , j ◦D(g) = D1(g) ◦ j for all g ∈ G . (3.5)

In this case we will say that (3.1) is an intertwining short exact sequence
of G-modules (in another terminology, the short exact sequence (3.1) is G-
equivariant).

If the short exact sequence (3.1) is intertwining, then the subspace i(L0)
is invariant with respect of the representation D; the subspace S(L1), how-
ever, is not D-invariant in general.

For a splitting (F, S) we can use (3.2), (3.5), and the exactness of (3.1)
to obtain

D(g) = (i ◦ F + S ◦ j) ◦D(g) ◦ (i ◦ F + S ◦ j)
= i ◦D0(g) ◦ F + i ◦ F ◦D(g) ◦ S ◦ j + S ◦D1(g) ◦ j .

Each vector v ∈ L can be represented as a sum of a vector in i(L0) and a
vector in S(L1): v = i(v0)+S(v1), where v0 = F (v) ∈ L0 and v1 = j(v) ∈ L1.
If we write this symbolically as v = (v0 v1)T , we can write the operator
D(g) ∈ EndL as

D(g)
(
v0
v1

)
=

(
D00(g) D01(g)

0 D11(g)

) (
v0
v1

)
,

where we have introduced the “components” of the representation D:

D00(g) = F ◦D(g) ◦ i = D0(g) ,

D01(g) = F ◦D(g) ◦ S ∈ Hom (L1, L0) ,

D11(g) = j ◦D(g) ◦ S = D1(g) .

Note that D10(g) := j ◦ D(g) ◦ i = 0 for all g ∈ G. The operator D01(g)
satisfies the relation

D01(g1g2) = D00(g1)D01(g2) +D01(g1)D11(g2) for all g1, g2 ∈ G .

3.2. Facts from cohomology of groups

In this section we collect some facts from cohomology of groups needed for
the procedure of dimensional reduction. For details we refer the reader to [11]
or, for physics-motivated exposition, to [12].

Definition 3.1. Let G be a topological group and D be a continuous linear
representation of G in the (generally infinite-dimensional) vector space L.
The set Cn(G,L) of all n-chains consists of the continuous functions

c : G×G× · · · ×G→ L
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(n copies ofG), and C0(G,L) = L. The coboundary operator δ(n) : Cn(G,L)→
Cn+1(G,L) is defined by(
δ(n)c

)
(g1, g2, . . . , gn+1) := D(g1) c(g2, . . . , gn+1)

+
n∑

i=1

(−1)i c(g1, . . . , gi−1, gigi+1, gi+2, . . . , gn+1)

+ (−1)n+1c(g1, . . . , gn) .
(3.6)

The elements of ker δ(n) and im δ(n) are called cocycles and coboundaries, re-
spectively. The nth cohomology group is defined asHn(G,L) := ker δ(n)/im δ(n−1)

for n ∈ N, and H0(G,L) := ker δ(0).

The fact that the cohomology groups are well-defined is based on the fact
(proved, e.g., in [12, Theorem 5.1.1]) that the coboundary operator satisfies

δ(n+1) ◦ δ(n) = 0 .

Here are the explicit expressions for n = 0 and n = 1:(
δ(0)c

)
(g) = D(g)c− c ,(

δ(1)c
)
(g1, g2) = D(g1) c(g2)− c(g1 · g2) + c(g1) .

If c ∈ H0(G,L), from δ(0)c = 0 we obtain D(g)c− c = 0 for all g ∈ G, which
means that c ∈ stL. This leads us to the important observation that

H0(G,L) = stL . (3.7)

Now we return to the problem of splitting short exact sequences. Let
(F, S) be a splitting of the intertwining short exact sequence (3.1). Define the
map kn : Cn(G,L1)→ Cn+1(G,L0) by

(knc)(g1, . . . , gn+1) := F ◦D(g1) ◦ S (c(g2, . . . , gn+1))

= D01(g1) c (g2, . . . , gn+1) .
(3.8)

Lemma 3.2. The map kn (3.8) anticommutes with the coboundary operator
in the sense that

δ
(n+1)
L0

◦ kn = −kn+1 ◦ δ(n)
L1

, (3.9)
and, hence, defines a map between the cohomology groups

kn : Hn(G,L1)→ Hn+1(G,L0) (3.10)

(for which we use the same notation as for the map (3.8)). The map kn in
(3.10) does not depend on the splitting (F, S) of the short exact sequence (3.1).

Proof. The basic step in the proof of (3.9) is the following observation (based
on the decomposition (3.3) and the identities (3.2) and (3.5)):

F ◦D(g1g2) ◦ S = F ◦D(g1) ◦D(g2) ◦ S
= F ◦D(g1) ◦ (i ◦ F + S ◦ j) ◦D(g2) ◦ S
= D0(g1) ◦ F ◦D(g2) ◦ S + F ◦D(g1) ◦ S ◦D1(g2) ◦ S .
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Using this to rewrite the term underlined in the equations below, we obtain
for c ∈ Cn(G,L1)

(
δ
(n+1)
L0

◦ kn(c)
)
(g1, . . . , gn+2)

= D0(g1)(knc)(g2, . . . , gn+2)

+
n+1∑
i=1

(−1)i(knc)(g1, . . . , gigi+1, . . . , gn+2)

+ (−1)n+2(knc)(g1, . . . , gn+1)

= D0(g1) ◦ F ◦D(g2) ◦ S(c(g3, . . . , gn+2))

− F ◦D(g1g2) ◦ S(c(g3, . . . , gn+2))

+
n+1∑
i=2

(−1)iF ◦D(g1) ◦ S(c(g2, . . . , gigi+1, . . . , gn+2))

+ (−1)n+2F ◦D(g1) ◦ S(c(g2, . . . , gn+1))

= −F ◦D(g1) ◦ S ◦D1(g2)c(g3, . . . , gn+2)

+
n+1∑
i=2

(−1)iF ◦D(g1) ◦ S(c(g2, . . . , gigi+1, . . . , gn+2))

+ (−1)n+2F ◦D(g1) ◦ S(c(g2, . . . , gn+1))

= −F ◦D(g1) ◦ S
(
D1(g2)c(g3, . . . , gn+2)

+
n+1∑
i=2

(−1)i−1c(g2, . . . , gigi+1, . . . , gn+2)

+ (−1)n+1c(g2, . . . , gn+1)
)

= −F ◦D(g1) ◦ S
((
δ
(n)
L1
c
)
(g2, . . . , gn+2)

)
= −

(
kn+1 ◦ δ(n)

L1
(c)

)
(g1, . . . , gn+2) .

