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We consider the electromagnetic field in a one-dimensional optical resonator

with one stationary and one periodically moving perfectly reflecting bound-

aries. We show that the problem of the asymptotic behavior of the electromag-

netic field in the resonator can be reformulated as a problem of the dynamical

behavior of a circle map associated with the motion of the boundary. We

illustrate that mathematical theory of circle maps leads to several physical

predictions. Notably, well-known mathematical results imply that there are

intervals of parameters where the waves in the cavity concentrate in wave

packets whose width decreases exponentially and whose energy grows expo-

nentially. Even though these intervals are dense for typical motions of the

boundary, in the complement there is a positive measure set of parameters

where the energy remains bounded.

We also study the problem of the asymptotic behavior of the electro-

magnetic field in the resonator if the mirror is moving quasiperiodically (with

x



d ≥ 2 incommensurate frequencies). In this case we reduce the problem to

a study of the long-time behavior of the iterates of a map of d-dimensional

torus. We describe the class of torus maps that occur in the description of

the physical problem (in particular, they preserve a foliation). We study sev-

eral dynamical features of such maps and translate them into into properties

for the field in the cavity. The mathematical predictions are illustrated with

numerical simulations.

In the second part of the dissertation we develop numerical implemen-

tations of several criteria to asses the regularity of functions. The criteria are

based on the method of finite differences and methods of harmonic analysis,

namely, Littlewood-Paley theory and wavelet analysis.

As an application of the methods, we study the regularity of conjuga-

cies between critical circle maps with golden mean rotation number. These

maps have a very well developed mathematical theory as well as a wealth of

numerical studies. We compare the results produced by our methods among

themselves and with theorems in the mathematical literature. We confirm

that several of the features that are predicted by the mathematical results are

observable by numerical computation. Some universal numbers predicted can

be computed reliably.
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Chapter 1

Introduction

The present dissertation is devoted to applications of theory of dynam-

ical systems and methods of harmonic/wavelet analysis to physical systems

and numerical methods.

It consists of two parts. In the first part (Chapters 2 and 3), we apply

methods of dynamical systems to the study of the asymptotic behavior of

the electromagnetic field in a one-dimensional optical cavity one mirror of

which is moving periodically or quasiperiodically. It the case of a periodically

moving mirror, we reformulate the problem to the study of an orientation-pre-

serving homeomorphism of the circle (explicitly defined for any given physically

admissible motion of the mirror). If the mirror is moving quasiperiodically,

we show that the problem can be translated into the problem of the long-time

behavior of the iterates of a map of the d-dimensional torus (if the motion of the

mirror is a quasiperiodic function of time with d incommensurate frequencies).

The torus maps occurring in this situation are of a very particular kind – they

preserve an invariant foliation on the torus. This is a very severe restriction

on the torus map, so the general theorems about torus maps do not apply.

We study numerically and analytically some features of these torus maps, and
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give physical interpretation of the mathematical results.

In the second part of the dissertation (Chapter 4), we study numerically

the global Hölder regularity of conjugacies between circle maps of different

types – circle diffeomorphisms or “critical” circle maps, i.e., circle homeomor-

phisms that have one point at which their derivative is zero. We use several

methods to study numerically the regularity of the conjugacies – finite differ-

ences method, two methods based on Littlewood-Paley theorem (studying the

rate of decrease of the dyadic Fourier sums or of the convolution of the func-

tion with the Poisson kernel), and two wavelet methods (studying the rate of

decrease of the wavelet coefficients or the rate of approximation by truncated

wavelet series).

The main results of the dissertation have been published in the arti-

cles/preprints [131, 190] (Chapter 2), [160] (Chapter 3), [132] (Chapter 4).

2



Chapter 2

Circle Maps and a Periodically Pulsating

Cavity

The goal of this chapter is to show that the problem of predicting the

asymptotic behavior of the solutions of the one-dimensional wave equation in

a spatially bounded domain with with a periodically moving boundary can be

easily reformulated in terms of the study of long term behavior of circle maps

and, therefore, that many well known results in theory of circle maps lead to

physically important predictions.

In Chapter 3, we apply a similar dynamical systems approach to de-

scribe the electromagnetic field in the cavity if instead of periodically, the wall

is moving quasiperiodically.

The main results in this chapter were published in [131] and [190].

2.1 Literature Review

In this section, we give pointers to the literature on the problem, trying

to emphasize the papers that are more relevant to our approach.
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2.1.1 Early Studies

The description of waves in changing domains has been studied for a

long time. It is directly related to the Maxwell’s theory of the electromagnetic

field and has been analyzed in connection with the radiation pressure in the

late XIX and early XX century.

Lord Rayleigh [172] (reprinted in [173, vol. V, pp. 41–48]) and Sir

Joseph Larmor [125] gave a dynamical illustration of the radiation pressure.

Their methods were applied by Havelock [91] and Nicolai [154], who considered

the motion of a string one end of which is fixed and the other one is moving

and calculated the pressure exerted by the string on the moving end.

2.1.2 Minkowski Space-Time and D’Alembert Method

The advent of the geometrical picture of the space-time given by Min-

kowski [144] (English translation: [136, pp. 73–91]) shed new light on the

connection between the mathematics and the physics of the wave equation.

D’Alembert method of solving the wave equation in the case of one spatial di-

mension is an example of the fact that the spatial and the temporal variables

should be treated on equal footing. Moreover, this method has a transpar-

ent physical interpretation – namely, the disturbances in a field of zero mass

propagate along the future light cone.

The space-time representation (i.e., the method of characteristics) for

solving the one-dimensional wave equation in the presence of moving bound-

aries was used by Balazs [8].
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2.1.3 Periodically Oscillating Boundaries in the Mathematics Lit-
erature

The problem of the behavior of the solutions of the wave equation in

presence of (periodically) moving boundaries in one or more spatial dimensions

has been studied intensively by Cooper and his collaborators.

In [30], Cooper studied the case of a plane electromagnetic wave nor-

mally incident on a moving perfectly conducting flat surface. He used the phys-

ically correct boundary conditions (see Section 2.3.3), calculated the Doppler

factor at reflection (Section 2.3.4), and constructed an approximate solution

taking into account the Doppler shift.

In [32], Cooper analyzed the long-time behavior and the energy growth

of the electromagnetic field in a pulsating optical resonator. He used the

method of characteristics to reformulate the time evolution of the field in

terms of a map of the interval. Then he analyzed the iterates of this map (for

periodically moving boundary) and found that under certain assumptions the

energy of the field grows unboundedly. In [31], he used similar methods to find

the asymptotic behavior of the vibrations of a string with varying length.

Cooper and Koch [33] studied the Dirichlet problem for the one-dimen-

sional wave equation in a spatially bounded domain one of whose boundaries is

stationary and the other one is moving periodically, by analyzing the operator

of evolution through one period, T , of the motion of the boundary. If u is the

solution of the boundary-value problem, and

U : (u(0, ·), ut(0, ·)) 7→ (u(T, ·), ut(T, ·))
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stands for the time-T evolution operator, Cooper and Koch showed that the

properties of the spectrum of U are related to the properties of a circle map

associated with the motion of the boundary. Their map is essentially the same

as our circle map g [131] (see Section 2.3.5). One can try to give physical

interpretation of Theorem 2.4 of [33] after reading Sections 2.3–2.6. Cooper

and Koch made the interesting observation that in certain cases the solutions

of the boundary value problem can go to 0 as t → ∞ in some Sobolev norms,

but grow in others. This is related to the surprising difference between the

behavior of the solutions of the Dirichlet and the Neumann boundary problems

which we give in Section 2.6.1 [190].

Yamaguchi and his collaborators have proven the existence and ana-

lyzed the behavior of the solutions of the Dirichlet boundary value problem for

one-dimensional hyperbolic partial differential equations with (quasi)periodic

coefficients/forcing terms and/or in a changing domain.

In [199], Yamaguchi proved the existence of almost periodic and quasi-

periodic solutions in the case of a quasiperiodically (see Definition 3.3.2) vary-

ing forcing term and coefficients that are periodic in t and whose frequencies

satisfy some Diophantine relation (Definition 2.4.4).

Yamaguchi [198] proved the existence of exactly one almost periodic

solution to the wave equation with a quasiperiodic forcing term under some

conditions on the Diophantine properties of the frequencies of the forcing term.

In a similar situation, he and Imai [205] found classes of periodic forcing terms

for which the problem has no bounded (hence, no periodic) solutions for any
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choice of the initial data; again, Diophantine properties of the frequencies con-

stituted a necessary condition for that (for fixed length of the spatial domain).

In [200], Yamaguchi extended these results.

In [201, 202], Yamaguchi studied the (quasi)periodic solutions of the

Dirichlet boundary problem for the homogeneous one-dimensional wave equa-

tion in a pulsating domain. In these articles, he explicitly constructed a circle

map (the map F defined by (2.19)) and related the number-theoretic proper-

ties of its rotation number with the existence of (quasi)periodic solutions. In

[206], he and Yoshida gave a generalization of this approach in the presence of

a driving term in the right-hand side of the wave equation.

Dittrich et al [53] studied the stability (i.e., the boundedness of the

energy) of the solutions of the Dirichlet or Neumann boundary problems for

the one-dimensional wave equation in a periodically pulsating domain. In their

analysis, they explicitly used theory of circle maps. Some of their statements

for the case of Neumann boundary conditions, however, are not correct – we

found [190] a counterexample to their conclusions (see Section 2.6.1).

2.1.4 One-Dimensional Changing Domains in the Physics Litera-
ture

Although we are not going to discuss the quantum aspects of the prob-

lem, let us discuss briefly what has been done and give some references. Quan-

tum effects are present even if the two boundaries are at rest (the Casimir effect

[21]; see also the book by Mostepanenko and Trunov [151]). The generalization
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to the case of a moving boundary is important for the the high precision mea-

surements with a Michelson interferometer with mirrors attached to strings or

a Fabry-Perot cavity related to gravitational wave detection (see the references

in [27]).

Moore [146] considered the quantum theory of the electromagnetic field

in a one-dimensional cavity with variable length. He imposed homogeneous

Dirichlet boundary conditions on the electromagnetic vector potential (which

in this formalism is an operator-valued distribution) and showed that one

cannot construct a Hamiltonian, hence, Schrödinger picture does not exist.

Indeed, the existence of a Hamiltonian would imply the existence of a unitary

evolution operator, Û(t, t0) = exp{−i(t − t0)Ĥ} with the property

Â(t, x) = Û †(t, t0) Â(t0, x) Û(t, t0) ,

which, in turn, implies that if the point (t0, x) belongs to the world line of the

mirror (and, therefore, Â(t0, x) = 0), then one would not be able to obtain a

nonzero value for Â(t, x) at the same spatial point x at any moment t > t0.

Since we will not to treat the quantum case in detail, we leave out all

complications Moore had to overcome in the development of a quantization

scheme, and discuss only one particular result of his treatment. 1 Namely, he

pointed out that one has to look for an expansion of the field operator Â(t, x)

1Fulling and Davies [76] and Castagnino and Ferraro [22] continued the line of investi-
gation of Moore, while Razavy and Terning [174] developed an alternative approach.
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in mode functions

Ak(t, x) = eπikR(t+x) + eπikR(t−x) , k ∈ N ,

where the function R : R → R satisfies

R(t + a(t)) = R(t − a(t)) + 2 . (2.1)

Most authors studying the quantum aspects of the problem analyzed, in fact,

the properties of the solution of the functional equation (2.1). In Section 2.6.4,

we give a method for analyzing the properties of the function R(z), based on

theory of circle maps.

Let us emphasize that the authors of all papers mentioned below dis-

cussed the Dirichlet boundary problem only.

Fulling and Davies [76] (see also Mostepanenko and Trunov [151, Sec-

tion 2.7]) calculated the expectation values of the energy-momentum tensor

in the presence of a moving boundary (using the “point-splitting” method of

DeWitt). They found that (after discarding some infinite constants), each

of the four components of the energy-momentum tensor is equal (up to multi-

plicative constants) to the Schwarzian derivative of certain function – we give

more details about this interesting fact in Section 2.6.6.

Calucci [20] adopted a formalism different from Moore’s and estimated

the number of emitted photons for the case of a very slow motion of the

boundary by using the formalism of adiabatic approximation. His results,

however, do not apply to the long-time behavior of the field or to the case of
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resonant motion of the boundary (i.e., when the wall oscillates with a small

amplitude and with frequency equal to a multiple of the time a light ray needs

to traverse the unperturbed length of the cavity twice).

Dodonov et al [61] considered the case of resonant motion of the bound-

ary within Moore’s formalism. They studied a slightly sinusoidally perturbed

motion of the boundary,

a(t) = a0

(
1 + ε sin

qπt

a0

)
, q = 1, 2, . . . , ε ¿ 1 ,

and expanded R(ξ) in powers of ε, obtaining an approximate solution valid for

εt À 1. For this boundary motion, they calculated the long-time asymptotics

of the number of photons generated in the mth mode as well as the back

reaction on the oscillating wall from the field. 2 They mentioned that the

force between the mirrors can be enhanced significantly in the resonant case,

but without recognizing the presence of wave packets, although in some cases

they found some moderate squeezing, i.e., formation of narrow wave packets

(squeezing was mentioned also in Dodonov et al [59]).

Dittrich et al [54] studied the behavior of a string one of whose ends is

moving periodically. They used the method of characteristics, constructed a

map identical to our map F (2.19), and mentioned that the behavior of the

iterates of this map can explain the energy growth. They, however, failed to

2The same authors [60] studied the quantized electromagnetic field in time-dependent
nonuniform media, and calculated the number of photons due to the change in time of the
dielectric constant of the medium.
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notice that this map is a lift of a circle map, so they did not use the rich theory

of circle maps to make physical predictions.

Sassaroli et al [177] studied the photon production in the case of a

cavity whose length is changing periodically, but discontinuously (arguably, a

quite non-physical situation) using a method similar to the one use by Calucci

[20]. They gave some arguments supporting the (quite controversial) idea

of Schwinger that sonoluminescence can be explained through the dynamical

Casimir effect (i.e., Casimir effect between moving boundaries).

Law [127] studied the quantum field in a cavity with a moving bound-

ary and filled with a medium with time-dependent index of refraction. He

took as a starting point Moore’s approach and derived an approximate effec-

tive Hamiltonian, which made an approximate Schrödinger picture possible.

He used the “instantaneous” set of mode functions and “instantaneous” cre-

ation/annihilation operators. Since several authors have used the method of

“instantaneous” eigenfuncions, here we give a brief sketch of it. In order to

solve the homogeneous Dirichlet boundary value problem for the wave equa-

tion in the domain {(x, t)|x ∈ [0, a(t)], t ≥ 0}, one can look for a solution in

the form

u(t, x) =
∑

k∈N

Qk(t) ψk(t, x) ,

where

ψk(t, x) = sin
2πkx

a(t)
. (2.2)

The functions ψk(t, x) obviously satisfy the boundary conditions. If a(t) =
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a0 = const, they would be solutions of the corresponding Sturm-Liouville

problem, and the functions Qk(t) would satisfy the equation of the harmonic

oscillator with frequency 2πk
a0

. After substituting the above expansion in the

wave equation, one obtains an infinite system of coupled second order ordi-

nary differential equations for the functions Qk(t). This system can be solved

approximately after truncations based on assumptions for smallness of some of

the parameters of the physical system. This method, however, approximates

the true solutions well only for small times. Law [127] found numerically

growth of the photon number in the lowest resonant motions of the mirror for

small times. His results were extended by Ying Wu et al [197].

In [128], Law proposed an exact analytic solution for R(z) (2.1) for a

particular 2-parameter family of motions of the boundary,

a(t) =





a0 , t < 0 ,

a0 +
a0

2π

[
arcsin

(
sin θ cos

2πt

a0

)
− θ

]
, t ≥ 0 ,

(2.3)

where θ is a parameter describing the amplitude of the mirror’s motion. In

this case,

R(2na0 + ζ) = 2n +
1

2
− 1

π
arctan

(
cot

πζ

a0

− 2n tan θ

)
, (2.4)

where n is an arbitrary positive integer, and ζ ∈ (−a0, a0]. Using the expres-

sion for the energy density due to Fulling and Davies [76], Law found that the

field in the cavity develops two wave packets which become narrower in time

and whose energy grows.
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Law’s solution (2.3), (2.4) was generalized by Ying Wu et al [196], who

gave an explicit solution for R for motion of the boundary given by

am(t) =





a0 , t < 0 ,

a0 +
a0

mπ

[
arcsin

(
sin θm cos

mπt

a0

)
− θm

]
, t ≥ 0 ,

where m = 2, 3, . . ., and θm is a parameter (related to the amplitude ε of the

mirror’s motion by tan θm ≈ εmπ
2a0

). They found

Rm((2n − 1)a0 + ζ) = 2n − 1

4
+

1

mπ
arccot

(
cot

mπζ

a0

− 2n tan θm

)
.

Law’s solution is the particular case with m = 2. For am(t), the field develops

m wave packets whose width decrease and whose energy increase with time.

Cole and Schieve [28] (see also Cole’s thesis [27]) proposed a method of

constructing numerically the function R(z) for an arbitrary wall motion with

a(t) = a0 = const for t < 0, based on the D’Alembert solution. They found

numerically that for resonant wall motions the field develops wave packets

and its energy grows in time. Their procedure, however, did not allow them

to make general predictions about the long-time behavior of the field and its

energy.

Johnston and Sarkar [110] pointed out that, although the similarity

between a constant-length cavity filled with a medium with time-varying index

of refraction and an empty cavity with time-varying length seems intuitively

appealing (since in both cases the optical path length changes), it needs to

be studied in detail. They presented an explicit calculation for the spectral
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distribution of generated photons in the two cases (using Moore’s method [146]

in the case of moving mirrors), and found serious qualitative differences. The

question studied by them is interesting even in the purely classical case and

certainly deserves attention.

In [111], Johnston and Sarkar developed a procedure for quantizing the

field in an empty cavity with a moving mirror, different from the quantization

method of Moore [146]. They introduced a new, “time-dependent”, spatial

variable, such that the boundaries do not move in the new coordinates, and

then quantized the transformed quantities in the standard way. They showed

that Moore’s method is consistent with their procedure.

Dodonov and Klimov [58] studied in detail the problem of an empty

cavity with a periodically vibrating wall. They adopted Moore’s method and

used the “instantaneous” basis (2.2), thus arriving at an infinite system of

coupled second order ordinary differential equations. Then they employed the

presence of two different time scales in the problem – the usual (“fast”) one,

related to the oscillations of the mirror, and a “slow” one, which accounts for

the cumulative resonance effect. In the resonant case, for small amplitudes

of the mirror’s motion, they averaged over the fast oscillations to extract the

slowly changing coefficients. They found that the energy of the field in the

cavity increases exponentially.

Méplan and Gignoux [139] developed a method for solving the wave

equation in an empty cavity with a moving mirror very similar in spirit to the

method developed by us in [131]. By using the method of characteristics, they
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reduced the physical problem to a two-dimensional area-preserving map and

studied the iterates of this map. Let us consider one particular characteristics

(“light ray”) and let tn be the time at which this characteristics reaches the

stationary mirror for the nth time, and let µn is the “energy” of this light ray

right before it reaches the stationary mirror (for more details, see the original

article [139]). Using a complicated argument, they derived the map

µn+1 = D((Id−a)−1(tn)) µn

tn+1 = (Id +a) ◦ (Id−a)−1(tn) ,

where D(t) = 1−ȧ(t)
1+ȧ(t)

is the Doppler factor at reflection at time t (cf. (2.16)).

In fact, their map giving tn+1 as a function of tn (the second equation in

the system above) is nothing but our map F defined by (2.19). However,

as we showed in [131], the dynamical properties of the physical system can

be described by a one-dimensional map, which makes the description of the

system much simpler.

Janovicz [104] solved the wave equation in the pulsating cavity by in-

troducing new variables in which both mirrors are stationary, but the equation

becomes much more complicated, and looked for solutions that satisfy the new

equation approximately, but satisfy the boundary conditions exactly. The sys-

tem of ordinary differential equations he arrived at is the same as the one

analyzed in [126] and [58].

