Integration of rational functions - Partial fractions

Partial fraction decomposition of a rational function is a useful tool in integrating rational functions. The idea is to represent the rational function in the integral as a sum of terms of the form

$$
\frac{\alpha}{(x-c)^{k}} \text { and } \frac{A x+B}{\left(x^{2}+b x+c\right)^{m}}
$$

which can be integrated relatively easily.
To integrate the rational function $\frac{P(x)}{Q(x)}$, where P and Q are polynomials, one first rewrites the quotient $\frac{P(x)}{Q(x)}$ in the form

$$
\frac{P(x)}{Q(x)}=S(x)+\frac{R(x)}{Q(x)}
$$

where the degree of the polynomial R (the numerator) is smaller than the degree of the polynomial Q (the denominator). For example, as in Example 1 on page 509 of the book,

$$
\frac{x^{3}+x}{x-1}=x^{2}+x+2+\frac{2}{x-1}
$$

(check!). In this particular example, the function in the right-hand side is very easy to integrate:

$$
\int \frac{x^{3}+x}{x-1} d x=\int\left(x^{2}+x+2+\frac{2}{x-1}\right) d x=\frac{x^{3}}{3}+\frac{x^{2}}{x}+2 x+2 \ln |x-1|+C
$$

From now on assume that the degree of the numerator is smaller than the degree of the denominator!
The method of partial fractions is a recipe to rewrite a rational function of the form as a sum of simpler rational functions. Assume that

$$
\begin{equation*}
Q(x)=\left(x-c_{1}\right)^{k_{1}}\left(x-c_{2}\right)^{k_{2}} \cdots\left(x-c_{r}\right)^{k_{r}}\left(x^{2}+a_{1} x+b_{1}\right)^{m_{1}} \cdots\left(x^{2}+a_{s} x+b_{s}\right)^{m_{s}} \tag{1}
\end{equation*}
$$

where $k_{1}, \ldots, k_{r}, m_{1}, \ldots, m_{s}$ are integers greater than or equal to 1 , and each expression of the form $\left(x^{2}+a x+b\right)$ is irreducible, i.e., it cannot be represented as a product of the form $(x-\alpha)(x-\beta)$ (examples of irreducible expressions are $x^{2}+5,(x-7)^{2}+3$, etc.). Each factor in $Q(x)$ contributes several terms in the partial fraction expansion. The rule is the following: if the denominator $Q(x)$ has the form (1), then one should look for a partial fraction expansion of the form

$$
\begin{aligned}
\frac{R(x)}{Q(x)}= & \frac{\alpha_{1}}{x-c_{1}}+\frac{\alpha_{2}}{\left(x-c_{1}\right)^{2}}+\frac{\alpha_{3}}{\left(x-c_{1}\right)^{3}}+\cdots+\frac{\alpha_{k_{1}}}{\left(x-c_{1}\right)^{k_{1}}} \\
& +\frac{\beta_{1}}{x-c_{2}}+\frac{\beta_{2}}{\left(x-c_{2}\right)^{2}}+\frac{\beta_{3}}{\left(x-c_{2}\right)^{3}}+\cdots+\frac{\beta_{k_{2}}}{\left(x-c_{2}\right)^{k_{2}}}
\end{aligned}
$$

+ (more terms for each factor of this type)

$$
\begin{aligned}
& +\frac{A_{1} x+B_{1}}{x^{2}+a_{1} x+b_{1}}+\frac{A_{2} x+B_{2}}{\left(x^{2}+a_{1} x+b_{1}\right)^{2}}+\frac{A_{3} x+B_{3}}{\left(x^{2}+a_{1} x+b_{1}\right)^{3}}+\cdots+\frac{A_{m_{1}} x+B_{m_{1}}}{\left(x^{2}+a_{1} x+b_{1}\right)^{m_{1}}} \\
& +\frac{C_{1} x+D_{1}}{x^{2}+a_{2} x+b_{2}}+\frac{C_{2} x+D_{2}}{\left(x^{2}+a_{2} x+b_{2}\right)^{2}}+\frac{C_{3} x+D_{3}}{\left(x^{2}+a_{2} x+b_{2}\right)^{3}}+\cdots+\frac{C_{m_{2}} x+D_{m_{2}}}{\left(x^{2}+a_{2} x+b_{2}\right)^{m_{2}}}
\end{aligned}
$$

+ (more terms for each factor of this type) .
Here $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k_{1}}, \beta_{1}, \beta_{2}, \ldots, \beta_{k_{2}}, \ldots, A_{1}, B_{1}, A_{2}, B_{2}, \ldots, A_{m_{1}}, B_{m_{1}}, C_{1}, D_{1}, C_{2}, D_{2}, \ldots, C_{m_{2}}, D_{m_{2}}, \ldots$ are constants that should be determined.