It remains to prove that the map (3.10) is independent of the splitting of
the intertwining short exact sequence (3.1). Let (F, S) be a splitting of (3.1)
and kn be the corresponding map (3.8). Let (F̃ , S̃), where S̃ = S + i ◦ s and
F̃ = F − s ◦ j for some s ∈ Hom (L1, L0), be another splitting of (3.1), and
k̃n be the corresponding map (3.8). Directly from the definitions we obtain,
for c ∈ Cn(G,L1),

(
δ
(n)
L0

(s◦c)−s◦(δ(n)
L1
c)

)
(g1, . . . , gn+1) =

(
D0(g1)◦s−s◦D1(g1)

)
(c(g2, . . . , gn+1)) .
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Using this fact, the identities (3.2) and (3.5) and the exactness of (3.1), we
obtain(

(k̃n − kn)c
)
(g1, . . . , gn+1) =

(
D0(g1) ◦ s− s ◦D1(g1)

)
(c(g2, . . . , gn+1))

=
(
δ
(n)
L0

(s ◦ c)− s ◦ (δ(n)
L1
c)

)
(g1, . . . , gn+1) .

(3.11)

Now let c ∈ Cn(G,L1) with δ(n)
L1
c = 0, and let [c] = c+ δ

(n−1)
L1

(
Cn−1(G,L1)

)
be its equivalence class in Hn(G,L1). Then (3.11) implies immediately that
(k̃n − kn)(c) ∈ im δ

(n)
L0

, i.e., that k̃n([c]) = kn([c]). �

In order to formulate the fundamental theorem below, we need the fol-
lowing definition.

Definition 3.3. If D1 and D2 are representations of the groups G1 and G2 in
the vector spaces L1 and L2, then a morphism between these two representa-
tions is defined as a pair (ψ, φ), where ψ : G1 → G2 is a morphism of groups
and φ : L1 → L2 is a linear map satisfying

φ ◦D1(g) = D2(ψ(g)) ◦ φ for all g ∈ G1 . (3.12)

If ψ is an isomorphism, then (ψ, φ) induces a map (ψ, φ)n : Cn(G1, L1)→
Cn(G2, L2) by

((ψ, φ)n c) (g1, . . . , gn) := φ
(
c(ψ−1(g1), . . . , ψ−1(gn))

)
, (3.13)

where g1, . . . , gn ∈ G2. The map (ψ, φ)n commutes with the coboundary
operator in the sense that (ψ, φ)n+1 ◦ δ(n)

L1
= δ

(n)
L2
◦ (ψ, φ)n (which follows

immediately from the definitions) and, thus, determines a map

(ψ, φ)n : Hn(G1, L1)→ Hn(G2, L2) . (3.14)

The conditions (3.5) for the short exact sequence (3.1) to be intertwining
are a particular case of (3.12) for G1 = G2 =: G and ψ = IdG. Let

in := (Id, i)n : Hn(G,L0)→ Hn(G,L) ,

jn := (Id, j)n : Hn(G,L)→ Hn(G,L1) ,

kn := (Id, k)n : Hn(G,L1)→ Hn+1(G,L0) .

(3.15)

be the maps induced by the morphisms (Id, i), (Id, j) and (Id, k) between the
corresponding representations, as in (3.14).

A classic result in cohomology theory is the following [13, Chapter 1]

Theorem 3.4. If (3.1) is an intertwining with respect to the representations
of G short exact sequence of vector spaces, then the sequence

0→ H0(G,L0)
i0→ H0(G,L)

j0→ H0(G,L1)
k0→ H1(G,L0)

i1→ H1(G,L)
j1→ · · ·
(3.16)

is exact.
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Let D be a representation of the group G in the vector space L. Let for
g ∈ G, let Inng be the inner automorphism

Inng : G→ G : Inng(g1) := gg1g
−1 . (3.17)

Then the pair (Inng, D(g)) is an automorphism of the representation D (in
the sense of the definition (3.12)), and one can construct the maps

(Inng, D(g))n : Cn(G,L)→ Cn(G,L)

as in (3.13), and the corresponding maps (3.14) from the cohomology group
Hn(G,L) to itself. The following lemma holds:

Lemma 3.5. The map (Inng, D(g))n : Hn(G,L) → Hn(G,L) induced by
(Inng, D(g)) is trivial for any g ∈ G.

Proof. For g ∈ G, define the maps Ωn
i (g) : Cn(G,L)→ Cn−1(G,L) by(

Ωn
i (g)(c)

)
(g1, . . . , gn−1) := c(g1, . . . , gi, g, Inng(gi+1), . . . , Inng(gn−1)) ,

and

Ωn(g) :=
n−1∑
i=0

(−1)i Ωn
i (g) : Cn(G,L)→ Cn−1(G,L) .

Then a long but straightforward computation gives that for c ∈ Cn(G,L),(
Inng, D(g)

)
(c)− c = δ(n−1)

(
Ωn(g)(c)

)
,

from which the Lemma follows. �

3.3. Dimensional reduction of short exact sequences of vector bundles

Let ξi := (Ei, πi, B) (where i stands for 0, 1, or nothing) be reducible G-
vector bundles over the same base B, with the same action t of the Lie group
G on B. Let actions (Ti, t) of G on ξi be such that the short exact sequence

0 −−−−→ ξ0
i−−−−→ ξ

j−−−−→ ξ1 −−−−→ 0 (3.18)

be intertwining, i.e., the vector bundle morphisms i : E0 → E and j : E → E1

commute with the corresponding actions of G:

Tg ◦ i = i ◦ T0, g , j ◦ Tg = T1, g ◦ j for all g ∈ G . (3.19)

The main problem we will study in this section is whether an exact
sequence like (3.18) holds for the reduced bundles ξG

0 , ξG, ξG
1 . Recalling the

construction of the reduced bundles from Section 2.3, it is clear that the
restrictions ξi �eUα

of the bundles ξi to the manifolds Ũα ⊆ B (see (2.17))
constitute an intertwining short exact sequence

0 −−−−→ ξ0�eUα

i−−−−→ ξ�eUα

j−−−−→ ξ1�eUα
−−−−→ 0 . (3.20)

The coordinate bundles ξi,α are obtained from ξi�eUα
by restricting each fiber

to the stationary subspace in it: ξi, α = st ξi�eUα
. Therefore, we have to study

the behavior of the short exact sequence (3.20) under the process of restrict-
ing the bundles ξi �eUα

to their stationary subbundles st ξi �eUα
⊆ ξi �eUα

. For
each x ∈ Uα we can write the following intertwining short exact sequence
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of finite-dimensional representations of the stationary group Gσα(x) in the
vector spaces ξi, σα(x)

0 −−−−→ ξ0, σα(x)
i−−−−→ ξσα(x)

j−−−−→ ξ1, σα(x) −−−−→ 0 . (3.21)

Now the cohomological interpretation (3.7) of the stationary subspaces
plays a crucial role: we can think of the coordinate bundle ξi,α as a bundle
over Ũα = σα(Uα) with fiber

st ξi, σα(x) = H0(Gσα(x), ξi, σα(x)) for any x ∈ Uα .