Dodonov [56] used a method similar to the one in [58] to analyze the

behavior of the field in the case of a small “detuning” from the exact resonance
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between the mechanical modes (the mirror) and the field modes. As we will

see later, within our – purely classical – treatment, small enough detuning

from resonance does not change the qualitative features of the behavior of

the field in the cavity; moreover, we can find explicitly for what detuning the

behavior of the field will change dramatically. Dodonov and Andreata [57] and

Andreata and Dodonov [1] continued the line of research of [56] and studied

in detail the packet formation in a resonantly pulsating resonator.

Ji et al [106] calculated the number of photons in a cavity with a wall

vibrating resonantly with a small amplitude. They used the “instantaneous”

basis method, after which they introduced new variables (related to the coor-

dinate and the momentum like the creation/annihilation operators) to obtain

an infinite system of coupled first order ordinary differential equations, which

they solved perturbatively to first order in the amplitude of the mirror’s mo-

tion.

Dalvit and Mazzitelli [40] solved (2.1) for small-amplitude motions of

the wall using the renormalization-group technique for finding asymptotic ex-

pansions in singularly perturbed problems developed in [23, 24]. In agreement

with the previous treatments, they found that in the case of a resonantly

moving wall the energy of the field grows exponentially.

2.1.5 Ideas from Dynamical Systems

Since the method we develop in this and the following chapter relies

heavily on theory of circle and torus maps, we would like to explicitly quote
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the articles that have used ideas from dynamical systems to study the problem

at hand.

The possibility to use the properties of iterated maps in order to explain

the behavior of the field was pointed out by Cooper [32], Dittrich et al [54],

Méplan and Gignoux [139].

Circle maps were used as a tool by Cooper and Koch [33], Gonzalez

[82, 83], Dittrich et al [53], Yamaguchi [201, 202, 206].

2.1.6 Two Moving Mirrors

Our approach can be easily generalized to the case of two periodically

moving mirrors. In Section 2.6.5, we explain how to reduce the problem in

this case either to a circle map, or to a map of the 2-torus, depending on

whether the frequencies of the motion of the two mirrors are commensurate

(i.e., rationally related) or not.

The case of two moving mirrors has been studied – without resort to

dynamical systems – by Dalvit and Mazzitelli [41], Ji et al [107].

2.1.7 More than One Spatial Dimension

In the case of more than one spatial dimension, the problem of electro-

magnetic waves reflected off moving obstacles is much more complicated. The

main difficulty is that the rays do not simply bounce back and forth between

the obstacles as in the case of one spatial dimension, but may diverge and

leave the domain between the moving obstacles. Therefore, one has to impose
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conditions on the geometry of the problem that guarantee the existence of rays

“trapped” between the obstacles. These rays undergo multiple reflections, and

their energy may grow exponentially. Since this goes beyond the scope of the

present dissertation, we will not discuss it further, and will just mention the

papers of Cooper and Strauss [34, 35], Popov and Rangelov [164].

In the physics literature, waves in a changing domain in more than one

spatial dimension are studied from different points of view by Dodonov and

Klimov [58], Ji et al [108], Colanero and Chu [26], Mkrtchian and v. Baltz

[145], Crocce et al [37], Yamaguchi [203].

Mundarain and Maia Neto [152] calculated the photon generation in the

nonrelativistic approximation for the more realistic case of two plane parallel

perfectly reflecting mirrors the field between which can be polarized in an

arbitrary direction.

2.1.8 Interaction with the Boundary

Although we have not studied the effect of the radiation pressure on

the motion of the boundary, we would like to point out that this problem has

been studied by Law [126]; see also Cole and Schieve [29] and the references

therein.

2.1.9 Other Applications of Circle Maps

Thomas Kwok-keung Au and Xiao-Song Lin [6] used circle maps to

study caustics in off-center reflections in a mirrored circle, using symplectic
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topology as a tool. Their results might be useful in the semiclassical treatment

of the short-wavelength modes in two-dimensional optical cavities (see, e.g.,

Nöckel and Chang [155] and the references therein).

Yamaguchi [203] studied the wave equation in spherically symmetric

domain with periodically pulsating boundaries.

2.1.10 Fermi Acceleration

The problem of the behavior of the electromagnetic field between two

parallel perfectly reflecting mirrors is different from the so-called Fermi accel-

eration ([73]; see also Chapter 3.4 of the book by Lichtenberg and Lieberman

[129]). Fermi proposed the growth of the speed of a particle bouncing elas-

tically between two parallel planes (in the absence of any other forces) as a

mechanism for acceleration of particles in the cosmic rays. Another model

with similar dynamical features is that of a particle moving in a vertical di-

rection in a homogeneous gravity field and bouncing off a horizontal plate

oscillating periodically up and down. In Appendix A, we showed the deriva-

tion of the (full) map describing Fermi acceleration.

Although sometimes it is said that the problem of the wave equation in

a periodically pulsating domain is a “string” analogue of the Fermi accelerator

[54], it turns out – somewhat surprisingly – that the dynamics of the former

is described by a one-dimensional map, while for the latter one needs to use a

two-dimensional map whose behavior is much more complicated.

Ulam [188] considered Fermi acceleration as a model for studying the
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approach to statistical equilibrium.

Zharnitsky [210] used reparametrization of the temporal variable to

“stop the walls” of the Fermi accelerator, i.e., to reduce the problem to the

study of an equivalent system of a particle moving in a time-dependent quadratic

potential between two stationary walls.

Fermi acceleration has been studied with dynamical systems tools by

Pustyl’nikov [166] Douady [62], Dovbysh [63] Krüger et al [117], Zharnitsky

[211, 212].

The generalization of Fermi acceleration to two spatial dimensions (i.e.,

to the problem of a motion of a ball bouncing elastically off the walls of a time-

dependent billiard) have been studied by and Koiller et al [115] and Oliffson

Kamphorst and Pinto de Carvalho [156].

2.1.11 Experimental Aspects

Smith [181] and Henneberger and Schulte [93] have found experimen-

tally the formation of short laser pulses in a laser with a moving mirror.

We note that the experimental situation does not necessarily require

that there be a physically moving mirror. One experimental possibility –

among others – would be to have a material that is a good conductor or not,

depending on whether a magnetic field of sufficient intensity is applied to it,

and then have a magnetic field applied to it in a changing region. This induces

reflecting boundaries that are moving with time. Note that the boundaries of

this region could move even faster than the speed of light, hence the study of
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mirrors moving at a speed comparable to the speed of light is not unphysical

(even if in that case one would also have to discuss corrections to the boundary

conditions depending on the details of the experimental realizations).

2.2 Plan of the Exposition

The plan of this chapter is the following. In Section 2.3 we give a de-

scription of the physical system and show how the physical problem can be

formulated in terms of circle maps. Section 2.4 contains a brief exposition of

the necessary facts from the theory of circle maps, and in Section 2.5 these facts

are applied to the problem at hand and illustrated numerically. Section 2.6 is

devoted to several topics related to the physical problem and its mathematical

treatment: the role of the correct boundary conditions, the problem of finding

the motion of the mirror from the circle map, remarks about the universality

class of circle maps associated with pulsating resonators and about the quan-

tum treatment of the problem within our approach, details on the case of two

moving mirrors, and a discussion of the appearance of Schwarzian derivative

in the quantum treatment of the problem.

2.3 Physical Setting

2.3.1 Description of the System

We consider a one-dimensional optical resonator consisting of two par-

allel perfectly reflecting mirrors. For simplicity of notation, we consider only

the situation in which one of them is at rest at the origin of the x axis while
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Figure 2.1: The pulsating resonator.

the other one is moving periodically with period T – See Figure 2.1. The case

where the two mirrors are moving periodically with a common period can be

treated in a similar manner. We assume that the resonator is empty, so that

the speed of the electromagnetic waves in it is equal to the speed of light, c.

The speed of the moving mirror cannot exceed c (see, however, Section 2.1.11).

We use dimensionless time t and length ` connected with the physical

(i.e., dimensional) time tphys and length `phys by t := tphys/T , ` := `phys/(cT ).

Let the coordinate of the moving mirror be x = a(t), where a is a Ck

function (k = 1, . . . , ∞, ω) satisfying the conditions

a(t) > 0 , |a′(t)| < 1 , a(t + 1) = a(t) . (2.5)

The meaning of the first condition is that the cavity does not collapse, the

second one means that the speed of the moving mirror cannot exceed the
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speed of light, and the third one is that the mirror’s motion is periodic of

period 1. An example which we will use for numerical illustrations is

a(t) =
α

2
+ β sin 2πt

(
|β| <

1

2π
, 0 < |β| <

α

2

)
. (2.6)

Since there are no charges and no currents, we impose Coulomb gauge

conditions

A0 = 0 , ∇ · A = 0

on the 4-potential Aµ = (A0,A) (Jackson [101, Section 6.5]) and obtain that

A satisfies the homogeneous wave equation. We consider plane waves traveling

in x-direction, so that without loss of generality, we assume that

A(t, x) = A(t, x) ey ,

therefore

E(t, x) = −∇A0 −
∂A

∂t
= − At(t, x) ey

(2.7)
B(t, x) = ∇× A = Ax(t, x) ez

(the subscripts of A always denote the corresponding derivatives). The vector

potential A(t, x) must satisfy the homogeneous one-dimensional wave equation,

Att(t, x) − Axx(t, x) = 0 , (2.8)

in the domain Σ := {(t, x) ∈ R2 | t0 < t, 0 < x < a(t)}. It will also need to

satisfy some boundary conditions that will be specified in Section 2.3.2, and

appropriate initial conditions,

A(t0, x) = ψ1(x) , At(t0, x) = ψ2(x) . (2.9)
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2.3.2 Method of Characteristics

Before discussing the boundary conditions and the method of solving

the boundary-value problem in the domain Σ, let us discuss the way of solving

(2.8) in the absence of spatial boundaries, i.e., in the domain {t0 < t, x ∈ R}.

It is well-known that in this case, the solution of the problem (2.8), (2.9) at

some particular space-time point (t, x) can be written as

A(t, x) = Ψ−(x−
0 ) + Ψ+(x+

0 ) , (2.10)

where x±
0 := x ± (t − t0), and Ψ− and Ψ+ are functions of one variable that

are selected to match the initial conditions (2.9). The explicit expressions for

Ψ± follow from the D’Alembert’s formula

Ψ±(s) =
1

2

[
ψ1(s) ±

∫ s

κ

ψ2(s
′) ds′

]
, (2.11)

where κ is an arbitrary constant (the same for Ψ+ and Ψ−).

The representation (2.10) has a simple geometrical meaning: the value

of A(t, x) is a superposition of two functions, Ψ−(x−
0 ) and Ψ+(x+

0 ), the former

being constant along the lines {x − t = const}, and the latter being constant

along {x+t = const}. The disturbances at a space-time point (T,X) propagate

in the space-time diagram along the lines {x − t = X − T} and {x + t =

X + T} emanating from this point (in more physical terms, this corresponds

to two rays moving to the right and to the left at unit speed); these lines

are called characteristics, and the method of solving (2.8), (2.9) by using the

representation (2.10) is called the method of characteristics (see, e.g., the books

by John [109] or Garabedian [78]).
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2.3.3 Boundary Condition at the Moving Mirror

To obtain the boundary conditions at the stationary mirror, we note

that the electric field, i.e., the temporal derivative of the vector potential, must

vanish at this mirror, which yields the following “perfect reflection” boundary

condition:

At(t, 0) = 0 . (2.12)

The boundary condition at the moving mirror can be easily obtained

by performing a Lorenz transformation from the laboratory frame K to the in-

ertial frame K̃ comoving with the moving mirror at some particular moment t.

The temporal and spatial coordinates in K, t and x, are related to the ones

in K̃, t̃ and x̃, by

t − t0 = t̃ cosh ζ + x̃ sinh ζ

(2.13)

x − a(t0) = t̃ sinh ζ + t̃ cosh ζ ,

where tanh ζ = a′(t). In the comoving frame, the boundary condition is

Ãt̃(0, 0) = 0, which, together with (2.13), yields

√
1 − a′(t)2 Ãt̃(0, 0) = At(t, a(t)) + a′(t) Ax(t, a(t)) = 0 , (2.14)

Note that (2.14) means that the derivative of A tangent to the spatial

boundaries of the domain Σ vanishes.

Let us mention that the homogeneous Dirichlet boundary conditions,

A(t, 0) = A(t, a(t)) = 0, are a particular case of (2.12), (2.12). Thus, all
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conclusions made by using (2.12), (2.12) will hold for the Dirichlet case. The

homogeneous Neumann boundary conditions, Ax(t, 0) = Ax(t, a(t)) = 0, how-

ever, yield a drastically different behavior – see Section 2.6.1.

2.3.4 Doppler Shift at Reflection

The method of characteristics developed in (2.10) and (2.11) for situa-

tions with no boundaries can be adapted to provide rather explicit solutions

for systems in spatially bounded space-time domains satisfying (2.14) at the

boundaries (see, e.g., the book by Weinberger [193, Chapter I]).

The prescription is the following. The solution of the boundary value

problem (2.8), (2.9), (2.12), (2.14) in the domain Σ is a superposition of two

functions that are constant on the straight pieces of the characteristics and

change their sign at each reflection. To find A(t, x), one has to consider the

two characteristics, γ− and γ+, passing through (t, x), and propagate them

backwards in time (according to the rule that, upon reaching a mirror, they

change direction of propagation) until they reach the line {time = t0} at the

points (t0, x
−
0 ) and (t0, x

+
0 ), resp. – see Figure 2.2. Then A(t, x) is given by

A(t, x) = (−1)N−Ψ−(x−
0 ) + (−1)N+Ψ+(x+

0 ) , (2.15)

where N∓ are the number of reflections of γ∓ on the way back from (t, x) to

(t0, x
∓
0 ). In Section 2.3.5 we will give explicit formulae for x∓

0 and A(t, x) in

terms in circle maps.

Indeed, because the solution (2.15) is the sum of two functions constant
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along the straight pieces of the characteristics, the wave equation is satisfied

in the interior. Also, the initial conditions are easily verified because for t− t0

small, x−
0 and x+

0 are close to x [see (2.22)].

To check that this prescription also satisfies the boundary conditions,

we need another argument. Consider the space-time diagram of the reflection

of the field between two infinitesimally close characteristics reflected by the

moving mirror at time θ, shown in Figure 2.3. The world line of the mirror

is denoted by m, the angle δ between it and the time direction is connected

with the mirror’s velocity at reflection by tan δ = a′(θ). The Doppler factor

at reflection, D(θ), is defined as the ratio of the spatial distances ∆ and ∆′

between the characteristics before and after reflection:

D(θ) :=
∆

∆′ = tan
(π

4
− δ

)
=

1 − tan δ

1 + tan δ
=

1 − a′(θ)

1 + a′(θ)
. (2.16)

Thus, the absolute values of the temporal and spatial derivatives of the field

increase by a factor of D(θ) after reflection. This implies that if in the space-

time domain between the two characteristics, the values of the corresponding

derivatives of the field before reflection are denoted by At and Ax, then after

reflection they will become −D(θ)At and D(θ)Ax, resp. Hence, in the space-

time domain of the overlap the derivatives of the field will be

At(θ, a(θ)) = At − D(θ)At

(2.17)
Ax(θ, a(θ)) = Ax + D(θ)Ax .

Now, we will show that the modified method of characteristics is consistent

with the boundary condition (2.14). We note that At = −Ax, which simply
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Figure 2.2: Finding A(t, x) by the method of characteristics.

means that before reflection the rays are moving to the right at unit speed. If

we multiply the second equation of (2.17) by

a′(θ) =
1 − D(θ)

1 + D(θ)

[which follows from (2.16)] and add it to the first, we obtain exactly the bound-

ary condition (2.14).

The same prescription gives a solution of the Dirichlet problem A(t, 0) =
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m

Figure 2.3: Reflection by the moving mirror.

A(t, a(t)) = 0. Similar methods can be developed for other boundary con-

ditions. Unfortunately for the widely considered Neumann boundary condi-

tions the representation by reflected characteristics is not straightforward when

a′(t) 6= 0 – for details see Section 2.6.1 and our paper [190].

We note that the method of characteristics also yields information in

the important case when the medium is inhomogeneous and perhaps time

dependent. This is a physically natural problem since in many applications

we have cavities filled with optically active media whose characteristics are

changed by external perturbations. In this case, the method of characteristics

does not yield an exact solution as above but rather, it is the main ingredient

of an iterative procedure [78]. Physically, what happens is that in inhomoge-
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neous media, the waves change shape while propagating in contrast with the

propagation without change in shape in homogeneous media (2.10).

2.3.5 Using Circle Maps to Solve the Boundary Value Problem

We now reformulate the method of characteristics into a problem of

circle maps.

We consider a particular characteristic and denote by {τn} the times at

which it reaches the stationary mirror and {θn} the times at which it reaches

the oscillating one; let . . . < τn < θn < τn+1 < θn+1 < . . .. Note that, with

this notation,

τn = θn − a(θn) = (Id−a)(θn)

(2.18)

τn+1 = θn + a(θn) = (Id +a)(θn) .

Therefore

τn+1 = (Id +a) ◦ (Id−a)−1(τn) =: F (τn)

(2.19)

θn+1 = (Id−a)−1 ◦ (Id +a)(θn) =: G(θn) .

We refer to F and G as the time advance maps. They allow to compute the

time of reflection on one side in terms of the time of the previous reflection

on the same side. The conditions (2.5) on the range of a and a′ guarantee

that (Id−a) is invertible and that F and G are Ck (by the implicit function

theorem).
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When the function a is 1-periodic, F and G satisfy

F (t + 1) = F (t) + 1 , G(t + 1) = G(t) + 1 . (2.20)

These relations mean that F (t) and G(t) depend only on the fractional

part of t. In physical terms, we characterize a reflection of a ray by the phase

of the oscillating mirror when the impact takes place, i.e., by the time of

reflection modulo 1; if we know the phase at one reflection, we can compute

the phase at the next impact. Mathematically, this means that F and G can

be regarded as lifts of maps from T ≡ R/Z to T (see Section 2.4).

We want to argue that the study of the dynamics of the circle maps

(2.19) leads to important conclusions for the physical problem, which we will

take up after we collect some information about the mathematical theory of

circle maps. In particular, many results in the mathematical literature are

directly relevant for physical applications. This is natural because the long

term behavior of the solution can be obtained by repeated application of the

time advance maps [see (2.23)].

We call attention to the fact that

G = (Id +a)−1 ◦ F ◦ (Id +a) = (Id−a)−1 ◦ F ◦ (Id−a) , (2.21)

so that

Gn = (Id +a)−1 ◦ F n ◦ (Id +a) = (Id−a)−1 ◦ F n ◦ (Id−a) .

In dynamical systems theory this is usually described as saying that the maps

F and G are “conjugate” (see Section 2.4.4). In our situation, this comes from
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the fact that F and G are physically equivalent descriptions of the relative

phase of different successive reflections: F advances the τ variables while G

advances the θ’s, and the θ’s are related to the τ ’s by (2.18).

Now, we use circle maps to derive an explicit formula for the solution of

the boundary-value problem (2.8), (2.9), (2.12), (2.14) in the domain Σ. Let

us trace back in time the characteristics γ− and γ+ coming “from the past” to

the space-time point (t, x) – see Figure 2.2. Let θ±0 := (Id +a)−1(t± x) be the

last moments the characteristics γ± are reflected by the moving mirror, and let

θ±−k := G−k(θ±0 ). After N+, resp. N−, reflections on the way backwards in time

(out of which n+, resp. n−, are from the moving mirror), the characteristic

γ+, resp. γ−, crosses the line {time = t0}. The spatial coordinate of the

intersection of γ± and {time = t0} can be easily seen to be

x±
0 = h(θ±−n±

, t0) :=
∣∣(Id−a)(θ±−n±

) − t0
∣∣ . (2.22)

Thus, the formula for the vector potential is

A(t, x) = (−1)N−Ψ− ◦ h
(
G−n− ◦ (Id +a)−1(t − x), t0

)

+(−1)N+Ψ+ ◦ h
(
G−n+ ◦ (Id +a)−1(t + x), t0

)
. (2.23)

If ψ1 ∈ C2, ψ2 ∈ C1, a ∈ C2, then (2.22), (2.23) is a classical solution

(i.e., the second partial derivatives exist in the classical sense) and it satisfies

(2.8), (2.9), (2.12), (2.14).