Example. If $Q(x)=x^{3}(x-2)^{4}\left(x^{2}+2 x+5\right)^{2}$, we have to look for a partial fraction expansion of the form

$$
\begin{align*}
\frac{\text { (numerator) }}{x^{3}(x-2)^{4}\left(x^{2}+2 x+5\right)^{2}}= & \frac{\alpha_{1}}{x}+\frac{\alpha_{2}}{x^{2}}+\frac{\alpha_{3}}{x^{3}}+\frac{\beta_{1}}{x-2}+\frac{\beta_{2}}{(x-2)^{2}}+\frac{\beta_{3}}{(x-2)^{3}}+\frac{\beta_{4}}{(x-2)^{4}} \\
& +\frac{A_{1} x+B_{1}}{x^{2}+2 x+5}+\frac{A_{2} x+B_{2}}{\left(x^{2}+2 x+5\right)^{2}} \tag{2}
\end{align*}
$$

Notice that here we have used that the expression $x^{2}+2 x+5$ cannot be written as a product of two linear factors, $(x-p)(x-q)$; to establish this, try to solve the quadratic equation

$$
x^{2}+2 x+5=0
$$

- clearly, $x^{2}+2 x+5=(x+1)^{2}+4 \geq 4>0$, so that this quadratic equations has no roots.

Example. Here is an example of a denominator that requires some preliminary work. Let

$$
Q(x)=\left(x^{2}-9\right)\left(x^{2}-x-6\right)^{2}\left(x^{2}+6 x+16\right)
$$

One has to first try to write each factor as a product of linear factors (a "linear factor" is a factor of the form $(x-p)$): we have

$$
\begin{aligned}
x^{2}-9 & =(x+3)(x-3) \\
x^{2}-x-6 & =(x-3)(x+2) \\
x^{2}+6 x+16 & =(x+3)^{2}+7 \geq 7>0, \text { so this expression is not a product of linear factors . }
\end{aligned}
$$

Therefore

$$
\begin{aligned}
Q(x) & =\left(x^{2}-9\right)\left(x^{2}-x-6\right)^{2}\left(x^{2}+6 x+16\right) \\
& =(x+3)(x-3) \cdot(x-3)^{2}(x+2)^{2} \cdot\left(x^{2}+6 x+16\right) \\
& =(x+3)(x-3)^{3}(x+2)^{2}\left(x^{2}+6 x+16\right)
\end{aligned}
$$

so we have to look for a partial fraction expansion of the form

$$
\begin{align*}
\frac{(\text { numerator })}{Q(x)} & =\frac{(\text { numerator) }}{(x+3)(x-3)^{2}(x+2)\left(x^{2}+6 x+16\right)} \tag{3}\\
& =\frac{\alpha}{x+3}+\frac{\beta_{1}}{x-3}+\frac{\beta_{2}}{(x-3)^{2}}+\frac{\beta_{3}}{(x-3)^{3}}+\frac{\gamma_{1}}{x+2}+\frac{\gamma_{2}}{(x+2)^{2}}+\frac{A x+B}{x^{2}+6 x+16}
\end{align*}
$$

To determine the unknown constants, one has to multiply both sides of the partial fraction expansion (i.e., both sides of the equalities (2) or $(3))$ by $Q(x)$, and then equate the coefficients of the like powers. The simple example below shows in detail how this works.