According to Theorem 3.4, when we restrict each bundle in (3.21) to its
stationary subbundle, we obtain the long exact sequence of vector spaces

0→ st ξ0, σα(x)
i0→ st ξσα(x)

j0→ st ξ1, σα(x)
k0→ H1(Gσα(x), ξ0, σα(x))

i1→ · · · .
(3.22)

The disjoint union of H1(Gσα(x), ξ0, σα(x)) for x ∈ Uα, with an appropri-
ate equivalence relation, constitutes a (possibly infinite-dimensional) vector
bundle with base Ũα and fiber H1(Gσα(x), ξ0, σα(x)); we introduce the short
notation H1(G, ξ0)α for this bundle. Similar facts hold for all the terms in
(3.22), for which we introduce similar notations. Our goal now is to glue the
coordinate bundles Hn(G, ξi)α into a bundle Hn(G, ξi) over N ∼= B/G; to
this end, we have to construct transition isomorphisms between Hn(G, ξi)α

and Hn(G, ξi)β satisfying the cocycle conditions (2.4).
Let φi, αβ be the transition isomorphisms gluing the coordinate bundles

ξi,α (2.18) into the reduced bundle ξG
i (see (2.19), (2.20), (2.21), (2.22), (2.23)).

Here we explain how to use them in a natural way in order to construct iso-
morphisms φn

i, αβ gluing the bundles Hn(G, ξi) out of the coordinate bundles
Hn(G, ξi)α for all n ∈ N. Let (α, β) ∈ A ×A be a pair of indices for which
Uα ∩ Uβ 6= ∅, and let x ∈ Uα ∩ Uβ . Let χαβ be the map defined in (2.19)
and (2.20), and let fχαβ

and Fχαβ
be the maps defined in (2.21), (2.22) and

used in the process of gluing the reduced bundle ξG from the coordinate bun-
dles ξα. Recall that the fiber ξi,σα(x) of the coordinate bundle ξi,α over the
point σα(x) ∈ Ũα is the fiber st ξi,σα(x) of the stationary bundle st ξi over
σα(x), and similarly for ξi,σα(x). Let

T
σβ(x)
i : Gσβ(x) × ξi,σβ(x) → ξi,σβ(x) , (3.23)

T
σα(x)
i : Gσα(x) × ξi,σα(x) → ξi,σα(x) (3.24)

be the representations of the stationary groups Gσβ(x) and Gσα(x) in these
fibers. Recalling Definition 3.3, we see that the maps

Innχαβ(x) : Gσβ(x) → Gσα(x) : h 7→ Innχαβ(x)h = χαβ(x)hχαβ(x)−1

and
Ti, χαβ(x) : ξi,σβ(x) → ξi,σα(x)

form a pair
(
Innχαβ(x), Ti, χαβ(x)

)
that is an isomorphism between the repre-

sentation (3.23) of Gσβ(x) in ξi,σβ(x) and the representation (3.24) of Gσα(x)
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in ξi,σα(x):

Ti, χαβ(x) ◦ T
σβ(x)
i, g = T

σα(x)
i, Innχαβ(x)(g) ◦ Ti, χαβ(x) for all g ∈ Gσβ(x)

(cf. (3.12)). Therefore, the maps
(
Innχαβ(x), Ti, χαβ(x)

)
n

defined by (3.13) and
(3.14) are well-defined maps between the corresponding cohomology groups:(

Innχαβ(x), Ti, χαβ(x)

)
n

: Hn
(
Gσβ(x), ξi,σβ(x)

)
→ Hn

(
Gσα(x), ξi,σα(x)

)
,

(3.25)
or, in the short notation introduced above,(

Innχαβ(x), Ti, χαβ(x)

)
n

: Hn(G, ξi)β, σβ(x) → Hn(G, ξi)α, σα(x) .

The map (3.25) is defined uniquely, although χαβ is not unique. Re-
call that χαβ is determined by the condition tχαβ(x)

(
σβ(x)

)
= σα(x), and,

therefore, is defined up to a multiplication on the right by g ∈ Gσβ(x) and
a multiplication on the left by g′ ∈ Gσα(x). Lemma 3.5, however, guarantees
that the maps(

Inng, Ti, g

)
n

: Hn
(
Gσβ(x), ξi,σβ(x)

)
→ Hn

(
Gσβ(x), ξi,σβ(x)

)
and (

Inng′ , Ti, g′
)
n

: Hn
(
Gσα(x), ξi,σα(x)

)
→ Hn

(
Gσα(x), ξi,σα(x)

)
are trivial for any g ∈ Gσβ(x) and g′ ∈ Gσα(x). Therefore the map (3.25) does
not depend on the arbitrariness in the choice of the map χαβ . (In the case
n = 0, this is simply the fact that the map Ti,χα,β(x) : st ξi,σβ(x) → st ξi,σα(x)

is independent of the arbitrariness in the choice of χαβ , as explained after
equation (2.23).) Letting x vary over Uα∩Uβ , and recalling that Hn(G, ξi)α,β

stands for the restriction Hn(G, ξi)α �eUα,β
of Hn(G, ξi)α over the manifold

Ũα,β (2.1), we obtain that the maps
((

Innχαβ(x), Ti, χαβ(x)

)
n
, tχαβ(x)

)
define

the desired isomorphisms

φn
i, αβ : Hn(G, ξi)β,α → Hn(G, ξi)α,β .