Even if ψ1, ψ2 and a are less regular, (2.22), (2.23) can be shown to

be a solution of (2.8) in the sense of distributions. Provided that ψ1 and ψ2
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are continuous, (2.9) will be satisfied. Provided that a ∈ C1, the argument

presented above shows that (2.12), (2.14) are satisfied.

Remark 2.3.1. The argument we used to derive (2.11) also shows that, when

a ∈ C1, ψ1 ∈ C1, ψ2 ∈ C0 in (2.11), this is the only weak solution in the

space of distributions. To that effect note that, in the coordinates ξ = x + t,

η = x − t, equation (2.8) reads

∂ξ∂ηA = 0. (2.24)

The only distribution weak solutions of this equation are

A(ξ, η) = Φ1(ξ) + Φ2(η) (2.25)

with Φ1 and Φ2 distributions.

The argument leading to (2.23) shows that the only distributions of the

form (2.25) which satisfy the initial and the boundary conditions are precisely

2.23.

Of course, when a ∈ C2, ψ1 ∈ C2, ψ2 ∈ C1, the solution is the only

classical solution.

Even if the above argument is quite satisfactory in the case of constant

coefficients, when the speed of light depends on the position or on the time,

the uniqueness theory is more complicated since the equation does not reduce

to the simple from (2.24) and one has to use energy methods etc. [193, Section

II.7].
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2.3.6 Energy of the Electromagnetic Field

The method of characteristics gives a very illuminating picture of the

mechanism of the change of the field energy,

E(t) =

∫ a(t)

0

T
00(t, x) =

1

8π

∫ a(t)

0

[
At(t, x)2 + Ax(t, x)2

]
dx , (2.26)

due to the distortion of the wave at reflection from the moving mirror. Indeed,

consider the change of the energy of a very narrow wave packet at reflection

from the moving mirror at time θ. Since at reflection the temporal and the

spatial distances decrease by a factor of D(θ), |At| and |Ax| will increase by

a factor of D(θ). Therefore, the integrand of the energy integral will increase

D(θ)2 times, while the support of the integrand (i.e., the spatial width of the

wave packet at time t) will shrink by a factor of D(θ). Hence, the energy of the

wave packet after reflection will be D(θ) times greater than its energy before

reflection.

In the general case, one can use (2.23) and obtain the energy of the

system at time t. For the sake of simplicity, we will give the formula only

under the assumption that at time t all the rays are going to the right, i.e.,

assuming that the vector potential is of the form A(t, x) = (−1)N−Ψ−(x−
0 ).

Let us introduce the “local Doppler factor”

D(t0, x−
0 ; t) :=

∣∣∣∣
∂

∂t
h(θ−n−

, t0)

∣∣∣∣ =
1 − a′(θ−−n−

)

1 + a′(θ−0 )
(G−n−)′(θ−0 ) . (2.27)

It has the physical meaning of the ratio of the frequencies of the incident wave

and the wave at time t [cf. (2.16)]. Note that D(t0, x−
0 ; t) is equal to the
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derivative of G−n− multiplied by a factor which is bounded and bounded away

from 0 independently of n− [due to the fact that |a′(t)| < 1]. From (2.23)

and (2.22) we obtain that the square of D(t0, x−
0 ; t) is the ratio of the energy

density T00(t, x) and the initial energy density, T00(t0, x
−
0 ):

T
00(t, x) = 2

∣∣(Ψ−)′(x−
0 )

∣∣2 D(t0, x−
0 ; t)2 = T

00(t0, x
−
0 ) D(t0, x−

0 ; t)2 .

On the other hand, D(t0, x−
0 ; t) is connected with the Jacobian of the change

of coordinates x−
0 7→ x by

∣∣∣∣
∂x

∂x−
0

∣∣∣∣ =

∣∣∣∣
∂x−

0

∂x

∣∣∣∣
−1

= D(t0, x−
0 ; t)−1 .

Hence, the energy of the system at time t is

E(t) =

∫ a(t)

0

T
00(t0, x

−
0 ) D(t0, x−

0 ; t) dx−
0 . (2.28)

Note that since the local Doppler factor squared is the ratio of the en-

ergy densities at two consecutive reflection points, then it satisfies the follow-

ing multiplicative property. Let (t1, x
−
1 ), (t2, x

−
2 ), . . . , (tk, x

−
k ) be space-time

points on the characteristic connecting (t0, x
−
0 ) and (t, x), such that at all of

them the rays are going to the right, and let t0 < t1 < . . . < tk < t. Then

D(t0, x−
0 ; t) = D(t0, x−

0 ; t1) D(t1, x−
1 ; t2) · · · D(tk−1, x−

k−1; tk) D(tk, x−
k ; t) .

As can be seen from (2.27), these multiplicative properties are closely related

to the chain rule for diffeomorphisms,

(Gn)′(θ) = G′(Gn−1(θ)) G′(Gn−2(θ)) · · · G′(θ) . (2.29)

35



The mathematical theory of dynamical systems contains many results

about derivatives of highly iterated maps as above (2.29). In Section 2.5.3 we

will be able to translate some of them into asymptotic properties of the field

energy.

A simple and intuitively clear formula for the rate of change of the field

energy can be obtained by using (2.26), (2.8), (2.12), (2.14), and integrating

by parts:

E ′(t) = −a′(t)
1

8π

[
Ax(t, a(t)) + a′(t) At(t, a(t))√

1 − a′(t)2

]2

= −a′(t)
1

8π
Ãx̃(0, 0)2 = −a′(t) T̃

11(0, 0)

= −a′(t) p̃rad(t̃ = 0) = −a′(t) prad(t) ,

where p̃rad(t̃ = 0) = T̃11(0, 0) is the radiation pressure in K̃, and we have used

the fact that the pressure is relativistic invariant (see the book by Pauli [159,

Section 45]). This fact and (2.17) yield

prad(t) = 2
1 − a′(t)

1 + a′(t)

A
2
x

4π
.

It is worth noting that the expression for the radiation pressure has been

derived from the postulates of special relativity by Einstein in his famous first

paper on the subject [67] (English translation: [136, pp. 35–65]). See also the

book by Miller [143, Chapter 11] and Pauli [159, Section 32].
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2.4 Maps of the Circle

In this section, we recall some facts from the theory of the dynamics

of the orientation preserving homeomorphisms (OPHs) and diffeomorphisms

(OPDs) of the circle T, following the books by Katok and Hasselblatt [112,

Chapter 11, 12], de Melo and van Strien [48], and Herman [94]. This is a very

rich theory and we will only recall the facts that we will need in the physical

application.

2.4.1 Circle Maps – Terminology and Notations

We identify T with the quotient R/Z and use the universal covering

projection

π : R → T := R/Z : x 7→ π(x) := x (mod 1) .

Another way of thinking about T is identifying it with the unit circle in C

using the universal covering projection x 7→ e2πix.

Let f : T → T be an OPH and F : R → R be its lift to R, i.e.,

a map satisfying f ◦ π = π ◦ F . The fact that f is an OPH implies that

F (x + 1) = F (x) + 1 for each x ∈ R, which is equivalent to saying that F − Id

is 1-periodic. The lift F of f is unique up to an additive integer constant. If a

point x ∈ T is q-periodic, i.e., f q(x) = x, then F q(x) = x + p for some p ∈ N.

2.4.2 Rotation Number

A very important number to associate to a map of the circle is its rota-

tion number, introduced by Poincaré. It is a measure of the average amount
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of rotation of a point along an orbit.

Definition 2.4.1. Let f : T → T be an orientation preserving homeomor-

phism and F : R → R a lift of f . Define

τ0(F ) := lim
n→∞

F n(x) − x

n
, τ(f) := τ0(F ) (mod 1) (2.30)

and call τ(f) a rotation number of f .

It was proved by Poincaré that the limit in (2.30) exists and is inde-

pendent of x. Hence, τ(f) is well defined.

The rotation number is a very important tool in classifying the possible

types of behavior of the iterates of the OPHs of T. The simplest example of

an OPH of T is the rotation by α on T ≡ R/Z, rα : x 7→ x + α (mod 1)

(corresponding to a rotation by 2πα radians on T thought of as the unit circle

in C). The map Rα : x 7→ x + α is a lift of rα, and τ(rα) = α (mod 1). In the

case of rα there are two possibilities:

(a) If τ(rα) = p/q ∈ Q, then Rq
p/q(x) = x + p for each x ∈ R, so every

point in T is q-periodic for rp/q. If p and q are relatively prime, q is the

minimal period.

(b) If τ(rα) /∈ Q, then rα has no periodic points; every point in T has a

dense orbit. Thus, the α- and ω-limit sets of any point x ∈ T are the

whole T, which is usually described as saying that T is a minimal set

for rα. [Recall that α(x) is the set of the points at which the orbit of x
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accumulates in the past, and ω(x) those points where it accumulates in

the future.]

2.4.3 Types of Orbits of OPHs of the Circle

To classify the possible orbits of OPHs of the circle, we need the fol-

lowing definition (for the particular case f : T → T).

Definition 2.4.2. (a) On orbit O of f is called homoclinic to an invariant

set T ∈ T \ O if α(x) = ω(x) = T for any x ∈ O.

(b) An orbit O of f is said to be heteroclinic to two disjoint invariant sets

T1 and T2 if O is disjoint from each of them and α(x) = T1, ω(x) = T2

for any x ∈ O.

With this definition, the possible types of orbits of circle OPHs were

classified by Poincaré [162] as follows (for a modern pedagogical treatment see,

e.g., [112, Section 11.2]):

(1) For τ(f) = p/q ∈ Q, all orbits of f are of the following types:

(a) a periodic orbit with the same period as the rotation rp/q and or-

dered in the same way as an orbit of rp/q;

(b) an orbit homoclinic to the periodic orbit if there is only one periodic

orbit;

(c) an orbit heteroclinic to two different periodic orbits if there are two

or more periodic orbits.
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(2) When τ(f) /∈ Q, the possible types of orbits are:

(a) an orbit dense in T that is ordered in the same way as an orbit of

rτ(f) (as are the two following cases);

(b) an orbit dense in a Cantor set;

(c) an orbit homoclinic to a Cantor set.

We also note that in cases 2(b) and 2(c), the Cantor set that has a

dense orbit is unique and can be obtained as the set of accumulation points of

any orbit.

2.4.4 Conjugacies; Poincaré and Denjoy Theorems

Because of the simplicity of the rotations it is natural to ask whether

a particular OPH of T is equivalent in some sense to a rotation. To state the

results, we give a precise definition of “equivalence” and the important concept

of topological transitivity.

Definition 2.4.3. Let f : M → M and g : N → N be Cm maps, m ≥ 0.

(a) The maps f and g are topologically conjugate if there exists a homeo-

morphism h : M → N such that f = h−1 ◦ g ◦ h.

(b) The map g is a topological factor of f (or f is semiconjugate to g) if there

exists a surjective continuous map h : M → N such that h ◦ f = g ◦ h;

the map h is called a semiconjugacy.
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(c) A map f : M → M is topologically transitive provided the orbit, {fk(x)}k∈Z,

of some point x is dense in M .

The meaning of the conjugacy is that g becomes f under a change of

variables, so that from the point of coordinate independent physical quantities,

f and g are equivalent. The meaning of the semiconjugacy is that, embedded

in the dynamics of f , we can find the dynamics of g.

The following theorem of Poincaré [162] was the first theorem classifying

circle maps.

Theorem 2.4.1 (Poincaré Classification Theorem). Let f : T → T be

an OPH with irrational rotation number. Then:

(a) if f is topologically transitive, then f is topologically conjugate to the

rotation rτ(f);

(b) if f is not topologically transitive, then there exists a non-invertible con-

tinuous monotone map h : T → T such that h ◦ f = rτ(f) ◦ h; in other

words, f is semiconjugate to the rotation rτ(f).

If we restrict ourselves to considering not OPHs, but OPDs of the circle,

we can say more about the conjugacy problem. An important result in this

direction is the theorem of Denjoy [50].

Theorem 2.4.2 (Denjoy Theorem). A C1 OPD of S1 with irrational rota-

tion number and derivative of bounded variation is topologically transitive and
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hence (according to Poincaré theorem) topologically conjugate to a rotation.

In particular, every C2 OPD f : T → T is topologically conjugate to rτ(f).

We note that this condition is sharp. For every ε > 0 there are C2−ε

maps (see the definition later) with irrational rotation number, semiconjugate

but not conjugate to a rotation (see [94, Section X.3.19]).

2.4.5 Smoothness of the Conjugacy

So far we have discussed only conditions for existence of a conjugacy h

to a rotation, requiring h to be only a homeomorphism. Can anything more be

said about the differentiability properties of h in the case of smooth or analytic

maps of the circle? As we will see later, this is a physically important question

since physical quantities such as energy density depend on the smoothness of

the conjugacy. To answer this question precisely, we need two definitions.

Definition 2.4.4. A number ρ is called Diophantine of type (K, ν) (or simply

of type ν) for K > 0 and ν ≥ 1, if

∣∣∣∣ρ − p

q

∣∣∣∣ >
K

|q|1+ν

for all p
q
∈ Q. The number ρ is called Diophantine if it is Diophantine for some

K > 0 and ν ≥ 1. A number which is not Diophantine is called a Liouville

number.

One can understand Diophantine numbers as “very irrational” num-

bers. If one wants to approximate them well by rational p/q, one needs to pay
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by taking the denominator be large. It can be proved that for K → 0, the set

of all Diophantine numbers of type (K, ν) has Lebesgue measure as close to

full as desired.

Definition 2.4.5. A function f is said to be Cm−δ where m ≥ 1 is an integer

and δ ∈ (0, 1), if it is Cm−1 and its (m − 1)st derivative is (1 − δ)-Hölder

continuous, i.e.,

∣∣Dm−1f(x) − Dm−1f(y)
∣∣ < const |x − y|1−δ .

The first theorem answering the question about the smoothness of the

conjugacy was the theorem of Arnol’d [3]. He proved that if the analytic

map f : T → T is sufficiently close (in the sup-norm) to a rotation and

τ(f) is Diophantine of type ν ≥ 1, then f is analytically conjugate to the

rotation rτ(f), i.e., there exists an analytic function h : T → T such that

h ◦ f = rτ(f) ◦ h. The iterative technique applied by Arnol’d was fruitfully

used later in the proof of the celebrated Kolmogorov-Arnold-Moser (KAM)

theorem – see, e.g., Wayne [192]. The result of Arnol’d was extended to the

case of finite differentiability by Moser [147]. In such a case, the Diophantine

exponent ν has to be related to the number of derivatives one assumes for the

map.

Arnol’d theorem is local, i.e., it is important that f is close to a rotation.

Arnol’d conjectured that any analytic map with a rotation number in a set

of full measure is analytically conjugate to a rotation. Herman [94] proved

that there exists a set A ⊂ [0, 1] of full Lebesgue measure such that if f ∈
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Ck for 3 ≤ k ≤ ω and τ(f) ∈ A, then the conjugacy is Ck−2−ε for any

ε > 0. After several improvements, notably Yoccoz [208], the best result on

smooth conjugacy we know of, is the following version of Herman’s theorem

as extended by Katznelson and Ornstein [113].

Theorem 2.4.3 (Herman, Katznelson and Ornstein). Assume that f

is a Ck circle OPD whose rotation number is Diophantine of order ν, and

k > ν + 1. Then the homeomorphism h which conjugates f with the rotation

rτ(f) is of class Ck−ν−ε for any ε > 0.

There are examples of C2−ε maps with a Diophantine rotation number

arbitrarily close to a rotation and not conjugated by an absolutely continuous

function to a rotation – see, e.g., Hawkins and Schmidt[92].

2.4.6 Devil’s Staircase, Phase Locking, Arnol’d Tongues

Let {fα}α∈A be a one-parameter family of circle OPHs such that fα(x)

is increasing in α for every x. Then the function α 7→ τ(fα) is non-decreasing.

(Since the maps are only defined modulo an integer and so is the rotation

number, what is meant precisely is that if one takes the numbers with their

integer parts, they can be made increasing or non-decreasing; this is done in

detail in [112, Section 11.1].)

For such a family the following fact holds: if τ(fα) /∈ Q, then α 7→

τ(fα) is strictly increasing locally at α; on the other hand, if fα has rational

rotation number and the periodic point is attracting or repelling (i.e., there
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is a neighborhood of the point that gets mapped into itself by forwards or

backwards iteration), then α 7→ τ(fα) is locally constant at this particular

value of α, i.e., for all α′ sufficiently close to α, τ(fα′) = τ(fα). The local

constancy of the function α 7→ τ(fα) is known as frequency (phase, mode)

locking . Note that, since the rotation number is continuous, when it indeed

changes, it has to go through rational numbers. The described phenomenon

suggests the following definition.

Definition 2.4.6. A monotone continuous function ψ : [0, 1] → R is called a

devil’s staircase if there exists a family {Iξ}ξ∈Ξ of disjoint open subintervals of

[0, 1] with dense union such that ψ takes constant values on these subintervals.

(We call attention to the fact that the complement of the intervals in which

the function is constant can be of positive measure.)

The devil’s staircase is said to be complete if the union of all intervals

Iξ has a full Lebesgue measure.

A very common way of phase locking for differentiable mappings arises

when the map we consider has a periodic point and that the derivative of the

return map at the periodic point is not equal to 1. By the implicit function

theorem, such a periodic orbit persists, and the existence of a periodic orbit

implies that the rotation number is locally constant. At the end of the phase

locking interval the map has derivative one and experiences a saddle-node

(tangent) bifurcation.

We note that, unless certain combinations of derivatives vanish (see,
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e.g., Ruelle [176]), the saddle-node bifurcation happens in a universal way.

That is, there are analytic changes of variables sending one into another. This

leads to quantitative predictions. For example, the Lyapunov exponents of a

periodic orbit should behave as a square root of the distance of the parameter

to the edge of the phase locking interval.

Of course, other things can happen in special cases: the fixed point

may be attractive but only neutrally so, there may be an interval of fixed

points, the family may be such that there are no frequency locking intervals

(e.g., the rotation). Nevertheless, all these conditions are exceptional and can

be excluded in concrete examples by explicit calculations. (For example, if the

family of maps is analytic but not a root of the identity, it is impossible to

have an interval of periodic points.)

In the example we will consider, we will not perform a complete proof

that a devil’s staircase occurs, but rather we will present numerical evidence.

In particular, the square root behavior of the Lyapunov exponent with the

distance to the edge of the phase locking interval seems to be verified.

Let us now consider two-parameter families of OPDs of the circle,

{φα,β}, depending smoothly on α and β. Assume that when β = 0, the maps

of the family are rotations by α, i.e., φα, 0 = rα. We will call β the nonlinearity

parameter. Assume also that ∂φα,β/∂α > 0. An example of this type is the

family studied by Arnol’d [3],

ηα,β : T → T : x 7→ ηα,β(x) := x + α + β sin 2πx (mod 1) , (2.31)
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where α ∈ [0, 1), β ∈ (0, 1/2π).

The rotation number τ is a continuous map in the uniform topology, and

φα,β is a continuous function of α and β, so the function (α, β) 7→ τ(φα,β) =:

τβ(α) depends continuously on α and β. The map τβ is non-decreasing; for

β > 0, τβ is locally constant at each α for which τβ(α) is rational and strictly

increasing if τβ(α) is irrational. Thus, τβ is a devil’s staircase.

Since τβ is strictly increasing for irrational values of τβ(α), the set

Iν := {(α, β) | τβ(α) = ν} for an irrational ν ∈ [0, 1] is a graph of a continuous

function. For a rational ν, Iν has a non-empty interior and is bounded by two

continuous curves. The wedges between these two curves are often referred to

as Arnol’d tongues.

The fact that τ(φα,0) = τ(rα) = α implies that for β = 0, the set of

α’s for which there is frequency locking coincides with the rational numbers

between 0 and 1, so its Lebesgue measure is zero. When β > 0, its Lebesgue

measure is positive. The width of the Arnol’d tongues for small β for the

Arnol’d map (2.31) is investigated, e.g., by Davie [43]. Much of this analysis

carries out for more general functions such as the ones we encounter in the

problem of the periodically pulsating resonator.