Example. Solve the integral $\int \frac{x}{(x-3)\left(x^{2}+1\right)} d x$.
Solution. In this case the denominator, $Q(x)=(x-3)\left(x^{2}+1\right)$, is already as simple as possible (why?), so we can directly look for a partial fraction expansion of the form

$$
\frac{x}{(x-3)\left(x^{2}+1\right)}=\frac{\alpha}{x-3}+\frac{A x+B}{x^{2}+1} .
$$

Multiply both sides by $Q(x)=(x-3)\left(x^{2}+1\right)$:

$$
\frac{x}{(x-3)\left(x^{2}+1\right)} \cdot(x-3)\left(x^{2}+1\right)=\frac{\alpha}{x-3} \cdot(x-3)\left(x^{2}+1\right)+\frac{A x+B}{x^{2}+1} \cdot(x-3)\left(x^{2}+1\right)
$$

which simplifies to
$x=\alpha\left(x^{2}+1\right)+(A x+B)(x-3)=\alpha x^{2}+\alpha+A x^{2}+B x-3 A x-3 B=(\alpha+A) x^{2}+(B-3 A) x+\alpha-3 B$.
Equating the coefficients of the like powers of x in the left- and right-hand side of this equality,

$$
0 \cdot x^{2}+1 \cdot x+0 \cdot x^{0}=(\alpha+A) x^{2}+(B-3 A) x^{1}+(\alpha-3 B) x^{0}
$$

we obtain the system of linear equatlions

$$
\alpha+A=0, \quad B-3 A=1, \quad \alpha-3 B=0
$$

From the third equation we express $\alpha=3 B$, plug this in the first equation to obtain $3 B+A=0$, so $A=-3 B$ which, substituted in the second equation, yields $B-3(-3 B)=1$, from which $B=\frac{1}{10}, A=-3 B=-\frac{3}{10}$, $\alpha=3 B=\frac{3}{10}$. Therefore,

$$
\frac{x}{(x-3)\left(x^{2}+1\right)}=\frac{\alpha}{x-3}+\frac{A x+B}{x^{2}+1}=\frac{3}{10} \frac{1}{x-3}+\frac{1}{10} \frac{-3 x+1}{x^{2}+1} .
$$

Finally, we use this to compute the integral:

$$
\begin{aligned}
\int \frac{x}{(x-3)\left(x^{2}+1\right)} d x & =\frac{3}{10} \int \frac{d x}{x-3}-\frac{3}{10} \int \frac{x}{x^{2}+1} d x+\frac{1}{10} \int \frac{d x}{x^{2}+1} \\
& =\frac{3}{10} \ln |x-3|-\frac{3}{20} \ln \left(x^{2}+1\right)+\frac{1}{10} \arctan x+C
\end{aligned}
$$

Remark. Finally, a couple of words on integrals of the form $\int \frac{A x+B}{x^{2}+a x+b} d x$. Let us illustrate the idea on the particular example $\int \frac{x+5}{x^{2}+6 x+25} d x$. First, complete the square in the denominator:

$$
x^{2}+6 x+25=x^{2}+2 \cdot 3 \cdot x+3^{2}-3^{2}+25=(x+3)^{2}+16=(x+3)^{2}+4^{2}
$$

(which clearly implies that the denominator is not a product of linear factors). We have

$$
\begin{aligned}
\int \frac{x+5}{x^{2}+6 x+25} d x & =\int \frac{x+5}{(x+3)^{2}+4^{2}} d x=\int \frac{(x+3)+2}{(x+3)^{2}+4^{2}} d x \\
& =\int \frac{u}{u^{2}+4^{2}} d u+2 \int \frac{d u}{u^{2}+4^{2}}=\frac{1}{2} \int \frac{d\left(u^{2}+4\right)}{u^{2}+4^{2}}+2 \cdot \frac{1}{16} \int \frac{d u}{\left(\frac{u}{4}\right)^{2}+1} \\
& =\frac{1}{2} \ln \left(u^{2}+4^{2}\right)+\frac{1}{2} \int \frac{d v}{v^{2}+1}=\ln \sqrt{(x+3)^{2}+16}+\frac{1}{2} \arctan v+C \\
& =\ln \sqrt{x^{2}+6 x+25}+\frac{1}{2} \arctan \frac{x+3}{4}+C
\end{aligned}
$$

(here we set $u=x+3, v=\frac{u}{4}$). Checking that the derivative of the result is $\frac{x+5}{x^{2}+6 x+25}$ is a good exercise.