The maps φn
i, αβ glue the coordinate bundles {Hn(G, ξi)α}α∈A into the bun-

dle Hn(G, ξi). Since φn
i, αβ are constructed through the actions of G on ξi,

they satisfy the cocycle conditions (2.4) required in the gluing procedure.
The only thing that remains to be proved is that the isomorphisms

φn
i, αβ are compatible with the long exact sequences (3.22) of the coordinate

bundles, i.e., that the diagram

0 - st ξ0, β,α

i0- st ξβ,α

j0- st ξ1, β,α

k0- H1(G, ξ0)β,α
i1- H1(G, ξ)β,α

j1- · · ·

0 - st ξ0, α,β

φ0, αβ

?
i0- st ξα,β

φαβ

?
j0- st ξ1, α,β

φ1, αβ

?
k0- H1(G, ξ0)α,β

φ1
0, αβ

?
i1- H1(G, ξ)α,β

φ1
αβ

?
j1- · · ·

(3.26)
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is commutative. To give an idea of how the proof goes, let us check a part of
the diagram including the connecting morphism kn. Consider the two short
exact sequences (the horizontal arrows to the right) in the diagram

0 - ξ0,b

i -�
Fb

ξb
j -�

Sb

ξ1,b
- 0

0 - ξ0,tg(b)

T0,g

? i-�
Ftg(b)

ξtg(b)

Tg

? j-�
Stg(b)

ξ1,tg(b)

T1,g

?
- 0

(3.27)

If we choose a splitting (Fb, Sb) of the first short exact sequence, then thanks
to (3.19) we obtain that the isomorphisms Ti,g : ξi,b → ξi,tg(b) determine a
splitting (Ftg(b), Stg(b)) of the second short exact sequence that satisfies

T0,g ◦ Fb = Ftg(b) ◦ Tg , Tg ◦ Sb = Stg(b) ◦ T1,g . (3.28)

Let [c] ∈ Hn(Gb, ξ1,b), g ∈ G, g1 ∈ Gtg(b), . . ., gn+1 ∈ Gtg(b). Using (3.13),
(3.8), (3.17), and (3.28), we obtain(
(Inng, T0,g)n+1 ◦ kn(c)

)
(g1, . . . , gn+1)

= T0,g ◦ kn(c)(Inng−1(g1), . . . , Inng−1(gn+1))

= T0,g ◦ Fb ◦ TInng−1 (g1) ◦ Sb

(
c(Inng−1(g2), . . . , Inng−1(gn+1))

)
= Ftg(b) ◦ Tg ◦ Tg−1 ◦ Tg1 ◦ Tg ◦ Sb

(
c(Inng−1(g2), . . . , Inng−1(gn+1))

)
= Ftg(b) ◦ Tg1 ◦ Tg ◦ Sb

(
c(Inng−1(g2), . . . , Inng−1(gn+1))

)
= Ftg(b) ◦ Tg1 ◦ Stg(b) ◦ T1,g c(Inng−1(g2), . . . , Inng−1(gn+1))

=
(
kn ◦ (Inng, T1,g)n(c)

)
(g1, . . . , gn+1) .

This completes the proof that the following part of (3.26) is commutative:

· · · jn- Hn(G, ξ1)β,α
kn- Hn+1(G, ξ0)β,α

in+1- · · ·

· · · jn- Hn(G, ξ1)α,β

φn
1, αβ

?
kn- Hn+1(G, ξ0)α,β

φn+1
0, αβ?

in+1- · · ·

(3.29)

The commutativity of the rest of the diagram (3.26) can be proved analo-
gously.

The commutativity of the diagram (3.26) implies that the transition
isomorphisms φn

i, αβ determine the long exact sequence

0 - ξG
0

i0- ξG j0- ξG
1

k0- H1(G, ξ0)
i1- H1(G, ξ)

j1- · · · .(3.30)

This answers the question posed in the beginning of this section. Namely, if
k0(ξG

1 ) = 0, then the reduced bundles ξG
i = H0(G, ξi) form a short exact

sequence

0 - ξG
0

i0- ξG j0- ξG
1

- 0 , (3.31)
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hence in this case ξG ∼= ξG
0 ⊕ ξG

1 . This holds when all finite-dimensional
representations of the stationary group Gb are completely reducible for all b ∈
B, or, in particular, when G is compact, because in these cases H1(G, ξ0) = 0
(i.e., H1(G, ξ0) is a bundle with fiber a 0-dimensional vector space). This
motivates the following definition.

Definition 3.6. The dimensional reduction of the intertwining short exact
sequence (3.18) is said to be canonical when the reduced bundles constitute
the exact sequence (3.31). Otherwise, we call the nonzero element k0(ξG

1 ) ∈
H1(G, ξ0) the obstruction to canonical dimensional reduction of (3.18).

We recapitulate our results from this section in the following

Theorem 3.7. Let ξ0, ξ and ξ1 be reducible G-vector bundles with the same
base B and the same action t of G on B, and let these bundles form an
intertwining short exact sequence

0 −−−−→ ξ0
i−−−−→ ξ

j−−−−→ ξ1 −−−−→ 0 .

Then the reduced bundles ξG
0 , ξG and ξG

1 are a part of the long exact se-
quence (3.30). If the obstruction k0(ξG

1 ) ∈ H1(G, ξ0) to canonical dimen-
sional reduction is zero, then the reduced bundles constitute the short exact
sequence (3.31), hence in this case

ξG ∼= ξG
0 ⊕ ξG

1 .

Example. Here is an example of a non-canonical reduction of an intertwining
short exact of vector bundles. Let the common base B of the vector bundles
ξ0, ξ, and ξ1 consist of only one point. Let the typical fiber in these bundles
be 2-, 3-, and 1-dimensional, respectively. Let G be the Heisenberg group,
with elements

ga,b,c =

 1 a b
0 1 c
0 0 1

 , a, b, c ∈ R ,

and the actions on ξ, ξ0, and ξ1 be

Tga,b,c

 x
y
z

 =

 x+ ay + bz
y + cz
z

 ,

T0, ga,b,c

(
x
y

)
=

(
x+ ay
y

)
, T1, ga,b,c

(z) = (z) .

Let i : ξ0 → ξ be the canonical embedding and j : ξ → ξ1 be the canonical
projection:

i

(
x
y

)
=

 x
y
0

 , j

 x
y
z

 = (z) .

With these definitions, the short exact sequence (3.18) is intertwining with
respect to the actions of G.
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Let the maps F : ξ → ξ0 and S : ξ1 → ξ be defined by

S(z) =

 α
β
1

 (z) =

 αz
βz
z

 ,

F

 x
y
z

 =
(

1 0 −α
0 1 −β

)  x
y
z

 =
(
x− αz
y − βz

)
,

where α and β are some real constants. Then the pair (F, S) defines a splitting
of the short exact sequence (3.18), i.e., the maps F and S satisfy F ◦ i = IdL0

and imS = kerF .
It is easy to check that the stationary subbundles are

st ξ0 =
(

R
0

)
, st ξ =

 R
0
0

 , st ξ1 = ξ1 ,

and that the G-invariant sections of the three bundles have the form

C∞(ξ0)G =
(
x
0

)
, C∞(ξ)G =

 x
0
0

 , C∞(ξ0)G = (z) ,

where x and z are arbitrary real numbers. Just from counting dimensions,
we see that ξ � ξ0 ⊕ ξ1, i.e., the dimensional reduction of the short exact
sequence (3.18) is non-canonical.