The total Lebesgue measure of the frequency locking intervals,

m({τ−1
β (ν) | ν ∈ Q ∩ [0, 1]}) ,

becomes equal to 1 when the family of circle maps consists of maps with a

horizontal point (so that the map, even if having a continuous inverse, fails
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to have a differentiable one) – see Jensen et al [105] and Lanford [120] for

numerical results and Świa̧tek [183] for analytical proof. With the Arnol’d

map ηα,β this happens when β = 1/2π. In our case this happens when the

mirror goes at one instant at the speed of light.

We note also that the numerical papers Shenker [179], Jensen et al [105],

Lanford [120], Cvitanović et al [39] contain not only conjectures about the mea-

sure of the phase locking intervals but, perhaps more importantly, conjectures

about scaling relations that hold “universally”. In particular, the dimension

of the set of parameters not covered by the phase locking intervals should be

the same for all non-degenerate families. These universality conjectures are

supported not only by numerical evidence but also by a renormalization group

picture – see, e.g., Lanford [121, 123] and the references therein. These uni-

versality predictions have been verified in several physical contexts. Notably

in turbulence by Glazier and Libchaber [80].

As we will see in Section 2.6.3, we do not expect that the families ob-

tained in (2.19) for mirrors oscillating with different amplitudes belong to the

same universality class as typical mappings, but they should have universality

properties that are easy to figure out from those of the above references.

2.4.7 Ergodic Properties of Circle Maps

For the physical problem at hand it is also important to know how

the iterates of the circle map x 7→ g(x) := G(x)(mod 1) are distributed. As

we will see in lemma 2.5.3, if the iterates of g are well distributed (in an
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appropriate sense), the energy of the field in the resonator does not build up.

The distribution of an orbit is conveniently formalized by using the concept of

invariant measures. We recall that a measure µ on X is invariant under the

measurable map f : X → X if µ(f−1(A)) = µ(A) for each measurable set A.

Given a point x ∈ T, the frequency of visit of the orbit of x to I ⊂ T

can be defined by

µx(I) := lim
n→∞

#{i | 0 ≤ i ≤ n and f i(x) ∈ I}
n

. (2.32)

It is easy to check that if for every interval I, the limit (2.32) exists, it defines an

invariant measure describing the frequency of visit of the orbit of x. Therefore,

if there are orbits which have asymptotic frequencies of visit, we can find

invariant measures.

A trivial example of the existence of such measures is when x is periodic.

In such a case, the measure µx is a sum of Dirac delta functions concentrated on

the periodic orbit. The measure of an interval is proportional to the number

of points in the orbit it contains. We also note that it is easy to construct

systems (see, e.g., Lanford [119]) for which the limits like the one in (2.32) do

not exist except for measures concentrated on the fixed points, so that even

the existence of such equidistributed orbits is not obvious.

There are also relations going in the opposite direction – if invariant

measures exist, they imply the existence of well distributed orbits. We re-

call that the Krylov-Bogolyubov theorem [112, Thm. 4.1.1] asserts that any

continuous map on a compact metrizable space has an invariant probability
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measure. Moreover, the Birkhoff ergodic theorem [112, Thm. 4.1.2] implies

that given any invariant measure µ, the set of points for which µx as in (2.32)

does not exist has measure zero.

Certain measures have the property that µx = µ for µ-almost all points.

These measures are called ergodic. From the physical point of view, a measure

is ergodic if all the points in the measure are distributed according to it. For

maps of the circle, there are several criteria that allow to conclude that a map

is ergodic.

For rotations of the circle with an irrational rotation number we re-

call the classical Kronecker-Weyl equidistribution theorem [112, Thm. 4.2.1]

which shows that any irrational rotation is uniquely ergodic, i.e., has only one

invariant measure – the Lebesgue measure m. (Such uniquely ergodic maps

are ergodic because, by Birkhoff ergodic theorem, the limiting distribution has

to exist almost everywhere, but, since there is only one invariant measure, all

these invariant distributions have to agree with the original measure.) Thus,

the iterates of any x ∈ T under an irrational rotation are uniformly distributed

on the circle.

For general non-linear circle OPDs the situation may be quite different.

As an example, consider Arnol’d map ηα,β (2.31). If it is conjugate to an

irrational rotation by h, i.e., ηα,β = h−1 ◦ rτ(ηα,β) ◦ h, then there is a unique

invariant probability measure µ defined for each measurable set A by µ(A) :=

m(h(A)). This implies that if I is an interval in T, then the frequency with

which a point x visits I is equal to µ(I).
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On the other hand, if τ(ηα,β) = p/q ∈ Q, then all orbits are periodic

or asymptotic to periodic. Thus, the only possible invariant measure is con-

centrated at the periodic points and therefore singular, if the periodic points

are isolated. Let us now assume that α is very close to τ−1
β (p/q), but does not

belong to it. Then ηα,β has no periodic orbits, but still there exists a point x

which is “almost periodic”, i.e., the orbits linger for an extremely long time

near the points x, ηα,β(x), · · · , ηq−1
α,β (x). So that, even if the invariant mea-

sure is absolutely continuous, one expects that it is nevertheless quite peaked

around the periodic orbit – see Figure 2.6. The behavior of such maps is de-

scribed quantitatively by the “intermittency theory” (Pomeau and Manneville

[163]).

The continuity properties of the measures of the circle are not so easy

to ascertain. Nevertheless, there are certain results that are easy to establish:

In the case that we have a rational rotation number and isolated pe-

riodic orbits, some of them attracting and some of them repelling, the only

possible invariant measures are measures concentrated in the periodic orbits.

For the irrational rotation number case, the Kronecker-Weyl theorem

implies that all the maps with an irrational rotation number – since they

are semi-conjugate to a rotation by Poincaré theorem – are uniquely ergodic.

In the situations where Herman’s theorem applies, this measure will have a

smooth density since it is the push-forward of Lebesgue measure by a smooth

diffeomorphism.
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We also recall that by Banach-Alaoglu theorem and the Riesz repre-

sentation theorem, the set of Borel probability measures is compact when we

give it the topology of µn → µ ⇐⇒ µn(A) → µ(A) for all Borel measurable

sets A. (This convergence is called weak-* convergence by functional analysts

and convergence in probability by probabilists.)

Lemma 2.4.4. If λ is a parameter value for which fλ admits only one invari-

ant measure µλ, given µλi
invariant measures for fλi

, with λi → λ, then µi

converges in the weak-* sense to µλ.

Note that we are not assuming that fλi
are uniquely ergodic. In par-

ticular, the lemma says that in the set of uniquely ergodic maps, the map

that a parameter associates the invariant measure is continuous if we give the

measures the topology of weak-* convergence.

Proof. Let µλik
be a convergent subsequence. The limit should be an invari-

ant measure for fλ. Hence, it should be µλ. It is an easy point set topology

lemma that for functions taking values in a compact metrizable space, if all

subsequences converge to the same point, then this point is a limit. The space

of measures with weak-* topology is metrizable because by Riesz representa-

tion theorem is the dual of the space of continuous functions with sup-norm,

which is metrizable.

We also point out that as a corollary of KAM theory (Arnol’d [3])

we can obtain that for non-degenerate families, if we consider the parameter

52



values for which the rotation number is Diophantine with uniform constants,

the measures are differentiable jointly on x and in the parameter. (For the

differentiability in the parameter, we need to use Whitney differentiability or,

equivalently, declare that there is a family of densities differentiable both in x

and in λ that agrees with the densities for these values of λ.)

On the other hand, we point out that there are situations where the

invariant measure is not unique (e.g., a rational rotation or a map with more

than one periodic orbit). In such cases, it is not difficult to approximate them

by maps in such a way that the invariant measure is a discontinuous function

of the parameter (in the weak-* topology). The discontinuity of the measures

with respect to parameters, as we will see, has the physical interpretation that,

by changing the oscillation parameters by arbitrarily small amounts, we can

go from unbounded growth in the energy to the energy remaining bounded.

2.5 Applications of Circle Maps to the Resonator Prob-
lem

Now we return to the problem of a one-dimensional optical resonator

with a periodically moving wall to discuss the physical implications of circle

maps theory, and illustrate with numerical results in an example.

2.5.1 Circle Maps in the Resonator Problem

If we take a(t) to depend on two parameters, α and β, as in (2.6), then,

as we saw in Section 2.3.5, the time between the consecutive reflections at the
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mirrors can be described in terms of the functions Fα,β and Gα,β defined by

(2.19). These maps are lifts of circle maps that we will denote by fα,β and

gα,β. The restriction on the range of β in (2.6) implies that fα,β and gα,β are

analytic circle OPDs. Therefore, we can apply the results about the types of

orbits of OPHs of T, Poincaré and Denjoy theorems, as well as the smooth

conjugacy results and the facts about the distribution of orbits.

In an application where the motion of the mirror [i.e., a(t)] is given, one

needs to compute Fα,β and Gα,β (2.19), which cannot be expressed explicitly

from a(t) but they require only to solve one variable implicit equation. In the

numerical computations we used the subroutine zeroin (Forsythe et al [74])

to solve implicit equations. If y = Fα,β(t) and z = Gα,β(t), then for a(t) given

by (2.6), y and z are given implicitly by

−y + t + α + 2β sin[π(y + t)] = 0

−z + t + α + β [sin(2πt) + sin(2πz)] = 0 .

Given t, we can find y, z applying zeroin.

2.5.2 Rotation Number, Phase Locking

In this section, our goal is to translate the mathematical statements

from the theory of circle maps into physical predictions for the resonator prob-

lem.

The theory of circle maps guarantees that the measure of the frequency

locking intervals for gα,β is small when β is small and becomes 1 when β =
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1/2π. The theory also guarantees for analytic maps that, unless a power of

the map is the identity, the frequency locking intervals are non-trivial. For

the example that we have at hand, it is very easy to verify that this does not

happen and, therefore, we can predict that there will be frequency locking

intervals and that as the amplitude of the oscillations of the moving mirror

increases so that the maximum speed of the moving mirror reaches the speed

of light, the devil’s staircase becomes complete. Figure 2.4 shows a part of the
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Figure 2.4: A part of the graph of τ(gα,1/2π) vs. α.
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complete devil’s staircase – the situation which happens when the maps gα,β

and fα,β lose their invertibility, i.e., for β = 1/2π.

We also recall that the theory of circle maps makes predictions about

what happens for non-degenerate phase locking intervals. Namely, for param-

eters inside the phase locking interval the map has a periodic fixed point and

the Lyapunov exponent is smaller than 0, while at the edges of the phase lock-

ing interval the map experiences a non-degenerate saddle-node bifurcation –

provided that certain combinations of the derivatives do not vanish (Ruelle

[176]).

We note that for parameters for which the map is in non-degenerate

frequency locking, i.e., τ(gα,β) = p/q and the attractive periodic point of period

q has a negative Lyapunov exponent, {Gnq
α,β(x)}∞n=0 will converge exponentially

to the fixed point for all x in a certain interval, according to the results about

the types of orbits of circle maps (Section 2.4.3). The whole circle can be

divided into such intervals and a finite number of periodic points. Therefore,

the graph of Gnq
α,β, and hence of gnq

α,β, will look – up to errors exponentially

small in n – like a piecewise-constant function with values (up to integers)

in the fixed points of gq
α,β – see Figure 2.5. The fact that certain functions

tend to piecewise-constant functions for large values of the argument (which

follows from what we found about Gnq
α,β for large n) was observed numerically

for particular motions of the mirror in Law [128] and Cole and Schieve [28].

In physical terms, this means that the rays will be getting closer and closer

together, so with the time the wave packets will become narrower and narrower
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rotation number of g0.2545, 0.1 is 1/6). Graphs of g6n
0.2545, 0.1 are plotted for n = 1

(dotted), n = 5 (dashed), n = 10 (long dashed), n = 100 (solid lines).
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and more and more sharply peaked. The number of wave packets is equal to

q. The number of reflections from the moving mirror per unit time will tend

to the inverse of the rotation number. In the next section we discuss how this

yields an increase of the field energy which happens exponentially fast on time.

The fact that for τ(gα,β) ∈ Q the rays approach periodic orbits, is

also interesting from a quantum mechanical point of view due to the relation

between the periodic orbits in a classical system and the energy levels of the

corresponding quantum system, given by the Gutzwiller’s trace formula (see,

e.g., the books by Gutzwiller [87] and Brack and Bhaduri [14, Chapter 5]).

We also note that we expect that slightly away from the edges of a

phase locking interval, the invariant density will be sharply peaked around the

points in which it was concentrated in the phase locking intervals. This is

described by the “intermittency theory” (Pomeau and Manneville [163]).

To observe numerically in our example what happens when α enters or

leaves a frequency locking interval, we set Nβ(ν) := {α ∈ [0, 1) | τ(gα,β) = ν}.

Figure 2.6 represents the probability density of visit of the iterates, dµ/dm.

The figure shows dµ/dm for α close to the left end of N0.1(1/6). When

α approaches (from the left) the left end of N0.1(1/6), dµ/dm becomes sharply

peaked at some points, and when α enters the frequency locking interval, the

invariant measure becomes singular (gα, 0.1 undergoes tangent bifurcation at

α = 0.253977 . . .). All seems to be consistent with the conjecture that all the

frequency-locking intervals in the family (away of β = 0) are non-degenerate,
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Figure 2.6: Density of the invariant measures for β = 0.1 and α = 0.253
(dashed), α = 0.2539 (solid), and α = 0.253975 (dotted line).

i.e., that at the boundaries of the phase locking intervals the map satisfies the

hypothesis of the saddle-node bifurcation theorem.

2.5.3 Doppler Shift

One of the most interesting parts of the applications of circle map

theory is the ease with which we can describe the effect on the energy after

repeated reflections.
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Recall that in Section 2.3.6, we found the time dependence of the field

energy under the assumption that at time t all rays are going to the right.

This assumption is not very restrictive in the case of a rational rotation number

since, as we found in Section 2.4.2, the field develops wave packets that become

narrower with time, so (2.27) and (2.28) hold for the asymptotic behavior of

the energy. Note that (2.27) expresses the Doppler shift factor in terms of

the derivatives of the map G. This gives a very close relation between the

dynamics and the behavior of the wave packets.

Proposition 2.5.1. Let α and β be such that τ(gα,β) = p/q, and that the map

G := Gα,β has a stable periodic orbit Θq = {θ1, . . . , θq} such that (Gq)′(θ1) <

1. Assume that the initial electromagnetic field in the cavity is not zero at some

space-time point for which the phase of the first reflection from the moving

mirror is in the basin of attraction of Θq.

Then the energy of the field in the resonator will be asymptotically in-

creasing at an exponential rate:

E(t) ∼ exp

{
ln D(Θq)

p
t

}
. (2.33)

Remark 2.5.1. Dr. N. Gonzalez has kindly informed us that in his thesis [82] he

has proved that if (Gq)′(θ1) = 1 (and some additional conditions are satisfied),

the energy increases polynomially.

Proof. First, notice that the number of reflections from the moving mirror

per unit time reaches a well defined limit (one and the same for all rays) –
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the inverse of the rotation number. Secondly, as was discussed in Section 2.3,

at reflection from the moving mirror at phase θ, a wave packet becomes nar-

rower by a factor of D(θ) (2.16), which leads to a D(θ) times increase in its

energy. Asymptotically, the phases at reflection will approach the stable pe-

riodic orbit Θq = {θ1, . . . , θq} of gα,β. The Doppler factors at reflection will

tend correspondingly to {D(θ1), . . . , D(θq)} (2.16). Hence, in time p each

ray will undergo q reflections from the moving mirror, the total Doppler shift

factor along the periodic orbit Θq being

D(Θq) :=

q∏

i=1

D(θi) =

q∏

i=1

1 − a′(θi)

1 + a′(θi)
.

On the other hand, the definition of the map G as the advance in

the time between successive reflections from the moving mirror yields θi =

Gi−1(θ1). The chain rule applied to the explicit expression (2.19) for G yields

(Gq−1)′(θ1) =

q−1∏

j=1

G′(θj) =

q−1∏

j=1

1 + a′(θj)

1 − a′(θj+1)
,

which gives the following expression for D(Θq) [cf. (2.27)]:

D(Θq) =
1 − a′(θ1)

1 + a′(θq)

[
(Gq−1)′(θ1)

]−1
=

1 − a′(θ1)

1 + a′(θq)
(G1−q)′(θq) . (2.34)

Hence, the energy density grows by a factor of D(Θq)
2. Since after q reflections

the wave packet is concentrated in a length D(Θq) times smaller, the total en-

ergy grows by a factor of D(Θq) in p units of time, which implies (2.33).
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Figure 2.7: log10 D(Θ6) vs. α ∈ Nβ(1/6) for different values of β.

The quantities (Gn)′(θ) that appear in (2.34) have been studied inten-

sively in dynamical systems theory since they control the growth of infinitesi-

mal perturbations of trajectories. Similarly, they are factors that multiply the

invariant densities when they get transported, as we will see in (2.35).

We found numerically the total Doppler factors D(Θq) for some par-

ticular choices of the parameters. In Figure 2.7, log10 D(Θ6) is shown for

different values of β and for α ∈ Nβ(1/6). Obviously, the maximum value
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of D(Θ6) depends strongly on β, becoming infinite for β = 1/2π and some

α ∈ N1/2π(1/6). For smaller values of β, the Doppler factor is much smaller.

Moreover, the width of the frequency locking intervals for small β is small, so

the probability of hitting a frequency locking interval with arbitrarily chosen α

and β is small. [The likelihood of frequency locking for the Arnol’d map (2.31)

is studied numerically by Lanford [120].]

In the case when Herman’s theorem apply, the derivatives of Gn are

bounded independently of n, which causes the energy of the system to be

bounded for all times, which is proved in the following proposition.

Proposition 2.5.2. If Gα,β is such that it satisfies the hypothesis of Herman’s

theorem, then the energy density remains bounded for all times.

Proof. In such a case Gα,β = h−1◦R◦h with h differentiable and R a rotation

by τ(gα,β). Therefore Gn
α,β = h−1 ◦ Rn ◦ h and

(Gn
α,β)′(θ) = (h−1)′(Rn ◦ h(θ)) (Rn)′(h(θ)) h′(θ) = (h−1)′(Rn ◦ h(θ)) h′(θ)

because (Rn)′ = 1. The two factors in the right-hand side of the above equa-

tion are bounded uniformly in θ and n. Thus, the “local Doppler factors”

(2.27) will be bounded, which implies the boundedness of the energy (2.28).

There is an interesting connection between the invariant densities of

the system and the growth of the electromagnetic energy density.
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Recall that if a density µ is invariant, µ(G(θ)) = µ(θ)/G′(θ). Hence, if

the density µ never vanishes, G′(θ) = µ(θ)/µ(G(θ)) and, therefore, (Gi)′(θ) =

µ(θ)/µ(Gi(θ)). Let us assume that there is only one characteristic passing

through the space-time point (t, x), and this characteristic is going to the

right. Then, using the notations of Section 2.3.5, we can write the energy

density at (t, x) as [cf. (2.27)]

T
00(t, x) =

[
1 − a′(θ−−n−

)

1 + a′(θ−0 )

µ(Gn−(θ−−n−
))

µ(θ−−n−
)

]2

T
00(t0, x

−
0 ) . (2.35)

In the general case [with two characteristics through (x, t)], one can use

(2.23) and (2.26) to prove the following result:

Lemma 2.5.3. If a system has an invariant density µ which is bounded away

from zero, then the electromagnetic energy density of C1 initial A, At is smaller

than Cµ2 for all times.

In the cases that Herman’s theorem applies, there is an invariant density

bounded away from zero (and also bounded). Hence, we conclude that there

are values of the amplitude of mirror’s oscillations for which the energy density

of the field remains bounded. This set is typically a Cantor set interspersed

with values for which the energy increases exponentially.

Some other results about the behavior of the energy with respect to

time and parameters are obtained by Dittrich et al [53], and Gonzalez [82, 83].