Let us consider the long exact sequence (3.30) (cf. (3.16)), and com-
pute the obstruction k0(ξG

1 ) ∈ H1(G, ξ0) to canonical reduction. Clearly, the
injectivity of the canonical embedding i, the fact that both st ξ0 and st ξ
are one-dimensional, and the exactness of (3.30) imply that j(st ξ) is zero.
By the exactness of (3.30), k0 : st ξ1 → H1(G, ξ0) is injective, therefore the
obstruction k0(st ξ1) is one-dimensional.

To compute the obstruction to canonical reduction more explicitly, recall
that in this example H0(G, ξ1) = st ξ1 = ξ1, hence the equivalence class,
[z] ∈ H0(G, ξ1), of an element z ∈ st ξ1 = ξ1, is the element z itself. Then
k0([z]) is a map from G to ξ0 defined modulo maps from im δ

(0)
ξ0

. According
to (3.8), k0([z])(ga,b,c) is the equivalence class of

F ◦ Tga,b,c
◦ S(z) =

(
(βa+ b)z

cz

)
= z

(
1 0 0
0 1 −β

)  1 a b
0 1 c
0 0 1

  0
β
1

 .

The space im δ
(0)
ξ0

consists of maps from G to ξ0 proportional to

A(ga,b,c) =
(
a
0

)
=

(
1 0 0
0 0 0

)  1 a b
0 1 c
0 0 1

  0
β
1

 .
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Therefore, we can write [k0([z])] (ga,b,c) := [k0([z])(ga,b,c)] ∈ H1(G, ξ0) as

[k0([z])] (ga,b,c) =
(

(βa+ b)z
cz

)
+ R

(
a
0

)

=
(
z + R 0 0

0 z −βz

)
ga,b,c

 0
β
1

 =
(

R
cz

)
,

which makes explicit the fact that the obstruction to canonical reduction is
k0(st ξ1) ∼= R.

4. Dimensional reduction of tangent and cotangent bundles
and their tensor products

4.1. Reduction of τ(B) and τ∗(B)
4.1.1. Vertical subbundle and reduction of τ(B). Let B be a manifold en-
dowed with an action t of the Lie group G which satisfies Conditions A
and B from Section 2.2. Let τ(B) = (T (B), π, B) and τ∗(B) be respectively
the tangent and the cotangent bundles to B. Let t∗ : G × T (B) → T (B) be
the tangent lift of the action t. Then (t∗, t) is an action of G on τ(B) through
vector bundle morphisms. This action makes τ(B) a reducible G-vector bun-
dle.

The baseB becomes the total space of theG-bundle (B, p,N) as in (2.11).
Let τv(B) ⊆ τ(B) be the vertical subbundle of τ(B), which by definition con-
sists of the vectors tangent to the fibers of (B, p,N):

τv(B)b := τ(p−1(p(b)))b ∀ b ∈ B .

Let p∗τ(N) be the bundle over N induced by the projection p : B → N .
If we think of p∗τ(N) as the set of all pairs (b, w) ∈ B × T (N) satisfying
p(b) = πN (w) (where πN : T (N) → N is the natural projection), then the
action of g ∈ G is given by

(b, w) 7→ (tg(b), w) . (4.1)

Let i : τv(B)→ τ(B) be the natural embedding, and j : τ(B)→ p∗τ(N)
be the natural projection. Then the short exact sequence

0 −−−−→ τv(B) i−−−−→ τ(B)
j−−−−→ p∗τ(N) −−−−→ 0 (4.2)

is intertwining with respect to the corresponding actions of G. Hence, to per-
form G-dimensional reduction of (4.2), we can apply Theorem 3.7, and then
the only remaining task is to find the obstruction k0(p∗τ(N)) ∈ H1(G, τv(B))
for canonical dimensional reduction.

The obstruction for canonical reduction will be zero if for each b ∈ B
the Gb-invariant subspace τv(B)b has a Gb-invariant complement in τ(B)b.
For the particular case of the tangent lift t∗ of the action t of G on B, the
question of finding this obstruction is easy. Indeed, Condition A guarantees
that (B, π,N) (see (2.11)) is a locally trivial G-bundle. Because of this, there
exists a local section σ of (B, π,N) whose graph Ũ contains b, and such that
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the stationary group Gb′ of each point b′ ∈ Ũ is the same as the stationary
group Gb of b. More explicitly, if V ⊆ N is an open subset of N containing
p(b), then

W (b) := { Φ−1(x, π2 ◦ Φ(b)) : x ∈ V ⊆ N }
is a submanifold of B which is transversal to the orbits of G in B, contains
b, and consists of points whose stationary group is Gb (we used the notation
of (2.13)). This implies that Gb acts trivially on W (b), which in turn means
that Gb acts trivially on τ(W (b)), thus τ(W (b))b is a G-invariant subspace of
τ(B)b complementary to i(τv(B)b). Therefore the obstruction k0(p∗τ(N)) is
zero, and Theorem 3.7 yields the short exact sequence

0 −−−−→ st τv(B)b
i−−−−→ st τ(B)b

j−−−−→ p∗τ(N)b −−−−→ 0 .

Finally we notice that p∗τ(N)G ∼= τ(N), and summarize the above in the
following

Lemma 4.1. Let the action t of the group G on the manifold B satisfy Condi-
tion A from Section 2.2. Then the intertwining with respect to the tangent lift
(t∗, t) short exact sequence (4.2) of reducible G-vector bundles has canonical
dimensional reduction

0 −−−−→ τv(B)G i−−−−→ τ(B)G j−−−−→ τ(N) −−−−→ 0 . (4.3)

4.1.2. G-invariant connections and reduction of τ(B). The problem of split-
ting the short exact sequence (4.3) is directly related to the problem of de-
scription of all G-invariant connections. A connection on the bundle (B, p,N)
can be defined by specifying a “horizontal” subbundle τh(B) ⊆ τ(B) such
that

τ(B) = τv(B)⊕ τh(B) . (4.4)

The connection is G-invariant if (tg)∗(τh(B)b) = τh(B)tg(b) for each g ∈ G
and b ∈ B. The parallel transport of a G-invariant connection preserves the
structure of a homogeneous G-space in the fibers of (B, p,N). Hence, the
G-invariant connections on (B, p,N) correspond to the connections on the
principal bundle P (N (H)/H,N) with which (B, p,N) is associated (recall
the discussion after formulating Condition A).

Let (4.4) define a G-invariant connection on (B, p,N). For each point
b ∈ B, the horizontal subspace τh(B)b consists of vectors that are stationary
with respect of the representations of Gb in τ(B)b. Indeed, let γ be a path in
N through the point p(b), and γ̃ be its horizontal lift in B passing through b.
Because of the G-invariance of the connection, the stationary group Gb′ of
any point b′ ∈ γ̃ will be the same as Gb, i.e., γ̃ is invariant with respect to
the action of Gb, and τ(γ̃)b ⊆ τh(B)b consists of stationary vectors. Clearly,
all vectors in τh(B)b are tangent to the horizontal lift of some path through
p(b), hence τh(B) ⊆ st τ(B).

Consider the isomorphism

τh(B)→ p∗τ(N) : u 7→ (π(u), p∗u) , (4.5)
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where u ∈ τh(B), π : τ(B) → B is the natural projection in τ(B), p∗ :
τ(B) → τ(N) is the tangent lift of p : B → N , and we think of the pair
(π(u), p∗u) as an element of p∗τ(N) (because it satisfies p(π(u)) = πN (p∗u)).
Thanks to (4.1) and the fact that τh(B) ⊆ st τ(B), the map (4.5) is an
isomorphism of G-bundles.

The G-invariant connection (4.4) endows the coordinate realizations of
τ(B)G with a structure of a direct sum:

st τ(B)�eUα
= st τv(B)�eUα

⊕ τh(B)�eUα
.

The transition isomorphisms φαβ (2.23) preserve this direct sum and yield a
direct sum of the reduced bundles

τ(B)G = τv(B)G ⊕ τh(B)G = τv(B)G ⊕ τ(N) ,

i.e., a splitting of the short exact sequence (4.3).
Conversely, suppose that we are given a splitting of the short exact

sequence (4.3). Then each coordinate realization of τ(B)G becomes a direct
sum

st τ(B)�eUα
= st τv(B)�eUα

⊕ ζα ,

where ζα are subbundles of τ(B) over Ũα such that dim ζα = dimN , ζα ⊆
st τ(B) �eUα

, ζα are complementary to τv(B)eUα
, and satisfy φαβ(ζβ) = ζα.

Then there exists a unique G-invariant connection such that τh(B) �eUα
=

ζα. It is clear that different G-invariant connections correspond to different
splittings of (4.3), and vice versa. Thus, we obtain the following

Theorem 4.2. There is a bijective correspondence between all G-invariant
connections on (B, p,N) (or, equivalently, all connections on the principal
bundle P (N (H)/H,N)) and all splittings of the short exact sequence (4.3).

Because of Theorem 4.2, the set of allG-invariant connections on (B, p,N)
is an affine space with linear group Hom

(
τ(N), τv(B)G

)
= C∞

(
τ∗(N) ⊗

τv(B)G
)
.

4.1.3. Reduction of τ∗(B). The case of a cotangent bundle is similar to the
reduction of τ(B), but some aspects are different. The action (t∗, t) of G on
τ(B) naturally determines the contragradient action (t̂, t) := (t∗−1, t) of G on
τ∗(B). The complete reducibility of (t∗, t) implies the complete reducibility
of (t̂, t), which yields

Lemma 4.3. If the assumptions of Lemma 4.1 are satisfied, then the inter-
twining short exact sequence

0 ←−−−− τv(B)∗ i∗←−−−− τ∗(B)
j∗←−−−− (p∗τ(N))∗ ←−−−− 0 , (4.6)

has a canonical dimensional reduction

0 ←−−−− (τv(B)∗)G i∗←−−−− τ∗(B)G j∗←−−−− τ∗(N) ←−−−− 0 . (4.7)
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In general, it is not true that (τv(B)G)∗ ∼= (τv(B)∗)G, and the ana-
logue of Theorem 4.2 does not hold – this is an instance of a “violation of
duality” between the tangent and cotangent bundles in the process of re-
duction, mentioned at the end of the Introduction; we give an example of
this phenomenon in Section 4.1.5. Let us compare (ξG)∗ and (ξ∗)G in the
general case of a reducible G-vector bundle ξ and its dual ξ∗. By defini-
tion, the fiber of ξ∗ over any point b ∈ B is the dual space of ξb, and the
action (T̂ , t) of G on ξ∗ is the contragradient action to the action (T, t)
of G on ξ. In general the dimensions of st ξb and (st ξ∗)b are not equal. As-
sume thatG has only completely reducible finite-dimensional representations.
Then st ξb ⊆ ξb has a uniquely defined Gb-invariant complement Lb, hence
the canonical projections π1 : ξb → st ξb and π2 : ξb → Lb are well-defined.
In the dual space, π∗1 : (st ξb)∗ → ξ∗b and π∗2 : L∗b → ξ∗b define a direct sum
ξ∗b = π∗1(st ξb)∗ ⊕ π∗2(ξ∗b ). The image π∗1((st ξb)∗) coincides with (st ξ∗)b and
defines a natural isomorphism π∗1 : (st ξb)∗ → (st ξ∗)b, hence (ξG)∗ = (ξ∗)G.
Therefore, if the action t of G on B is such that the stationary group Gb has
only completely reducible finite-dimensional representations for any b ∈ B
(which is the case when Gb is compact), then (τv(B)G)∗ = (τv(B)∗)G will
hold. Simple reasoning shows that τ∗(N) = (p∗τ(N)G)∗ = ((p∗τ(N)∗)G

(which was already taken into consideration in (4.7)). Therefore we obtain
the following theorem.

Theorem 4.4. Let the action t of G on B satisfy the assumptions of Lemma 4.1,
and let the stationary group Gb have only completely reducible finite-dimensional
representations. Then (τv(B)∗)G = (τv(B)G)∗, and there exists a natural bi-
jective correspondence between all G-invariant connections on (B, p,N) (or,
equivalently, all connections on the principal bundle P (N (H)/H,N)) and all
splittings of the short exact sequence

0 ←−−−− (τv(B)G)∗ i∗←−−−− τ∗(B)G j∗←−−−− τ∗(N) ←−−−− 0 .

Under the conditions of Theorem 4.4, the set of all G-invariant connec-
tions on (B, p,N) is an affine space with linear group Hom

(
(τv(B)G)∗, τ∗(N)

)
=

C∞
(
τv(B)G ⊗ τ∗(N)

)
.