The article by Gonzalez [83] contains an example with a periodically

(piecewise linearly) moving boundary, in which the rotation number of the
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circle map is rational, but the energy is bounded. In his example, however,

the circle map is piecewise linear, so the qth iterate of its lift, F q (where q

is the denominator of its rotation number), is equal to the identity (up to an

additive constant).

We call attention to the fact that Arnol’d [3] contains examples of ana-

lytic maps whose rotation numbers are very closely approximated by rationals

and that are arbitrarily close to a rotation such that they preserve no invariant

density and, therefore, are not smoothly conjugate to a rotation.

It is also known that for all rotation numbers one can construct C2−ε

maps arbitrarily close to rotations with this rotation number and such that

they do not preserve any invariant measures (Hawkins and Schmidt [92]).

Finally, let us remark that all conclusions about forming of wave pack-

ets remain valid for the case of homogeneous Dirichlet boundary conditions,

A(t, 0) = A(t, a(t)) = 0, as explained in Section 2.3.3. For the case of Neumann

boundary conditions, see Section 2.6.1.

2.6 Miscellaneous

2.6.1 On the Role of the Correct Boundary Conditions

Here we would like to give simple physical arguments showing that

Neumann boundary conditions lead to very different predictions than the rel-

ativistic ones (2.12), (2.14). For more details see our article [190].

First note that the relativistic boundary conditions, (2.12), (2.14) are
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equivalent to the Dirichlet ones,

A(t, 0) = const , A(t, a(t)) = const . (2.36)

Therefore, the procedure for constructing the solution described in Section 2.3

can be successfully applied if instead of relativistic boundary conditions we

had Dirichlet ones.

For Neumann boundary conditions, however, the situation is different

(as we noticed in Section 2.3.4). To see why, let us consider the wave equation

(2.8) with Neumann boundary conditions

Ax(t, 0) = 0 , Ax(t, a(t)) = 0 , (2.37)

and initial conditions (2.9).

The most important observation is that by setting u := Ax, we trans-

form the Neumann boundary value problem (2.8), (2.37), (2.9) into the Dirich-

let boundary value problem

utt(t, x) − uxx(t, x) = 0 , (t, x) ∈ Σ ,

u(0, x) = ψ′
1(x) , ut(0, x) = ψ′

2(x) , x ∈ (0, a(0)) ,

u(t, 0) = 0 , u(t, a(t)) = 0 , t ≥ 0 ,

(2.38)

which can be solved by applying our method from Section 2.3.

Recall that the reason for the energy growth in the case of relativistic

or Dirichlet boundary conditions is the change of the distance between rays at

reflection from the moving mirror, as shown in Figure 2.3. At the same time,

the absolute value of the solution does not change at reflection. The effect of
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this is increase of the first derivatives D(θ) times and decrease of the spatial

distances D(θ) times, which results in increase of the energy (2.26) D(θ) times,

where D(θ) is the Doppler factor at reflection at time θ (see Sections 2.3.4 and

2.3.6).

To simplify the exposition, let us consider only the case of motion of the

boundary for which the system is in phase locking regime. Note that whether

the system is phase locked does not depend on the boundary conditions, but

only on the behavior of the characteristics (which in turn depends on the mo-

tion of the mirror). In this case the solution of the Dirichlet boundary value

problem (2.38) will develop wave packets whose width will decrease exponen-

tially in time. Note that for long enough times, when the wave packets are

well separated, the solution u(t, x) at each moment (except during the short

periods of time when a wave packet undergoes a reflection) consists of unidi-

rectionally moving wave packets. In general, the energy of the solution A(t, x)

of the Neumann boundary value problem (2.8), (2.37), (2.9) cannot be simply

expressed in terms of the function u, but for unidirectionally moving wave

packets it is approximately equal to

E(t) =

∫ a(t)

0

u(t, x)2 dx . (2.39)

To write (2.39), we neglected the overlap between different wave packets, and

used the fact that for unidirectionally moving A(t, x), the relations At(t, x) =

±Ax(t, x) hold (the sign depending on the direction of the motion). We see

that in a phase locking regime the wave packets of the field u, whose energy
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is given by (2.39), will become narrower at exponential rate, while the field u

will only change sign at reflection, hence the integral of the square of u will

decrease at exponential rate.

This simple physical argument shows that the behavior of the solutions

of the relativistic (or Dirichlet) and the Neumann boundary value problems in a

pulsating spatial domain behave very differently, the most dramatic difference

being that in phase locking the energy of the former increases exponentially,

while the energy of the latter decreases exponentially. The main reason for

this is that the expression (2.39) for the energy of a solution of the Neumann

boundary value problem is can be written in the form (2.39) which does not

contain derivatives.

Similar phenomena have been previously noticed by Cooper and Koch

[33], who observed that (in a slightly different context) the solutions may tend

to zero in some Sobolev norms, but grow in others (see Section 2 and the end

of Section 1 of their article), and by Dittrich et al [53]. The novelty of our

approach is in giving an intuitively clear explanation of the phenomenon by

linking it with the behavior of the characteristics of the wave equation.

2.6.2 The Inverse Problem: Determining the Mirror’s Motion from
the Circle Map

It is important to know whether the notion of a “typical” G is the

same as the notion of a “typical” a or a “typical” F (in the mathematical

literature people speak about “generic” maps, and in physical literature about
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“universal” maps). We do not know the answer to this question, and here

we will give some arguments showing that the answer is not obvious. We

will not use “generic” or “universal”. Rather we will make explicit the non-

degeneracy assumptions so that they can be checked in the concrete examples.

In Section 2.6.3 we will show that some universal properties for families of circle

maps do not apply to G constructed according to (2.19) with a(t) = ā + εb(t).

While the function a can be expressed in terms of F as

a =
F − Id

2
◦

(
F + Id

2

)−1

,

the relation between G and a is much harder to invert. We should have

a(θ) + a(G(θ)) = G̃(θ) , (2.40)

where G̃(θ) := G(θ) − θ, so for any n,

a(θ) = G̃(θ) − G̃(G(θ)) + · · · + (−1)nG̃(Gn(θ)) + (−1)n+1a(Gn+1(θ)) .

Hence, if G2k(θ0) = θ0 (mod 1), a necessary condition for the existence of a is

that
2k−1∑

i=0

(−1)iG̃(Gi(θ0)) = 0 . (2.41)

An example of a G where the above condition is not satisfied can be readily

constructed. We furthermore note that if a map fails to satisfy (2.41) and if

(G2k)′(θ0) 6= 1, then all small C1 perturbations will also fail to satisfy (2.41).

Thus, there are C1 neighborhoods of maps that cannot be realized as G for a

moving mirror.
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On the other hand, given very simple G’s, it is easy to construct in-

finitely many a’s that satisfy (2.40) and that therefore lead to the same G.

For example, for G(θ) = θ + 1
2
, (2.40) amounts to a(θ + 1

2
) + a(θ) = 1

2
. If

we prescribe a for θ in [0, 1
2
], then this equation determines a on [1

2
, 1] (the

only care needs to be exercised so that the two determinations of a match at

θ = 1
2
). A similar construction works when G permutes several intervals.

In the case when G is conjugate to an irrational rotation, G = h−1 ◦

Rα ◦ h, then (2.40) is equivalent to

a ◦ h−1 ◦ Rα + a ◦ h−1 = h−1 ◦ Rα − h−1 .

Then a ◦ h−1 can be determined using Fourier analysis, setting h−1(θ) = θ +
∑∞

k=−∞ τ̂ke
2πikθ, a ◦ h−1(θ) = θ +

∑∞
k=−∞ ψ̂ke

2πikθ, which leads to

(
e2πikα + 1

)
ψ̂k =

(
e2πikα − 1

)
τ̂k . (2.42)

If we assume that |kα − n − 1
2
| ≥ const |k|−ν for some ν ≥ 1 (a condition of

this type is called a Diophantine condition – see definition 2.4.4), and that

h−1 has r derivatives (which implies that its Fourier coefficients τ̂k satisfy

|τ̂ k| ≤ const |k|−r). Then if r > ν + 2, then the coefficients ψ̂k define a smooth

function (for more details see, e.g., Herman [94, Section XIII.4]). Of course,

once we know a ◦ h−1, then, since h−1 depends only on G and is therefore

determined, we can obtain a.

In summary, there are maps G that do not come from any a at all,

come from infinitely many a’s, or come from one and only one a. The maps

F can always be obtained from one and only one a.
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2.6.3 Behavior for Small Amplitude and Universality

We note that, even if all the motions of the mirror lead to a circle map

as in (2.20), it does not seem clear to us that all the maps of the circle can

appear as F , G for a certain a. This makes it impossible to conclude that the

theory of generic circle maps applies directly to obtain conclusions for a generic

motion of the mirror. Therefore, the very developed mathematical theory of

generic or universal circle maps cannot be applied without caution to maps

that appear as the result of generic or universal oscillations of the mirror. Of

course, all the conclusions of the general theory that apply to all maps of

the circle apply to our case. Those conclusions that require non-degeneracy

assumptions will need that we verify the assumptions.

One aspect that we have found makes a big difference with the generic

theory is the situation where the mirror oscillates with small amplitude, i.e.,

aε(t) = ā + εb(t) with b a periodic function of zero average and period 1, and

ε ¿ 1. The first parameter, ā, is the average length of the resonator, while

ε = 0 is called the “nonlinearity parameter” for obvious reasons. If we denote

by Fā,ε and Gā,ε the corresponding 2-parameter families of maps of the circle

constructed according to (2.19), then we have, for three times differentiable

families,

Fā,ε(t) = t + 2ā + 2εb(t + ā) + 2ε2b′(t + ā)b(t + ā) + O(ε3) ,

Gā,ε(t) = t + 2ā + ε[b(t) + b(t + 2ā)] (2.43)

+ε2b′(t + 2ā)[b(t) + b(t + 2ā)] + O(ε3) .
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Note that the term of order ε always has vanishing average. As we will imme-

diately show, this property causes that some well known generic properties of

families of circle mappings do not hold for families of maps constructed as in

(2.19).

Indeed, if we consider the expressions for small amplitude developed in

(2.43), we can write the maps as

Hε(t) = t + 2ā + εH1(t) + ε2H2(t) + O(ε3) .

Since the conclusions of the theory of circle maps are independent of the coor-

dinate system chosen, it is natural to try to choose a coordinate system where

these expressions are as simple as possible. Hence, we choose hε(t) := t+εη(t),

a perturbation of the identity, and consider h−1
ε ◦ Hε ◦ hε, which is just Hε in

another system of coordinates, related to the original one by hε. Then, up to

terms of order ε3, we have

h−1
ε ◦ Hε ◦ hε(t) = t + 2ā + ε [η(t) − η(t + 2ā) + H1(t)]

+ ε2{η′(t + 2ā)η(t + 2ā) − η′(t + 2ā) [η(t) + H1(t)]

+ H ′
1(t)η(t) + H2(t)} .

We would like to choose η in such a way that the ε term is not present. Note

that since
∫

η(t + 2ā) dt =
∫

η(t) dt, this is impossible unless
∫

H1(t) dt = 0.

When
∫

H1(t) dt = 0, H1 is smooth and 2ā is Diophantine, a well-known result

(see, e.g., Herman [94, Section XIII.4]) shows that in such a case we can obtain

one η satisfying

η(t) − η(t + 2ā) + H1(t) = 0 (2.44)
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and η = 0. [Such η is conventionally obtained by using Fourier coefficients.

Note that in Fourier coefficients, (2.44) amounts to η̂k(e
2πik2ā − 1) = (̂H1)k. If

H1 is smooth, the Fourier coefficients decrease fast and if 2ā is Diophantine,

then (e2πik2ā − 1)−1 does not grow too fast. For more details we refer to the

reference above.]

Since for the functions Fā,ε and Gā,ε the term of order ε has a zero

average, we can transform these functions into lifts of rotations plus O(ε2).

This implies, in particular, that their rotation number is τ(Fā,ε) = τ(Gā,ε) =

2ā + O(ε2). One could wonder if it would be possible to continue the process

and eliminate also to order ε2.

If we look at the ε2 terms in (2.44), we see that η′(t)η(t) = 0, and,

when η is chosen as in (2.44),

η′(t + 2ā)[η(t) + H1(t)] = η′(t + 2ā)η(t + 2ā) ,

which also has average zero. Therefore, a necessary condition for the ε2 term

in h−1
ε ◦ Hε ◦ hε(t) to be zero is H ′

1(t)η(t) + H2(t) = 0.

For the Fā,ε in (2.43) we see that F2 has zero average. Nevertheless,

the term F ′
1(t)η(t) does not in general have average zero as can be seen in

examples. Hence, we see that the rotation number indeed changes by an order

which is O(ε2) and not higher in general. This property is not generic for

families of circle maps starting with a rotation 2ā and it puts them outside of

the universality classes considered by Shenker [179], Lanford [121, 123], etc.,
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since the correspondence between rotation numbers and parameters is not the

same.

According to the geometric picture of renormalization developed by

Lanford [121, 123], the space of circle maps is divided into slices of rational ro-

tation numbers, which are – in appropriate sense – parallel. In that language

– in which we think of families of circle maps as curves in the space of map-

pings – the families of advance maps Fā,ε and Gā,ε (for fixed ā) have second

order tangency to the foliation of rational rotation numbers rather than being

transversal. Hence, the scaling predicted by universality theory should be true

for ε2 in place of ε. We have not verified this prediction, but we expect to

come back to it soon.

2.6.4 On the Formation of Wave Packets in the Quantum Treat-
ment

In this section, we briefly show that the formation of wave packets in

the quantum treatment of the problem can be easily explained within our

formalism.

Recall (see Section 2.1.4) that a central object in the method suggested

by Moore and studied extensively by other authors is the function R(z) satisfy-

ing the property (2.1). Since the letter R has already been used in Section 2.4.2

to denote rotations, we introduce the function S : R → R by S(z) := 1
2
R(z),

which satisfies the property

S ◦ F (τ) = S(τ) + 1 , τ ∈ R (2.45)
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(see the definition of the map F (2.19)).

We will show that in the case of phase locking, the function S(t) devel-

ops a “staircase-like” structure, i.e., for large values of t its graph has almost

horizontal pieces connected by almost vertical ones. This observation was

made numerically by Cole and Schieve [28] and others, and interpreted as an

indication that the field in the cavity develops wave packets. On the other

hand, in the case when the associated with the mirror’s motion circle map g is

smoothly conjugate to a rotation, the first derivative of S stays bounded for

all times, so staircase-like structure does not occur.

First we consider the case of phase locking with rotation number τ(g) =

τ(g) = p
q
. (Recall that the two phase advance maps f and g introduced in

Section 2.3.5 are conjugate, so their rotation numbers are equal, hence f is

phase-locked exactly when f is phase-locked.) In this case, the map f has

an attractive periodic orbit of period q. Let t̄ belong to this q-periodic orbit.

Then it is a fixed point for the iterated map f q, and satisfies

F q(t̄) = t̄ + p , (2.46)

where F is a lift of f . To be closer to the physical interpretation, let F stands

for the “physical” time advance map, i.e., the only lift satisfying F (0) = f(0).

Set

t̄1 := t̄ , t̄j := F (t̄j−1) , j = 2, . . . , q .

The function F q maps the interval [t̄1, t̄1 +q) onto [t̄1 +q, t̄1 +2q), the interval

[t̄1 + q, t̄1 + 2q) onto [t̄1 + 2q, t̄1 + 3q), etc. Moreover, it acts on each of these
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intervals “in the same way”, or, more precisely, shifting the argument of the

function F q by nq (n is an arbitrary integer) shifts the value by np:

F q(t̄1 + nq + t) = F q(t̄1 + t) + np , t ∈ [0, nq) .

Assume that we know the values of the function S on the interval

[t, F (t)) where t ∈ R is arbitrary. Then by using the property (2.45), we can

construct S on the whole real line. Note that (2.46) and (2.45) imply

S(t̄k + np) = S ◦ F nq(t̄k) = S(t̄k) + nq .

This means, in particular, that S maps the interval [t̄1, t̄1 +p) onto [t̄1 +p, t̄1 +

2p), the interval [t̄1 + p, t̄1 + 2p) onto [t̄1 + 2p, t̄1 + 3p), etc. Let us define the

series of functions

Sn : [t̄1, t̄1 + p) → [t̄1, t̄1 + p) , n ∈ Z ,

by

Sn(t) := S(t + np) − nq .

The functional series {Sn}n∈Z contains the whole information about the func-

tion S, and we can study the asymptotic behavior of S by studying the limit

limn→∞ Sn.

First note that, by (2.46) and (2.45), the values of Sn at the points t̄k

are the same for all n:

Sn(t̄k) = S(t̄k) k = 1, 2, . . . , q . (2.47)
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Next, let us study the first derivative of S. Here it is convenient to use

the notations from the beginning of Section 2.3.5, so let us recall them briefly.

The symbols τn and θn stand for the times of reflection of one particular ray

from the stationary and the moving mirror, respectively, and they are ordered

as follows: . . . < τn < θn < τn+1 < θn+1 < . . .. Recall also the relations

τn = (Id−a)(θn) , τn+1 = (Id +a)(θn) .

With these notations, the expression for the derivative of F at τn can be

written as

F ′(τn) =
1 + a′(θn)

1 − a′(θn)
=

1

D(θn)
,

where D(θn) is the Doppler factor for reflection at time θn. This formula yields

(Fmq)′ (τn) =

mq∏

j=1

F ′ (F j−1(τn+j−1)
)

=

[
mq∏

j=1

D(θn+j−1)

]−1

. (2.48)

Differentiating the relation S ◦ Fmq(τ) = S(τ) + mq (which is simply (2.45)

iterated mq − 1 times), and using (2.48), we obtain

S ′(Fmq(τn)) =

[
mq∏

j=1

D(θn+j−1)

]−1

S ′(τn) . (2.49)

Since we are in the phase locking case, the times of reflection of any ray except

the ones that correspond to the unstable q-periodic orbit of f will converge

exponentially fast to the rays corresponding to the stable q-periodic orbit of f .

This means that for large m’s, the product

lim
m→∞

(m+1)q∏

j=mq+1

D(θn+j−1) =

q∏

j=1

D(θ̄j) , (2.50)
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where {θ̄1, θ̄2, . . . , θ̄q} is the attractive q-periodic orbit of the map g. The

stability of this periodic orbit corresponds to the fact that the product in the

right-hand side of (2.50) is greater than 1. The implication of this fact on the

values of the derivative of S (2.49) unless t is such that t mod 1 belongs to the

unstable q-periodic orbit of f , the derivative of S at t is very close to 0.

If, instead of talking about large values of the argument, we talk about

large indices of the functional sequence {Sn}, we can say that for large m the

relation

Sm(t) = S(t + mp) − mq ≈ S ◦ Fmq(t) − mq

implies

S ′
n(t) ≈

[
q∏

j=1

D(θ̄j)

]−1

S ′
n−1(t) ,

so the derivatives at a fixed value of the argument decrease exponentially when

the index of the function increases.

Let us recapitulate our findings about the behavior of the function S,

or, equivalently, about the functional sequence {Sn}. For any S0 := S|[t̄1, t̄1+p),

the functions Sn for large n are going to be staircase-like, with almost hori-

zontal pieces and almost vertical pieces between them; the values of Sn at the

horizontal pieces will tend to the values S(t̄k) as n → ∞ (cf. (2.47)).

2.6.5 Two Moving Mirrors

As mentioned in Section 2.1.6, our approach allows us to give a very

clear treatment of the problem in the case when both mirrors are moving.
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Let T1 and T2, respectively, be the periods of the motion of two mirrors.

If the frequencies, T−1
1 and T−1

2 , of the two mirrors are rationally related, i.e.,

if there exist integers, m1 and m2 (both different from 0), such that

m1T
−1
1 + m2T

−1
2 = 0 , (2.51)

then set T equal to the least common multiple of T1 and T2, and rescale the

units to make T equal to 1, after which our analysis carries over with obvious

modifications – e.g., if the positions of the left and the right mirrors are given

by x = a1(t) and x = a2(t), respectively, then the the phase advance map G

will be

G = (Id−a2)
−1 ◦ (Id−a1) ◦ (Id +a1)

−1 ◦ (Id +a2)

(compare with (2.19)). It is again a circle map, and the whole analysis of

the problem is practically the same as in the case of one periodically moving

mirror.