4.1.4. Short exact sequences related to G-invariance of submanifolds. Here
we state a simple but important fact which helps identify invariant subbun-
dles. Let C be a submanifold of the manifold B that is invariant with respect
to the action t of G on B, i.e., tg(C) ⊆ C for each g ∈ G. Then the restriction
of the base to C yields naturally the short exact sequence

0 −−−−→ τ(C) m−−−−→ τ(B)C
n−−−−→ ν(C) −−−−→ 0 (4.8)

of vector bundles over C. Here m : C ↪→ B is the natural embedding, ν(C) :=
τ(B)C/τ(C), and n is the natural projection. The short exact sequence (4.8)
and its dual are G-intertwining, which implies that the subbundles m(τ(C))
and n∗(ν∗(C)) areG-invariant subbundles of τ(B)C and τ∗(B)C , respectively.
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4.1.5. An example of “violation of duality” in the reduction of τ(ξ)G and
τ∗(ξ)G. In the Appendix of our paper [3], we construct an explicit exam-
ple of an intertwining short exact sequence of the form (4.2) for which
(τv(B)G)∗ 6∼= (τv(B)∗)G – a possibility we discussed in Section 4.1.3. Here we
briefly describe it, referring the reader [3] for detailed computations.

Let R6
2,4 be the real 6-dimensional space with diagonal metric tensor

with two entries equal to (−1) and four entries equal to 1, and letG = O0(2, 4)
be the connected component of the orthogonal group in R6

2,4. The future light
cone B in R6

2,4 (denoted by Q6 in [3]) is a G-invariant submanifold of R6
2,4.

Consider the corresponding short exact sequences (4.2) and its dual, (4.6),
both of which are intertwining with respect to the corresponding actions of G.
Since the action of G on B is transitive, the base N of the reduced bundles
consists of a single point, for a realization of which we take a particular point
y ∈ B. The action of G on B is also free, so τv(B) = τ(B) and, hence,
τv(B)∗ = τ∗(B). In [3] we compute the stationary group Gy, and show that
Gy is non-compact (which is crucial for this example to work). The dimensions
of (the fibers of) the stationary subbundles turn out to be dim st τ(B)y = 1
and dim st τ∗(B)y = 0. Therefore the dimensions of (the fibers of) the reduced
vertical subbundles τv(B)G = τ(B)G and (τv(B)∗)G = τ∗(B)G are 1 and 0,
respectively, so they cannot be dual to one another.

4.2. Dimensional reduction of tensor products of τ(B) and τ∗(B)
Let ⊗kξ, Skξ, Λkξ, and Γξ stand for the kth tensor product of ξ, kth sym-
metric or antisymmetric tensor product of ξ, and the tensor product of ξ
with symmetry determined by some Young tableau. Below we consider their
dimensional reduction, assuming, as above, that the actions of G on τ(B)
and τ∗(B) are respectively the tangent and cotangent lifts of the action of G
on the base B.

When the action t of g of G on B is free, computing (⊗kτ(B))G,
(Skτ(B))G, . . . is a purely algebraic procedure thanks to Lemmata 2.11
and 2.12. Here we treat in detail the reduction of (Skτ(B))G in this case.
Recall that base of the reduced bundle is glued from the local realizations
Ũα ⊆ B (2.17), and the fibers of the reduced bundle are the stationary sub-
spaces (cf. (2.18)). If b ∈ Ũα, then the fact that the action of G on B is free
implies that (ξG)b = st ξb = ξb. Therefore, ((Skτ(B))G)b = st (Skτ(B))b =
Sk(st τ(B)b) = Sk((τ(B)G)b), which can be written shortly as (Skτ(B))G =
Sk(τ(B)G). Using this observation and Lemma 4.1, we obtain

(Skτ(B))G = Sk(τ(B)G) ∼= Sk
[
τv(B)G⊕τ(N)

]
=

k⊕
i=0

[
Si(τv(B)G)⊗Sk−iτ(N)

]
,

(4.9)
i.e., the reduced bundle (Skτ(B))G is isomorphic to a Whitney sum of tensor
products of vector bundles of type Si(τv(B)G)⊗Sk−iτ(N). The isomorphism
in (4.9) is not natural, i.e., it depends on the choice of a splitting of (4.3) (or,
equivalently, on the choice of a G-invariant connection of (B, p,N) (2.11)).
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When the action t of G on B is not free, we have to use Lemmata 2.11
and 2.13. In this case, the reduction of Skτ(B) is

(Skτ(B))G ∼=
k⊕

i=0

[(
Siτv(B)

)G ⊗ Sk−iτ(N)
]
. (4.10)

It is important to notice that, if the action t is not free, it may happen that
(Siτv(B))G 6= Si(τv(B)G). Here are some details of the derivation of (4.10).
A splitting of (4.3) yields a representation (4.4) of τ(B) as a G-equivariant
direct sum τ(B) = τv(B)⊕ τh(B) which, in turn, gives

Skτ(B) ∼=
k⊕

i=0

[
Siτv(B)⊗ Sk−iτh(B)

]
,

where each term in the direct sum in the right-hand side is a G-invariant
subbundle of Skτ(B). Taking into account that, for all j = 0, 1, . . . , k, the
stationary group Gb of b ∈ B acts trivially on Sjτh(B)b – and, therefore,
stSjτh(B)b = Sjτh(B)b – we apply Lemmata 2.11 and 2.13 to obtain (4.10).

If we do not use a splitting of (4.3), then the only structures that occur
naturally in the reduction of the tensor products of τ(B) come from the
embedding τv(B)G ↪→ τ(B)G. For example, the only natural structure in
(Skτ(B))G is the sequence of embeddings

(Skτv(B))G ↪→ (Sk−1τv(B))G ⊗ τ(B)G ↪→ (Sk−2τv(B))G ⊗ (S2τ(B))G ↪→ · · ·

· · · ↪→ τv(B)G ⊗ (Sk−1τ(B))G ↪→ (Skτ(B))G .

The cases of (⊗kτ(B))G, (Λkτ(B))G, and (Γkτ(B))G are completely analo-
gous.

For the other basic cases we obtain

(Λkτ(B))G ∼=
k⊕

i=0

[(
Λiτv(B)

)G ⊗ Λk−iτ(N)
]
,

(Skτ∗(B))G ∼=
k⊕

i=0

[(
Siτv(B)∗

)G ⊗ Sk−iτ∗(N)
]
, (4.11)

(Λkτ∗(B))G ∼=
k⊕

i=0

[(
Λiτv(B)∗

)G ⊗ Λk−iτ∗(N)
]
. (4.12)

Similarly to the case of the tangent bundle, if a splitting of the short
exact sequence (4.7) is not chosen, then the only natural structures occurring
in the reduction of the tensor products of τ∗(B) come from the embedding
τ∗(N) ↪→ τ∗(B)G. The only natural structure in (Skτ∗(B))G is the sequence
of embeddings

Skτ∗(N) ↪→ Sk−1τ∗(N)⊗ τ∗(B)G ↪→ Sk−2τ∗(N)⊗ (S2τ∗(B))G ↪→ · · ·

· · · ↪→ τ∗(N)⊗ (Sk−1τ∗(B))G ↪→ (Skτ∗(B))G ;

the cases of (⊗kτ∗(B))G, (Λkτ∗(B))G, and (Γkτ∗(B))G are analogous.
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An essential difference between the cases of tangent and cotangent
bundles is that, in general, the G-invariant connections on (B, p,N) is not
parametrized by the set of all splittings of (4.7), Hom

(
(τv(B)∗)G, τ∗(N)

)
.

This is another manifestation of the breaking the duality between the tangent
and cotangent bundles in the process of dimensional reduction. If, however,
the action t of G on B is such that Gb has only completely reducible finite-
dimensional representations, then the G-invariant connections on (B, p,N)
are indeed parametrized by Hom

(
(τv(B)∗)G, τ∗(N)

)
according to Theorem 4.4.

4.3. Dimensional reduction of invariant tensor fields

The results in Sections 4.1 and 4.2 can be written in terms of sections of the
corresponding vector bundles.

Consider first the case of the tangent and cotangent bundles. The local
coordinates xµ, µ = 1, 2, . . . ,dimB in B generate local coordinates (xµ,dxµ)
in T (B) and (xµ, ∂

∂xµ ) in T ∗(B). In these coordinates a vector field X ∈
C∞(τ(B)) and a one-form A ∈ C∞(τ∗(B)) are G-invariant if for each g ∈ G
and b ∈ B

g(X)µ(b) ≡
∂tµg (tg−1(b))

∂xν
Xν(tg−1(b)) = Xµ(b) ,

g(A)µ(b) ≡
∂tνg−1(b)

∂xµ
Aν(tg−1(b)) = Aµ(b) .

According the the general construction (Lemma 4.1), the set of G-invariant
vector fields is in a bijective correspondence with the sections of the reduced
bundle, τ(B)G ∼= τv(B)G⊕ τ(N). In other words, there exists a bijective cor-
respondence between the G-invariant vector fields and the pairs of a “scalar
field” (i.e., a section of τv(B)G) and a vector field on N . This isomorphism
is not natural in the sense that the original setup does not determine a split-
ting of (4.3). If, however, the whole construction is a part of a physics prob-
lem, the physical interpretation may provide us with additional information
which may possibly single out some splitting of (4.3). If this is the case, then
the G-invariant vector fields on B correspond to the sections of τ(B)G in
which there exists an additional structure, namely, some “scalar” subbundle
τv(B)G ⊆ τ(B)G with the property τ(B)G/τv(B)G ∼= τ(N).

The interpretation of the isomorphisms and embeddings from Section 4.2
is analogous. For example, (4.12) can be interpreted as giving a bijective cor-
respondence between the G-invariant k-forms on B and the following set of
(k + 1) terms:

• a “scalar” field, i.e., a section of (Λkτv(B)∗)G,
• a 1-form on N with coefficients in the vector bundle (Λk−1τv(B)∗)G,

i.e., a section of (Λk−1τv(B)∗)G ⊗ τ∗(N),
• a 2-form on N with coefficients in the vector bundle (Λk−2τv(B)∗)G,

i.e., a section of (Λk−2τv(B)∗)G ⊗ Λ2τ∗(N),
• . . .,
• a (k − 1)-form on N with coefficients in (τv(B)∗)G, and
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• a k-form on N .

An important particular case is the Marsden-Weinstein-Meyer reduction
of symmetric Hamiltonian systems [14, 15]. In this case (B̃, ω̃) is a symplectic
manifold, and a Lie group G̃ acts by symplectomorphisms (i.e., t∗egω̃ = ω̃ for
all g̃ ∈ G̃). Let Φ̃ : B̃ → g̃∗ be the moment map (where g̃ is the Lie algebra
of G̃), ã ∈ g̃∗ be a regular value of Φ̃, and G := {g̃ ∈ G̃ : Ad∗eg(ã) = ã} be
the stationary group of G̃ with respect to the coadjoint representation of G̃
in g̃∗. Then B := Φ̃−1(ã) is a submanifold of B̃, and G acts naturally on B;
assume that this action satisfies the conditions from Section 2.2. Clearly, the
restriction of ω̃ to B is G-invariant and, according to (4.12), corresponds to
a triple (ω1, ω2, ω3), where ω1 ∈ C∞((Λ2τv(B)∗)G), ω2 ∈ C∞((τv(B)∗)G ⊗
τ∗(N)), ω3 ∈ C∞(Λ2τ∗(N)), and N := B/G. In this language, the theorem
of symplectic reduction claims that ω1 and ω2 are zero, and ω3 is a symplectic
form on N .

Another case important in theoretical physics is the dimensional re-
duction of invariant metrics, and, in particular, Kaluza-Klein-type theories.
Kaluza [16] proposed to embed the space-time in a manifold of higher di-
mension, impose a certain (Abelian) symmetry on the system, and consider
objects on the space-time coming from higher-dimensional objects. This idea
was pursued by Kerner [17] who generalized it to non-Abelian symmetries; see
also the famous Problem 77 in the work of DeWitt [18] (all these and many
other references can be found in the collection [19]). Kaluza-Klein techniques
have been very popular since late 1970’s among relativists and quantum field
theorists. In our formalism, the reduction of invariant metrics is governed by
the isomorphism

(S2τ∗(B))G ∼= (S2τv(B)∗)G ⊕
[
(τv(B)∗)G ⊗ τ∗(N)

]
⊕ S2τ∗(N)

(see (4.11)). This is in agreement with the classical result saying that, un-
der certain non-degeneracy conditions, the G-invariant metrics on B are
in a bijective correspondence with the triples of a “scalar field” (a section
of (S2τv(B)∗)G), a linear connection with values in the Lie algebra of G,
and a metric on N (a detailed treatment for compact groups G can be
found in the papers of of Coquereaux and Jadczyk [20, 21, 22] and in their
book [23]). Without going into details, we would like to note that in the
non-Euclidean case this correspondence is not bijective in general because
the non-degeneracy conditions may be violated.
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