It would be interesting to apply our method to the case a2 = a1+const,

i.e., when the cavity is moving as a whole, its length being constant.

If the periods T1 and T2 do not satisfy (2.51), then the mathematical

description of the problem cannot be reduced to study of a circle map. How-

ever, it can be described in terms of maps of the 2-torus T2. We study this

case (and its far generalizations) in Chapter 3.
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2.6.6 Schwarzian Derivative in the Problem of Moving Mirrors

Fulling and Davies [76] calculated the energy-momentum tensor in the

two-dimensional quantum field theory of a massless scalar field influenced by

the motion of a perfectly reflecting mirror (see also Mostepanenko and Trunov

[151, Section 2.7]). They obtained that the “renormalized” vacuum expec-

tation value of the energy density radiated by a moving mirror into initially

empty space is

T
00(u) = − 1

24π

[
F ′′′(u)

F ′(u)
− 3

2

(
F ′′(u)

F ′(u)

)2
]

,

where u = t − x, and F is related to the law of the motion of the mirror,

x = a(t), by (2.19). The right-hand side of this equation is nothing but (up

to a constant factor) the Schwarzian derivative of F – a differential opera-

tor which naturally appears in complex analysis, e.g., it is invariant under a

fractional linear transformation; vanishing Schwarzian derivative of a function

is the necessary and sufficient condition that the function is fractional linear

transformation, etc. More interestingly, the Schwarzian derivative has been

used as an important tool in the proof of several important theorems in the

theory of circle maps – see, e.g., Yoccoz [208], Herman [95], of Graczyk and

Świa̧tek [84]. In the light of the connection between the solutions of the wave

equation in a periodically pulsating domain and the theory of circle maps it is

not impossible that this is not just a coincidence.
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Chapter 3

Torus Maps and a Quasiperiodically Pulsating

Cavity

In this chapter we study the problem of the asymptotic behavior of

the electromagnetic field in an optical resonator one of whose walls is at rest

and the other one is moving quasiperiodically (with d ≥ 2 incommensurate

frequencies).

We show that this problem can be reduced to a problem about the

behavior of the iterates of a map of the d-dimensional torus that preserves a

foliation by irrational straight lines. In particular, the Jacobian of this map

has (d − 1) eigenvalues equal to 1.

We study several dynamical features of such maps and translate them

into into properties for the field in the cavity. Among them, we show that

when the torus map satisfies a KAM theorem – it happens for a Cantor set

of positive measure of parameters – the energy of the electromagnetic field

remains bounded. When the torus map is in a resonant region – it happens

in open sets of parameters inside the gaps of the previous Cantor set – the

energy grows exponentially.
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3.1 Introduction

In the present chapter, we study a generalization of the problem of the

behavior of the electromagnetic field in a cavity with one stationary and one

moving perfectly reflecting boundaries to the case of a quasiperiodic motion of

the mirror. We are interested in the asymptotic behavior of the electromag-

netic field in the resonator. We use an approach similar to the one used in

Chapter 2, and reformulate the problem in terms of certain maps of the torus.

This allows us to draw conclusions about the asymptotic behavior of the field

in the resonator in terms of the dynamical properties of these torus maps.

In particular, we obtain that if we consider typical families of motions

described by several parameters (e.g., the Fourier coefficients of the motion of

the boundary), then there exists an open and nonempty set of parameters for

which the electromagnetic field has exponentially growing energy (this situa-

tion is called “resonance”), and another set of parameters for which the energy

remains bounded. In the case that the energy is unbounded, the electromag-

netic field concentrates in pulses of exponentially decreasing width which move

quasiperiodically. In the case that the energy does not grow, the derivatives

of the field remain uniformly bounded for all times. Both sets of parameters

interpenetrate each other. The set with bounded energy is a Cantor set and

the unbounded growth lies in the gaps of this Cantor set.

The torus maps that appear in our treatment of pulsating cavities have

several special properties, the most striking one being that they preserve an

irrational foliation (see Sections 3.2.2 and 3.3.4). This leads to several dy-
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namical consequences, notably that there is only one Lyapunov exponent that

may be nonzero. The set of parameters for which this exponent is negative are

the phase locked regions. We will give a description of these regions and will

show that, when the dynamical system is in the phase locked region, the field

in the cavity has an exponentially growing energy. Moreover, we will derive a

relationship between the rate of increase of the energy (the “Doppler factor”)

and the nonzero Lyapunov exponent.

Another region where the dynamics can be understood is a region

where KAM (Kolmogorov-Arnol’d-Moser) techniques apply. In such a case,

the derivatives of the electromagnetic field remain bounded and, as a conse-

quence, the energy of the electromagnetic field remains bounded.

There may be regions in parameter space that are not covered by the

above descriptions. At the moment, we do not know what behavior to expect

there.

We present a numerical study of the phase locked regions, which, be-

sides giving a description of the boundaries of the regions of unbounded energy,

suggests several questions of a more dynamical nature.

A physical problem similar to the one studied in this article has been

studied in [204], from a very different point of view.

The chapter is organized as follows. In Section 3.2 we describe the phys-

ical model, and derive the associated torus map (omitting many details that

are the same as in Chapter 2). In Section 3.3 we define the basic concepts used
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in the classification of torus maps, paying special attention to the particular

type of torus maps occurring in the analysis of the resonator problem, discuss

the KAM theory for these maps, and derive an expression for the Lyapunov

exponent of such maps. In Section 3.4 we explore the torus maps numerically.

In Section 3.5 we apply the conclusions drawn from the mathematical theory

and the numerical study to the problem of the electromagnetic field in the

resonator, and, in particular, derive a simple relationship between the Lya-

punov exponent of the torus map and the Doppler factor at reflection from

the moving mirror. Finally, we give simple reasoning about the asymptotic

behavior of the energy for the boundary conditions for the optical resonator.

3.2 Derivation of the Mathematical Model

In this section we describe the physical model of the electromagnetic

field in the resonator (Section 3.2.1), and derive the torus map describing the

evolution of the electromagnetic field (Section 3.2.2).

3.2.1 Physical Setup

Consider the classical (i.e., not quantized) electromagnetic field between

two flat infinite perfectly reflecting mirrors, both of them perpendicular to the

x-axis (see Figure 2.1). Let one of them be at rest at x = 0, and the other one

be moving quasiperiodically, its position being given by

x = a(t) = Φ(ωt) , (3.1)
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where the function Φ : Rd → R is periodic of period 1 in each argument:

Φ(Ξ1, . . . , Ξj−1, Ξj + 1, Ξj+1, . . . , Ξd)

= Φ(Ξ1, . . . , Ξj−1, Ξj, Ξj+1, . . . , Ξd) . (3.2)

For the moment, and in a good part of this chapter, we will not need to

make any assumptions on ω ∈ Rd. In some parts, we will assume that ω is

incommensurate (see Definition 3.3.2) or, sometimes, that it is Diophantine

(Definition 3.3.3).

The vector ω is called the frequency vector (note that this convention

differs from the one usually used in physics by a factor of 2π).

Since only the fractional parts of Ξj matter (due to (3.2)), we call the

fractional parts of the Ξj’s phases of the motion of the mirror.

We also impose the physically natural conditions

a(t) = Φ(ωt) ≥ Φmin > 0 ∀t ∈ R (3.3)

(positive length of the resonator), and

|a′(t)| = |ω · ∇Φ(ωt)| ≤ a′
max < 1 ∀t ∈ R (3.4)

(the speed of the mirror does not exceed the speed of light).

In our numerical simulations we study the case of two frequencies (d =

2) and the map

Φ(Ξ1, Ξ2) =
α

2
+ β [sin (2πΞ1) + γ sin (2πΞ2)] , (3.5)

ω = (1, σG) , σG :=
√

5−1
2

, (3.6)
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with the constants α, β and γ chosen in such a way that (3.5) satisfies (3.3)

and (3.4). Note that for γ = 0, the map Φ stops depending on Ξ2, and

becomes a periodic function of Ξ1, i.e., in this case we are back to the case of

a periodically moving boundary considered in Chapter 2.

Since our considerations in Sections 2.3.2, 2.3.3, and 2.3.4 did not de-

pend on the nature of the function a(t) giving the motion of the boundary,

everything in these sections works without any modification for the case of a

quasiperiodic motion of the mirror. Namely, after imposing Coulomb gauge

condition, we arrive at the boundary-value problem (2.8), (2.9), (2.12), (2.14)

for the function A(t, x) defining the vector potential, A(t, x) = A(t, x) ey.

The method of characteristics again can be used to solve the boundary value

problem, and, in particular, the mechanism of the change of the energy of

the electromagnetic field again is through Doppler effect at reflection from the

moving mirror. The considerations about the asymptotic behavior of the en-

ergy of the electromagnetic field from Section 2.3.6 can be easily adapted to

the case of a quasiperiodic a(t).

3.2.2 Derivation of the Torus Map

The asymptotic behavior of the characteristics – and hence the electro-

magnetic field – can be studied quite effectively by the following device.

We denote by π : Rd → Td := Rd/Zd the projection

Ξ 7→ ξ := π(Ξ) = (Ξ1 mod 1, . . . , Ξd mod 1) . (3.7)
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This projection appears naturally in the study of quasiperiodic motions since,

due to (3.2), the state of the moving mirror is completely characterized by the

phase ξ := π(ωt) which determines not only the position a(t) = Φ(ωt), but

also the derivatives a′(t) and all future and past phases at reflection.

We adopt the convention of referring to the objects in Td as the phases

and denote them by lower case boldface letters, while the objects in Rd will

be denoted by uppercase boldface letters.

Let θn be the time of the nth reflection of a particular characteristic

(“ray”) from the moving mirror (we use the notations of Section 2.3.5). We

will see that there is a very explicit expression that gives θn+1 in terms of θn.

It is clear that

θn+1 − a(θn+1) = θn + a(θn) (3.8)

(cf. (2.18)).

Let G be the map that gives ωθn+1 in terms of ωθn:

G : Rd → Rd : ωθn 7→ ωθn+1 .

Multiplying (3.8) by ω and taking into account (3.1), we obtain the following

expression for G (cf. (2.19)):

G = (Id−ωΦ)−1 ◦ (Id +ωΦ) . (3.9)

Remark 3.2.1. Due to the condition (3.4), Id−ωΦ is always invertible, so G

(and the map g defined below) are well-defined.

87



Now let us note that due to (3.2), we do not need to know the Ξj’s,

but only their fractional parts – the phases ξj = Ξj mod 1 ∈ T1. Because of

this, we define the map g : Td → Td as follows. Let ξ ∈ Td and Ξ ∈ Rd be a

lift of ξ, i.e., ξj = Ξj mod 1 for each j = 1, . . . , d. Then we define the map

g := (g1, g2, . . . , gd) : Td → Td

by

gj(ξ) := Gj(Ξ) mod 1 . (3.10)

In mathematical language, g can be defined as the only map satisfying

g ◦ π = π ◦ G , (3.11)

where π is given by (3.7). We will call g the phase advance map.

Remark 3.2.2. Note that G has the form

G(Ξ) = Ξ + Γ(Ξ)ω , (3.12)

where Γ is a strictly positive real-valued function (since the length of the

cavity is bounded from below by Φmin > 0 (3.3)). The physical interpretation

of Γ(Ξ) = Γ(ωθ) is the time spent between the reflection from the moving

mirror at moment θ when the phase of the mirror’s motion is ξ = π(ωθ), and

the next reflection from the moving mirror. Torus maps satisfying (3.12) are

a very particular class of torus maps, as explained in Section 3.3.4.

Maps of the type (3.12) have appeared in the mathematical litera-

ture as reparametrizations of irrational flows on the torus (Fayad [70]). We
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note, however, that there are many maps of the form (3.12) which are not

reparametrizations of irrational flows. Fayad [70] constructed reparametriza-

tions of irrational flows on the torus (hence maps of the form (3.12)) with very

complicated ergodic properties which we will not discuss further here.

A particular case of the above construction is when a(t) := ā = const,

i.e., when the right mirror is at rest at a constant distance ā = const from the

left one. In this case, (3.9) reduces to

G(Ξ) = Ξ + 2āω .

3.3 Analysis of the Torus Map

In this section we give a short exposition of the facts from the the-

ory of torus maps necessary for the analysis of the torus map g (3.10), and

explain some rigorous results for torus maps. In Section 3.4 we will present

numerical results and in Section 3.5 we will discuss the interpretations for the

cavity problem of the rigorous and numerical results of Sections 3.3 and 3.4,

respectively.

This section is organized as follows. First in Sections 3.3.1, 3.3.2, and

3.3.3, we briefly introduce some concepts from the theory of torus homeomor-

phisms (continuous torus maps whose inverse is also continuous) which we

shall call torus maps for brevity (for more details see, e.g., Baesens et al [7]).

Then, in Sections 3.3.4 we discuss in more detail the case of the torus maps

occurring in the physical problem at hand.
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The main tools of the analysis are the KAM theory developed in Sec-

tion 3.3.5, and the theory of Lyapunov exponents in Section 3.3.6. Since the

general theory of KAM and Lyapunov exponents is much more subtle than for

the case that we have in mind, we will just study what we need.

We point out that the literature on the dynamical properties of torus

maps is quite extensive both in the mathematical and the physical literature.

Torus maps appear in ergodic theory (see, e.g., Arnol’d and Avez [5]), in the

description of systems of coupled oscillators (Baesens et al [7]), play a central

role in the Ruelle-Takens-Newhouse scenario for transition to turbulence (New-

house et al [153]; see also Eckmann [64] and Grebogi et al [85]), Schrödinger’s

equation with a quasiperiodic potential (Dinaburg and Sinai [52], Chulaevsky

and Sinai [25], Dinaburg [51]), Hill’s equation with a quasiperiodic forcing

(Broer and Simo [18]); bifurcations of quasiperiodic tori have been studied in

detail in Broer et al [19].

3.3.1 Rotation Set

A basic concept in the theory of torus maps is the concept of the rota-

tion set of the orbits of a map.

Let g be a torus map, and G be a lift of g, i.e., a map of Rd to itself

that is related to g by (3.11) (any torus map has infinitely many lifts, differing

by an integer vector p ∈ Zd).

Definition 3.3.1. Let G be a lift of the torus map g and let ξ ∈ Td, and

Ξ ∈ Rd be any lift of ξ, (i.e., π(Ξ) = ξ). The rotation set τ (ξ,g) of the point
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ξ under the map g is the set of the limit points of

π

(
Gn(Ξ) − Ξ

n

)
, n ∈ N . (3.13)

If the limit

τ (ξ,g) := π

(
lim

n→∞

Gn(Ξ) − Ξ

n

)
, (3.14)

exists (i.e., if τ (ξ,g) consists of one point), then it is called the rotation vector

of ξ under g.

Remark 3.3.1. The rotation set is always nonempty, compact and connected

(Llibre and MacKay [135]), and it does not depend on the choice of a lift of g.

Remark 3.3.2. For circle maps (d = 1), the limit in the right-hand side of

(3.14) always exists and does not depend on ξ ∈ T (see Section 2.4.2). In

other words, the rotation set of the map consists of only one number called

the rotation number of the map.

Remark 3.3.3. When d > 1, the structure of the rotation set could be very

complicated for a generic map of the torus (see, e.g., Kwapisz [118] and refer-

ences therein).

One could hope that for maps of the form (3.12), it would be possible

to develop a more systematic theory. Using KAM theory, it is possible to

show that for families of maps close to rotations and satisfying suitable non-

degeneracy assumptions there are large measure sets parameters for which

the rotation set consists only of one point – see de la Llave and Vano [134]

and Yamaguchi [204] (a summary of the main results of [134] are given in
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Section 3.3.5). See also Cortez [36] for a proof of existence of a rotation vector

for maps of the form (3.12) under the hypothesis of area preservation.

3.3.2 Arithmetic Properties of Vectors

Below, we summarize some number-theoretic properties of vectors that

are important for our exposition.

Definition 3.3.2. A vector ρ ∈ Td is called:

(A) incommensurate if for any m ∈ Zd and k ∈ Z the equality

m · ρ = k (3.15)

implies that m = 0, k = 0;

(B) commensurate if (3.15) holds for some m ∈ Zd \ {0} and k ∈ Z;

(B)1 rational if ρ = p/q for some p ∈ Zd, q ∈ N.

Remark 3.3.4. In the above definition, by p/q we always mean the primitive

fraction, i.e., the one for which there is no common factor for p1, . . ., pd, q.

Remark 3.3.5. Obviously, all rational vectors are commensurate.

Important concepts needed for the KAM-type theorems for torus maps

are given in the following definition.

Definition 3.3.3. A vector ρ ∈ Rd is Diophantine if there exist constants

C > 0, ν ≥ d such that

|m · ρ − k| ≥ C

|m|ν (3.16)
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for each m ∈ Zd \ {0}, k ∈ Z (here |m| :=
∑d

j=1 |mj|); we will denote this by

ρ ∈ DC,ν .

The vector ω ∈ Rd is called Diophantine affine if it satisfies

|m · ρ| ≥ C

|m|ν , (3.17)

for each m ∈ Zd \ {0}.

Remark 3.3.6. Note that all Diophantine vectors are incommensurate. Also,

all Diophantine vectors are Diophantine affine.

Remark 3.3.7. If ρ ∈ Rd is Diophantine affine, so is tρ for any t ∈ R\{0}. On

the other hand, the set of Diophantine vectors is totally disconnected.

Remark 3.3.8. For ω ∈ Rd which satisfies (3.17), the set

A := {t ∈ R | tω is Diophantine}

is of full measure in the real line (see de la Llave and Vano [134] for the

argument).

3.3.3 Translations on the Torus

The simplest example of a torus map is the translation tη (η ∈ Td),

whose lift, Tη, is given by

Tη(Ξ) = Ξ + η .

Each orbit of tη has rotation vector equal to η.

Depending on the properties of the rotation vector ρ ∈ Rd, one can

talk about the following cases.
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• If ρ is incommensurate, then the orbit of each ξ ∈ Td is dense in Td.

• If ρ is rational, say ρ = p/q ∈ Q, then for the lift Ξ of any ξ ∈ Td,

we have Gq(Ξ) = Ξ + p, therefore, each ξ ∈ Td is periodic of period q:

gq(ξ) = ξ.

• If ρ is commensurate but not rational, the orbit of each ξ under g is

dense in some d′-dimensional torus (0 < d′ < d), where d − d′ is the

number of independent relations m · ρ = k satisfied by ρ.

For example, if ρ = (1
3
, 2

3
,
√

2), then (3.15) is satisfied by the 2-parameter

family m = (3a, 3b, 0), k = a + 2b, (a, b) ∈ Z2 \ {(0, 0)}, hence T3 in this

case is foliated by the orbits each of which is dense in a torus of dimension

d′ = 1; if T3 is visualized as the unit cube (with the corresponding sides

identified), then the invariant one-dimensional tori are parallel to the

ξ3-axis.

3.3.4 Torus Maps Preserving a Foliation

Because of (3.12), the maps of the torus we have derived in Section 3.2.2

are of a very special nature. The main feature is that a straight line with

direction ω is transformed by G into itself. In mathematical terms this is

described by saying that the maps are foliation-preserving – they preserve

the leaves of Fω, the one dimensional foliation with direction ω. Indeed, if

Ξ = Ξ̃ + sω, then

G(Ξ) = G(Ξ̃) + [Γ(Ξ) − Γ(Ξ̃) + s] ω . (3.18)
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The existence of a preserved foliation is a severe restriction on the maps

g of interest for us. Hence, phenomena typical in the class of all torus maps,

may not be present in our case. Similarly, phenomena that are persistent in

our family may not be persistent in the case of general torus maps.

The existence of a preserved foliation implies, in particular, that the

rotation set is a rotation interval parallel to ω.

In the physical problem at hand, we will study only the case of an

incommensurate ω, because in the case of a commensurate (but not rational)

ω one can study only the d′-dimensional invariant tori.

If ω is incommensurate – which in the case d = 2 simply means that

ω1 and ω2 are rationally independent, – each line of the foliation Fω is dense

when projected (“folded back”) to the torus Td.

We also note that since ω is incommensurate and Γ(Ξ) (defined in

(3.12)) is bounded away from 0, the torus map g cannot have any periodic

points. (Indeed, observe that the line ξ + ωt is mapped to itself. Since Γ is

positive, the motion on this line is monotone. Because ω is incommensurate,

two different points on the line correspond to two different points on the torus.)

3.3.5 KAM Theory

Due to the simplicity of the translations on the torus, it is important

to know whether a general torus map is “equivalent” to a translation (up to a

change of variables).

95



As we will see in Lemma 3.5.3, the fact that the torus maps appearing in

the cavity problem are smoothly equivalent to a rotation has important conse-

quences for the behavior in time of the the electromagnetic field, in particular

for the growth of the energy.

The formal definition of equivalence is the following.

Definition 3.3.4. The torus maps g : Td → Td and g′ : Td → Td are

(topologically, Cr, analytically) conjugate if there exists a (continuous, Cr,

analytic) map h : Td → Td such that

g = h−1 ◦ g′ ◦ h . (3.19)

We note that if two maps are topologically conjugate, then the rotation

sets (Definition 3.3.1) of the two maps are the same.

Simplifying somewhat, the main result of standard KAM theory is as

follows:

Given any Diophantine vector ω0 and a family of maps fλ that depends

on the d-dimensional parameter λ, satisfies some non-degeneracy conditions

(see below), and is close to the translation tω0
, we can find a Cantor set C ⊂ Rd

of (Diophantine) frequencies such that for each ω ∈ C we can find a param-

eter value λ(ω) (which depends on ω) such that the map tλ(ω) is smoothly

conjugate to the translation by the vector ω. The degree of smoothness of the

conjugacy depends on the degree of smoothness of the maps and the Diophan-

tine exponent of ω0.
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Theorems on stability of translations under these hypotheses can be

found in Moser [147, 148], Herman [94], Arnol’d [4]. A pedagogical exposition

of these and other KAM theorems can be found in de la Llave [130].

Remark 3.3.9. The reason why we need a d-dimensional parameter λ is to be

able to adjust the frequency change due to the perturbation. For example,

the translation tω0+∆ cannot be conjugated to tω0
no matter how small ∆

is. The problem of lack of parameters is discussed in the book of Moser [149,

Section V.4]; for recent developments see Sevryuk [178] and de la Llave [130].

A precise definition of the non-degeneracy assumption in the standard

KAM theory is that the function

ϕ(λ) :=

∫

Td

[
fλ(ξ) − ξ

]
dξ (3.20)

satisfies

det Dϕ(0) 6= 0 . (3.21)

More geometrically, we require that Dϕ(0) has full range.

When the nondegeneracy assumption (3.21) is satisfied, by adjusting

the parameters one can make sure that the rotation vector is kept at the value

we want.

Another problem considered in KAM theory is estimating the measure

of the set of parameters for which there exists a conjugacy between fλ and a

rotation. This is particularly relevant for our applications since the measure of

the set of parameters relates to the observability of the phenomena. A positive
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(or large) measure of parameters will indicate that, picking parameter values

at random, there is a (good) chance of observing the phenomena.

Unfortunately, the standard results of KAM theory do not apply for

the maps of the form (3.12) appearing in the quasiperiodic cavity problem.

There are three reasons for this: one is that KAM theory does not apply

straightforwardly to maps of the form (3.12) since the function ϕ defined in

(3.20) has one dimensional range (in the direction of ω). Hence, Dϕ(λ) has

range contained in a one dimensional vector space.

As a second difficulty in our situation, we note that the parameters that

appear in the problem (3.5), (3.6) are 1-dimensional rather than d-dimensional

as required by standard KAM theory. Hence, we are considering one-parame-

ter families of maps of the form (3.12).

Finally, we note that the families of maps that appear in the resonant

cavity problem are also rather specialized in the class of maps of the form

(3.12). As we see below, families of maps of the form (3.9), which appear

naturally in the study of the cavity are more degenerate than the general

maps of the form (3.12).

More explicitly, if we consider a system with the motion of the wall

being a small perturbation of a constant, i.e., Φ(Ξ) = α
2

+ λb(Ξ) (cf. (3.5),

(3.6)), then we have for small λ

Gλ(Ξ) = Ξ + αω + λ
[
−b(ξ + α

2
ω) + b(ξ)

]
+ O(λ2) . (3.22)
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Since
∫

Td [−b(ξ + α
2
ω) + b(ξ)] dξ = 0, we obtain that for the families (3.9) we

have that Dϕ(0) = 0, which is a more severe degeneracy than even that of a

typical foliation-preserving map (3.12).

The application of KAM theory to one dimensional parameter foliation

preserving families of maps, which may be degenerate as above (but which

satisfy other weaker non-degeneracy conditions), is developed by de la Llave

and Vano [134]. This reference also contains estimates on the measure of

the parameters for which KAM theorem applies. In what follows, we will

summarize the results of this paper.

We recall that a family fλ of mappings is said to be a Cr family when

fλ(ξ) is a Cr function of both ξ and λ. (i.e., that it has continuous mixed

derivatives of order up to r with respect to either ξ or λ).

Theorem 3.3.1. Let ω0 ∈ Rd be an affine Diophantine vector of exponent

ν. Let fλ be a one-parameter Cr family of foliation-preserving mappings as in

(3.12) such that f0 = tω0
.

Assume that the function ϕ̃ defined by ϕ̃(λ)ω0 =
∫

Td [f
λ(ξ) − ξ] dξ sat-

isfies

dN

dλN
ϕ̃(λ)|λ=0 6= 0

for some positive N < r. Assume also that the regularity r is large enough

depending on the Diophantine exponent of ω0.

Then, there is a set B ⊂ [−1, 1] such that:
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a) For λ ∈ B, fλ is conjugate to the translation tu(λ)ω0
, i.e., there exists a

diffeomorphism hλ of the torus such that

fλ = (hλ)−1 ◦ tu(λ)ω0
◦ hλ . (3.23)

b) For some C > 0, and for all sufficiently small δ > 0

|[−δ, δ] ∩ B
c| ≤ Cδ1/N ,

where | | denotes the Lebesgue measure, and Bc is the complement of B.

In typical situations, the set B is a Cantor set (i.e., it is a totally

disconnected closed set).

Remark 3.3.10. Note that a corresponding result for higher-dimensional pa-

rameters can be obtained from the one-dimensional case by decomposing the

several-parameter family into several one-parameter families and repeatedly

applying the one dimensional result.

Remark 3.3.11. The results of de la Llave and Vano [134] also include that

the maps λ 7→ hλ and λ 7→ u(λ) can be extended to Cs functions on [−1, 1]

where s is a number that depends on r and the Diophantine exponent ν. (Of

course, the extended family will only satisfy (3.23) when λ ∈ B.) This is

sometimes referred to as saying that the function hλ is differentiable in the

sense of Whitney since Whitney [194] gave an intrinsic characterization of

functions defined in closed sets that can be extended to smooth functions.

100



Numerical explorations in Section 3.4 indicate that in the intervals of

the complement of B (i.e., in the gaps of B) one often has dynamics with

negative Lyapunov exponent. Of course, this observation could be false for

situations not covered by our numerical experiments, in particular for very

Liouville rotation vectors (see Fayad [70]).

3.3.6 Structure of Dg, Lyapunov Exponents, and Hyperbolicity

An important measure of instability of a map f : Td → Td is its Lya-

punov exponent defined by

µ(ξ,v) := lim
n→∞

1

n
log ‖Dfn(ξ)v‖ . (3.24)

We recall that, by Oseledets theorem [157] (see also Ruelle [175] and Barreira

and Pesin [9]), the limits in (3.24) exist for all v and m-almost all ξ for any

f -invariant Borel measure m. It is clear that for every ξ, there are at most d

possible values of the limit in (3.24).

Lyapunov exponents are a rather weak notion of exponential growth

of perturbations (or decay if they are negative). In particular, they ignore

polynomial growth, and can be reached non-uniformly, i.e., at different rate

for different points ξ.

A notion which in principle is stronger than the existence of a positive

Lyapunov exponent is that of uniform hyperbolicity. In our case, since we

only have one direction with non-trivial expansion, this notion reduces to the

following:
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Definition 3.3.5. We say that a set L ⊂ Td invariant by f as in (3.9) is

uniformly attracting (respectively uniformly expanding) when there exist con-

stants C > 0, α > 0, such that we can find a splitting TξTd = (span ω) ⊕ Es
ξ

(respectively TξTd = (span ω) ⊕ Eu
ξ ) such that

‖Dfn(ξ)v‖ ≤ Ce−αn‖v‖ , ∀n ∈ N , ξ ∈ L , v ∈ Es
ξ

( resp. ‖Dfn(ξ)v‖ ≥ Ceαn‖v‖ , ∀n ∈ N , ξ ∈ L , v ∈ Es
ξ ) .

These general notions can be made more precise for foliation-preserving

maps. Notably, all but one of their Lyapunov exponents are zero.

Proposition 3.3.2. Let g be a C1 : Td → Td map foliation-preserving map of

the form (3.12). Then for every point ξ ∈ Td, d−1 of the Lyapunov exponents

of g are 0. Beside these d − 1 trivial exponents, for m-almost every ξ, there

is one Lyapunov exponent corresponding to the direction of ω.

Proof. For foliation preserving maps g,

Dg(ξ) ω = [1 + ω · ∇Γ(ξ)] ω := λ(ξ) ω . (3.25)

Let us choose a system of (affine) coordinate patches of Td in the fol-

lowing way: Choose an orthonormal frame v1, . . . , vd in Rd in such a way that

v1 = ω. Let U be the orthogonal matrix that transforms the standard basis

of Rd into v1, . . . , vd. Define the charts ψi : B1/10 → Td (where B1/10 is the

ball of radius 1
10

around the origin in Rd) by

ψi(x) = π(Ux + ti) , (3.26)
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where π is given by (3.7), and {ti} is a finite set of translations in a grid of

size, say, 1
100

, to ensure that the union ∪iψi(B1/10) cover the whole Td. Then

in all coordinate patches, the differential Dg(ξ) has the form

Dg(ξ) = U−1




λ(ξ) ∗ ∗ · · · ∗
0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1




U , (3.27)

where the stars represent numbers that are nonzero in general. Hence, the

differential of the iterated map, Dgn(ξ), after conjugating with U , is also upper

triangular with the first element in the diagonal equal to λ(gn−1(ξ)) · · ·λ(ξ),

and all other diagonal terms equal to 1. This makes it clear that d−1 Lyapunov

numbers are equal to 0.

According to Birkhoff ergodic theorem,

1

n
log

[
λ(gn−1(ξ)) · · ·λ(ξ)

]
=

1

n

[
log λ(gn−1(ξ)) + · · · + log λ(ξ)

]

has a limit as n → ∞ for m-almost every ξ, for any g-invariant probability

measure m. This limit is, of course, another Lyapunov exponent besides the

previously found d − 1 equaling zero.

In particular, the differential Dg of the torus map g (3.9) is

Dg(ξ) =
[
Id−ω ⊗∇Φ(g(ξ))

]−1[
Id +ω ⊗∇Φ(ξ)

]
. (3.28)

Therefore,

Dg(ξ) ω = λ(ξ)ω ,
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where

λ(ξ) :=
1 + ω · ∇Φ(ξ)

1 − ω · ∇Φ(g(ξ))
. (3.29)

Hence,

Dgn(ξ) ω = λ(gn−1(ξ)) · · ·λ(ξ) ω ,

so the Lyapunov exponent in the direction of ω is equal to the average of the

logarithm of λ along the orbit of ξ, and the other d − 1 Lyapunov exponents

are equal to 0.

Uniformly attracting or uniformly repelling sets have some remarkable

properties. For example, the general theory of persistence of normally hy-

perbolic sets (Hirsch and Pugh [97], Fenichel [72]) implies, for our case, the

following theorem.

Theorem 3.3.3. Let g be a map of the form (3.12).

Assume that there exists a compact set L ⊂ Td invariant under g such

that

(i) L is a C1 manifold without boundary;

(ii) L is transversal to span ω at each point: TξL ⊕ span ω = Rd;

(iii) g|L is uniformly attracting (respectively repelling).

Then, for any torus map g′ sufficiently C1-close to g, we can find a set

L′, invariant under g′ and satisfying (i), (ii) and (iii).
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The existence of these invariant manifolds for maps of the form (3.12)

is an analogue of the phase locking which happens frequently in torus maps.

Theorem 3.3.3 is interesting from our point of view because its hypothe-

ses are verified on open sets of parameters (we will argue that these sets are

non-empty and will discuss their abundance in numerical exploration) and,

at the same time, they have important consequences for the behavior of the

electromagnetic field in the cavity.

3.3.7 Resonances

Resonances are a generalization of the phase locking encountered in

circle maps with rational rotation numbers, when the circle map has an at-

tracting or repelling periodic point. Recall that the origin of the phase locking

is that, by the implicit function theorem, these periodic points persist, hence

the rotation number remains constant for small enough perturbations of the

map. For higher dimensional tori, there are analogous phenomena, but the

geometry is significantly more complicated.

Definition 3.3.6. We say that a rotation vector ω is (k, n)-resonant (for

k ∈ Zd \ {0}, n ∈ Z) if

k · ω = n .

The set of (k, n)-resonant vectors is a hyperplane of codimension one

in the space of frequencies. Hence, given a vector ω0 that is incommensurate

(and, therefore, not perpendicular to any k ∈ Zd \ {0}), we can find t ∈ R

such that tω0 is (k, n)-resonant.
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The intuition is that rotations by resonant vectors are unstable under

perturbations since KAM theorem does not apply to them. Note that, when

one tries to eliminate the perturbations from a rotation one is lead to denom-

inators of the form e2πik·ω − 1. Hence, if ω is (k, n)-resonant, we are lead to

terms that cannot be eliminated from the perturbation.

Galkin [77] have studied the width of the resonant regions for a partic-

ular type of torus maps.

We plan to study rigorously the resonances for torus maps occurring in

the cavity problem in near future.

3.4 Numerical Study of the Resonance Regions

In this section we show the results of our numerical investigation of the

map g : T2 → T2 corresponding to the motion of the boundary given by (3.1),

(3.5), (3.6). Unless otherwise specified, in the whole section g will stand for

this particular map.

3.4.1 General Remarks

As we noted in Section 3.3.4, the rotation set of g must be an interval

proportional to the frequency vector ω, which for motion of the mirror given

by (3.5), (3.6) is ω = (1, σG). Based on our numerical investigations, we adopt

the working hypothesis that the rotation set for the torus maps in our problem

consists only of one element which we call a rotation vector.
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For the map (3.5), (3.6), the rotation vector τ (g) has only one inde-

pendent component, because it has to be a multiple of ω:

τ (g) = ρω = ρ (1, σG) . (3.30)

For reasons that will become clear in Section 3.4.2, we will call the first com-

ponent, τ1(g) = ρω1 = ρ, of τ (g) a rotation number of the map g. Note that

because of the incommensurability of ω and the condition (3.3), the map g

has no periodic points.

Due to the existence of an invariant foliation Fω, the problem we have

to solve numerically is essentially one-dimensional for any dimension d of the

torus. Indeed, let θn be the moment of the nth reflection of a particular ray

from the moving mirror, and ξn = ωθn be the vector of the phases of the

mirror’s motion at that moment. To find ξn+1 = g(ξn), we first find the time

θn+1 of the (n + 1)st reflection of this ray from the moving mirror by solving

numerically the equation (3.8). To compute θn+1, we used the zero finding

routine zbrent from Press et al [165] (using long double precision). Having

found θn+1, we compute ξn+1 = g(ξn) from

ξn+1 = π (ξn + (θn+1 − θn)ω) .

3.4.2 Distribution of the Iterates on T2

To hone up our intuition and to make a connection with the case d = 1,

let us start with the case of the map (3.5) with γ = 0, in which the phase ξ2

has no effect on the motion of the mirror, so the dynamics of the map g can
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be derived completely from the dynamics of the projection of g on the ξ1 axis.

If π1 : T2 → T1 : (ξ1, ξ2) 7→ ξ1 is the projection onto the ξ1 axis, then the map

g̃ defined by

π1 ◦ g = g̃ ◦ π1

is a circle map.

If g̃ is conjugate to a rotation, then there are two cases:

• If the vector

τ (g) = (τ(g̃), τ(g̃)σG)

is incommensurate, then the iterates of g fill T2 densely.

• If τ (g) is commensurate of type (m1,m2, k) (with m2 6= 0, because

otherwise τ(g̃) would be rational), then the iterates of any point of T2 lie

on a one-dimensional manifold, which is topologically a circle “wrapped

around” T2 – more precisely, making m2 turns in ξ1 direction and −m1

turns in ξ2 direction.

The other extreme case of a map g with γ = 0 is the case when the

circle map g̃ is phase locked, τ(g̃) = p
q

– in this case g is in (q, 0, p) resonance.

As an example, let us consider the map g̃ for β = 0.1, γ = 0, in which case the

phase locking interval of values of α for which g̃ is phase locked with rotation

number 1
5

is

[0.273630763679 , 0.275033857936] .
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In Figure 3.1 we show 10000 iterates of g for α = 0.273631, β = 0.1, γ = 0;

the initial point is circled. Since for these values of the parameters the map g

is (5, 0, 1)-resonant, the iterates accumulate on an attractor consisting of five

“vertical” lines.

The case in which the map g̃ is phase locked is of particular interest

for us, because the case of a small “incommensurate perturbation” (which for

our particular phase advance map g corresponds to small values of γ in (3.5))

can be considered as a small perturbation to the “unperturbed” map g (by

“unperturbed” we mean the map with γ = 0). The theory of normally hy-

perbolic systems guarantees that if γ is small enough, the map g will remain

(q, 0, p)-resonant. Examples of this phenomenon will be shown in Section 3.4.3.

3.4.3 Bifurcation Diagrams

To give a rough idea what the resonant zones in the (α, γ) parameter

plane look like for fixed β = 0.13, we show in Figure 3.2 the areas with

Lyapunov exponents smaller than −0.03 (the Lyapunov exponents have been

calculated for a discrete set of α’s and γ’s, and if the Lyapunov exponent for

given values of α and γ is smaller than the threshold −0.03, the corresponding

point is shown as a dot in the picture). The types of some resonances are

given in the figure. The resonances of type (3, 0, 2) and (4, 0, 3) come from the

2
3

and 3
4

phase lockings of the map g with β = 0.13 and γ = 0, while the other

resonances shown in the figure appear because of the incommensurate forcing.

In Figure 3.3, we show 10000 iterates of the map g for parameter values
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Figure 3.1: Iterates of g (with γ = 0) in the case of τ = 1/5 phase locking
with γ = 0 i.e., (5, 0, 1)-resonance.
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Figure 3.2: Rough sketch of the most intensive phase resonant regions in the
(α, γ) plane for β = 0.13.
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Figure 3.3: Iterates of (3, 0, 2)-, (5,−1, 3)-, (2,−1, 1)-, and (2, 1, 2)-resonant
maps.

for which the map is (3, 0, 2)-, (5,−1, 3)-, (2,−1, 1)-, and (2, 1, 2)-resonant,

respectively; the parameters α and γ for these points correspond to the points

shown with x’s in the figure (the initial point has been first iterated 106 times).

The values of α are 0.610, 0.621, 0.640, and 0.666, respectively.

In Figure 3.4, we give more detailed information about the Lyapunov

exponents of the map g for β = 0.13 for the same range of α and γ as in Fig-
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ure 3.2. The blue color corresponds to Lyapunov exponents with the smallest

absolute value, the green one to the intermediate values, and the red one to

the largest values.

To give a better idea about how rich the structure of the (α, γ) plane

is, we show in Figure 3.5 iterates of the map g for the same values of β and γ

(β = 0.13, γ = 0.2) and different values of α. The values of α are very close to

the value of α for the (2,−1, 1)-resonant map from Figure 3.3. The values of

α and the type of resonance are shown in the table; for α = 0.6389, the map

is (2,−1, 1)-resonant as in the lower left corner of Figure 3.3.

Figure α ρ Resonance type
3.5 (upper left) 0.6387 0.72192451 . . . (53,−23, 28)
3.5 (upper right) 0.6386 0.72125379 . . . (37,−15, 20)
3.5 (lower left) 0.6385 0.72074231 . . . Non-resonant

3.5 (lower right) 0.6384 0.72025004 . . . (25,−9, 14)

Even resonances with small m1, m2, and k, can occur for very close

values of the parameters – e.g., the (4, 3, 4) and (5,−1, 3) resonances for the

map g occur for

ρ =
4

4 + 3σG

= 0.683281572999747 . . .

ρ =
3

5 − σG

= 0.684624205732747 . . . ,

respectively (where the meaning of ρ is the same as in (3.30)).

3.4.4 “Pinching” of the Resonant Regions

In Figure 3.6 we show the domain of the values of the parameters α

and γ for which the map g is (5, 0, 1)-resonant with β = 0.1. As we see
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Figure 3.4: Lyapunov exponents of the map g for β = 0.13 in the (α, γ)-plane
for α ∈ [0.6, 0.7] (on the horizontal axis), and γ ∈ [0, 0.362] (on the vertical
axis).
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Figure 3.5: Iterates of g for close values of the parameter α (all for β = 0.13,
γ = 0.2). Clockwise, from top left: α = 0.6387 – (53,−23, 28)-resonance,
α = 0.6386 – (37,−15, 20)-resonance, α = 0.6385 – nonresonant, α = 0.6384
– (25,−9, 14)-resonance.
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Figure 3.6: Boundaries of the β = 0.1, (5, 0, 1)-resonant region in the (α, γ)
plane.
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Figure 3.7: “Magnified” plot of the resonant domain shown in Figure 3.6 – the
domain is “straightened out” and expanded around its center line.

in the figure, the width of the interval of values of α for which the (5, 0, 1)-

resonance occurs depends on the amplitude of the incommensurate forcing of

the mirror (which for the map g is βγ). For certain values of γ, the width of

this phase locking domain becomes very small. To illustrate this phenomenon

better, in Figure 3.7 we show the same phase locked region as in Figure 3.6,

but “magnified”, i.e., expanded proportionally around the “center line”; here
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A(β, γ; m1,m2, k) is the average of the two extreme values of α for which the

map g is (m1,m2, k)-resonant for the particular values of β and γ. Our numer-

ical study shows that the width of the phase locked domain when “pinching”

occurs is smaller than 10−9, but we cannot say whether the “pinching” there

is complete, i.e., whether the width of the phase-locked domain in the (α, γ)

plane becomes zero. The article of Glendinning et al [81] contains a study of

the structure of the phase locked regions of another quasiperiodically forced

circle map.

“Pinching” does not occur for some resonances, for example for the

(3, 0, 2)-resonance domain shown in Figure 3.2 – the (3, 0, 2)-resonance domain

even becomes wider for larger values of γ. We do not know the reason for the

different behavior of the resonant domains.

3.4.5 Occurrence of Resonances Absent for Periodic Motion of the
Mirror

In Section 2.6.3, we emphasized that the family of circle maps occur-

ring in the case of periodically pulsating cavity is non-generic. One of the

manifestations of this nongenericity is the absence of phase locking with ro-

tation number 1
2
. To illustrate this phenomenon, we show in Figure 3.8 the

(2, 0, 1)-resonant domain (in the (α, γ)-plane) for β = 0.1. Note that in the

unperturbed case (γ = 0), there is no phase locking with rotation number 1
2
,

so the appearance of the (2, 0, 1) resonance for γ > 0 is due to the incommen-

surate forcing.
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Figure 3.8: An example of a resonance missing in the “unperturbed” case.
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Figure 3.9: Plot of the first component, ρ, of the rotation vector τ (g), and the
Lyapunov exponent of the map g as functions of α for β = 0.13, γ = 0.2.

3.4.6 “Rotation Number” and Lyapunov Exponent

In Figure 3.9, the thin line is the first component, ρ, of the rotation

vector τ (g) (see (3.30)), and the Lyapunov exponent of g as a function of α for

β = 0.13, γ = 0.2. The scale on the vertical axis gives the values of ρ. The thick

line is the Lyapunov exponent of g in arbitrary units, and shifted up by 0.79.

The types of some resonances are shown. We see that the resonant domains
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occur for parameter values for which the Lyapunov exponent is negative. The

values of β and γ used to make Figure 3.9 correspond to a horizontal line

through the x’s in Figure 3.2, and the “strong” resonances visible there can

be seen clearly identified in Figures 3.2 and 3.4. Moreover, the resonances of

type (q, 0, p) exist in the “unperturbed” (γ = 0) case, and in Figure 3.9 we

see that they occur at rational values of ρ, namely, for ρ = p
q
. On the other

hand, the resonances that are due to the incommensurate forcing (i.e., of type

(m1,m2, k) with m2 6= 0) occur at irrational values of ρ:

ρ =
k

m1 + m2σG

/∈ Q .

3.5 Consequences of the Dynamical Systems Phenom-
ena for the Field in the Resonator

In this section we discuss how the dynamical results for torus maps

(which were obtained rigorously or found numerically in the previous sections)

imply results for the cavity problem.

In Section 3.5.1 we recall briefly the results of Chapter 2 for a periodic

motion of the mirror and explain their relation with the case of quasiperiodic

motion.

In Section 3.5.2 we derive a simple relationship between the asymp-

totic behavior of the Doppler factor for the physical system and the Lyapunov

exponent of the torus map.

In Section 3.5.3, we explain our method for numerical computation of
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the energy density.

In Section 3.5.4 and 3.5.5, we discuss the resonant and the KAM cases,

respectively.

In Section 3.5.6, we give a simple physical argument showing that the

energy of the electromagnetic field in the cavity cannot decrease asymptoti-

cally.

3.5.1 Comparison with the Case of a Periodically Moving Mirror

Let us start by recalling some of the results of Chapter 2 obtained for

the case of a periodic motion of the mirror. In the case of phase locking, i.e., if

the circle map has an attracting periodic orbit of period q, the characteristics

starting in a set of positive measure are attracted to this periodic orbit, so

the electromagnetic field concentrates in q (or fewer) pulses of exponentially

decreasing width and, hence, exponentially growing energy. Each of these

narrow wave packets bounces back and forth between the two mirrors. The

motion of the wave packets is asymptotically periodic – if the rotation number

of the circle map is p
q
, then the period of the motion of the wave packets is p.

In contrast, if KAM theory applies and reduces the circle map to a

rotation, then the characteristics are well distributed and the electromagnetic

field remains uniformly smooth and, hence, the electromagnetic energy remains

uniformly bounded in time.

These two results have generalizations for maps of higher dimensional

tori and imply results for the cavity pulsating quasiperiodically.
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The analogue of the phase locking in the quasiperiodic case is the exis-

tence of a commensurate rotation vector with a uniformly attracting invariant

torus of positive codimension. If such a lower-dimensional invariant torus

exists, the iterates of the torus map quickly concentrate on this torus, and

asymptotically the dynamics happens in it (this is illustrated for d = 2 in Fig-

ure 3.1). The nontrivial eigenvalue of Dg, λ (3.29), is negative, and the energy

of the system increases exponentially see Section 3.5.2). The only essential dif-

ference with the case of a periodically moving mirror is that the motion of the

wave packets is quasiperiodic (for more details in this case see Section 3.5.4).

When the KAM theorem applies, the energy of the system stays uni-

formly bounded in time similarly to the case of a circle map (see Section 3.5.5).

3.5.2 Lyapunov Exponent and Doppler Factor

In Section 2.3.4, we derived the expression (2.16) for the Doppler factor,

D(θ), at reflection from the moving mirror at time θ. Here we derive an

expression of the asymptotic behavior of the rate of change of the energy of

the electromagnetic field, which generalizes our treatment in Section 2.5.3.

Let one particular characteristic “ray” be reflected from the moving

mirror at times θ0, θ1, θ2, . . ., and let ξn := π(ωθn) be the vectors of the

phases of the mirror’s motion at the moments of reflection. By the definition

of the corresponding torus map g (3.10), ξn are iterates of g:

ξn = g(ξn−1) = · · · = gn(ξ0) .
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Using the expression for the nontrivial eigenvalue of Dg, λ (3.29) (Section 3.3.6),

we obtain for the only nontrivial Lyapunov exponent of g

Λ := lim
N→∞

1

N
log

N∏

n=1

λ(ξn)

= lim
N→∞

1

N
log

N∏

n=1

1 + ω · ∇Φ(ξn)

1 − ω · ∇Φ(ξn+1)

= lim
N→∞

1

N
log

N∏

n=1

1 + ω · ∇Φ(ξn)

1 − ω · ∇Φ(ξn)

= − lim
N→∞

1

N
log

N∏

n=1

D(θn)

= − lim
N→∞

1

N

N∑

n=1

log D(θn) . (3.31)

Let the average time interval between two consecutive reflections from

the moving mirror be 〈∆θ〉. This means that asymptotically, in a time interval

of length N〈∆θ〉, the energy E changes by a factor of
∏N

n=1 D(θn). Therefore,

in unit time interval, log E increases on average by

1

〈∆θ〉
1

N
log

N∏

n=1

D(θn) ≈ − Λ

〈∆θ〉 .

Taking all this into account, we obtain

Proposition 3.5.1. The only nontrivial Lyapunov exponent Λ of the torus

map g is equal to the negative of the averaged over a trajectory logarithm of

the Doppler factor at reflection from the moving mirror:

Λ = −〈log D(θn)〉averaged over n

:= − lim
N→∞

1

N

N∑

n=1

log D(θn) .
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If the initial conditions of the boundary value problem for the vector

potential A are continuous, then the asymptotic behavior of the energy of the

electromagnetic field is given by

E(t) ∼ E(0) exp

(
− Λ

〈∆θ〉t
)

.

3.5.3 Method for Computing the Energy Density

Before we discuss the resonant and the KAM cases in Sections 3.5.4

and 3.5.5, let us explain how we made the pictures of the evolution of a wave

packet given in these sections.

The main idea is to employ the methods of geometric optics in order to

avoid solving partial differential equations. We used the fact that the energy

density of the electromagnetic field is proportional (up to an overall factor) to

the spatial density of the characteristics. We took into account that at each

reflection the electromagnetic field changes sign, so to find the density of the

energy of the field in a small spatial interval [x1, x2] at a particular moment t,

we subtracted the number of characteristics going through the line connecting

the points (t, x1) and (t, x2) on the space-time diagram and going to the left

from the ones passing through this line and going to the right, and took the

absolute value of the difference. We note that this algorithm is very similar to

ray tracing in computer graphics and is quite parallelizable.
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3.5.4 The Resonant Case

In the case when there exists a uniformly attracting invariant torus,

one can make somewhat more precise predictions for the behavior of the elec-

tromagnetic field.

Lemma 3.5.2. Let g be a map of the form (3.10) describing a cavity with

quasiperiodically moving boundary as in Section 3.2.2. Assume that g has an

invariant torus L which is uniformly attracting (Definition 3.3.5) with expo-

nent λ. Let the initial condition be supported on the basin of attraction of L.

Then A(t, x) consists of a pulse of width decreasing exponentially with

exponent λ. The energy of the pulse is increasing exponentially with the

same exponent λ. The support of the pulse contains a point which is mov-

ing quasiperiodically along the torus Td.

Proof. Recall that the map g describes the characteristics at the time of

collision with the moving boundary. The assumption implies that the charac-

teristics emanating at the support are getting exponentially contracted under

the map g.

As a consequence, the times of collision with the moving mirror of each

of the characteristics are getting also exponentially close from which it follows

that the time of collision with the characteristics is concentrated in an interval

of exponentially decreasing width.

The argument for the growth of the energy is given in Section 3.5.2.
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Figure 3.10: Evolution of a wave packet in a (3, 0, 2)-resonant case.

From the point of view of direct observations, the above Lemma means

that if the hypotheses are met, we will see that the electromagnetic field con-

centrates in lumps and that the center of the lumps moves quasiperiodically

along the cavity (up to an exponentially decreasing error).

In Figure 3.10, we show the evolution of a wave packet in the resonant

case. The parameters of the mirror’s motion are α = 0.61, β = 0.13, γ = 0.2

(this point is shown in Figure 3.2), and for these parameter values the torus

map g is (3, 0, 2)-resonant. At the initial moment (t = 0), the wave packet

was supported on the interval x ∈ [0.03, 0.24], and was moving to the right.
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The figure shows the energy density of the electromagnetic field (in arbitrary

units) at times t = 0, 2
3
, 4

3
, 6

3
, . . ., 58

3
; each third snapshot starting from t = 2

3

is shown with a thick line. The wave packet splits in two wave packets, and

these two wave packets become narrower and higher with time at a rate that is

asymptotically exponential. This is especially clear if one looks at the density

at the moments shown with thick line. The fact that the associated torus

map g is (3, 0, 2)-resonant means that, asymptotically, the motion of the wave

packets is such that at some particular moment t the positions of the wave

packets is close to their positions at time t − 2 (in terms of the torus map,

this means that a point from some attractive invariant circle, iterated 3 times,

comes to the same invariant circle – see more details below). This is the reason

for drawing every third snapshot with a thick line – the elapsed time between

two adjacent such snapshots is 2 seconds.

To make Figure 3.10, we used 221 ≈ 2 × 106 rays with initial density

corresponding to the initial energy density of the wave packet, and studied

their distribution in 2048 bins.

To understand better why the wave packet splits into two wave packets,

we show in Figure 3.11 the evolution of the wave packet, depicted as the motion

of the iterates of the associated torus map g in T2. To produce this figure, we

took 22 points,

x(1) = 0.03 , x(2) = 0.04 , x(3) = 0.05 , . . . , x(22) = 0.24 ,

equidistributed on the support of the wave packet from Figure 3.10 at the
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Figure 3.11: Evolution of the wave packet of Figure 3.10, depicted as iterates
under g3n of points from the support of the wave packet at t = 0.

129



initial moment t = 0. First we found the times θ
(k)
0 (k = 1, 2, . . ., 22) of

the first reflection from the moving mirror of the right-moving characteristic

emanating from each point x(k) at t = 0, i.e., from the point (0, x(k)) in the

space-time diagram. These times are represented in the figure by the points

ξ(k) := π(ωθ
(k)
0 ) ∈ T2, are depicted as 22 circles with a number 0 to the left

of them. Then we illustrated the evolution of these points by showing their

3rd iterates g3(ξ(k)) (the squares with a number 3 next to them), 6th iterates

g6(ξ(k)) (the diamonds with a 6), 9th iterates g9(ξ(k)) (the triangles with a 9),

. . ., 27th iterates g27(ξ(k)) (the stars with a 27).

The map g for these values of the parameters of the mirror’s motion

is (3, 0, 2)-resonant, and its attracting invariant circles are shown with thick

lines in the figure, while the repelling ones are represented with thin lines.

The points ξ(k) (the circles) belong to the basins of attraction of the first

and the second from the left invariant circles in the figure, six points being

in the basin of attraction of the leftmost one. These six points are being

attracted to the leftmost invariant circle, and the others are being attracted

to the other invariant circle. From the figure, it is very clear how the points

are being pushed away from the repelling invariant circle and accumulate on

the attractive ones, which means that the electromagnetic field forms two

packets with exponentially growing energy. For these parameter values the

electromagnetic field can form up to three wave packets – the actual number of

the wave packets depends on the support of the electromagnetic field at t = 0.
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3.5.5 The KAM Case

In contrast with Section 3.5.4, we have

Lemma 3.5.3. Assume that the map g is Cr conjugate to a translation (e.g.,

when the KAM theorem applies).

Then, given any Cr initial data, the Cr norm of the electromagnetic

field remains uniformly bounded for all time.

In particular, when r ≥ 1, the energy of the electromagnetic field re-

mains bounded for all time.

Remark 3.5.1. We note that, according to Theorem 3.3.1, given a family of

motions, the behavior described in Lemma 3.5.3 will happen in Cantor sets

of parameters of positive measure. Typically, in the gaps of these Cantor sets

there are intervals for which Theorem 3.3.3 applies. Hence, we have that for

the physical problem, situations with unbounded energy and with bounded

energy are intimately mixed in the space of parameters.

Proof. We note that g = h−1 ◦ tτ (g) ◦ h yields gn = h−1 ◦ tn
τ (g) ◦ h, therefore

(taking into account that Dtτ (g) = Id)

Dgn = (Dh−1 ◦ tn
τ (g) ◦ h) · (Dh) .

Hence

‖Dgn‖C0 ≤ ‖Dh−1‖C0 ‖Dh‖C0 ≤ ‖h−1‖C1 ‖h‖C1 .

More generally, we obtain

‖Drgn‖C0 ≤ K ‖h−1‖Cr ‖h‖Cr ,
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where K is a constant depending on r.

Once we have that gn is uniformly Cr, we observe that the map that

gives the position of the characteristic at time θ is obtained by composing gn

with a map which gives the solution from the time of the last reflection to θ.

(These arguments are very similar to the ones in Sections 2.3.5 and 2.5.3; see

especially equation (2.23)). From here the result follows easily.

In Figure 3.12, we show the evolution of a wave packet for motion of

the mirror that corresponds to the KAM case (parameter values: α = 0.2745,

β = 0.09, γ = 0.05), for t = 0, 500, 1000, 1500, 2000, 2500, 3000, and 3500.

At t = 0, the wave packet is moving to the right. On the vertical axis we give

the energy density in arbitrary units. We see that, although the shape of the

wave packet changes, its energy stays bounded. The shape of the packets for

different t is different, although this cannot be clearly seen in the picture.

3.5.6 The Energy Cannot Decrease Asymptotically

Here we make an important observation about the Doppler factor and,

hence, about the nontrivial Lyapunov exponent Λ of g. Recall that the energy

of a narrow wave packet decreases at the moment θ of reflection of the wave

packet from the moving mirror (i.e., D(θ) < 1) only if the width of the wave

packet increases, which in turn happens exactly when the mirror is moving

outwards , i.e., a′(θ) > 0. Now notice that if the wave packet is spreading

over a long time interval, it will stop existing, i.e., the situation when the
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Figure 3.12: Evolution of a wave packet in the KAM case.
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Doppler factor is less than 1, or, equivalently, when the Lyapunov exponent

is strictly negative, is asymptotically unstable. Hence, the energy cannot de-

crease asymptotically – it either increases or stays bounded.
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Chapter 4

Global Hölder Regularity of Conjugacies

Between (Critical) Circle Maps

4.1 Introduction and Literature Review

Classification of circle homeomorphisms under changes of variables is

an old and famous problem in mathematics. It was initiated by Poincaré in

[162] motivated by studies in differential equations more than a century ago,

and has been actively studied ever since.

Circle maps are important also because of their applications to natural

sciences. They appear in the Pomeau-Manneville scenario for transition to

turbulence through intermittency [163], second order ODEs with periodic po-

tentials (see, e.g., Moser and Pöschel [150]), cardiac arrhythmias (Glass [79]),

oscillations in plasma (Ignatov [100]), electronic devices (see, e.g., Bohr et al

[11]), optical resonators with a periodically moving wall (see our article [131]),

to name just a few. We would like to draw the reader’s attention to the collec-

tions of reprints edited by Cvitanović [38] and Bai Lin Hao [89] which contain

many articles devoted to circle maps and their applications.

The main dynamical invariant of homeomorphisms of the circle is the

rotation number (see Section 2.4.2). It was quickly realized that it is an
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invariant under topological equivalence (Poincaré [162]) and that for C2 maps

it is a complete invariant for topological conjugacy (Denjoy [50]). The theory of

smooth equivalence of smooth diffeomorphisms is by now very well understood

(see, e.g., the articles by Herman [94] and Katznelson and Ornstein [113]).

Nevertheless, the theory of smooth equivalence of “critical circle maps”,

i.e., smooth circle maps that are homeomorphisms but not diffeomorphisms

(the simplest one – and the only one that we will consider in this paper – being

a smooth map with a critical point), is much less developed. This will be the

main subject of our empirical studies.

In the articles of Shenker [179], Feigenbaum et al [71], Ostlund et al

[158], Rand et al [168], it was found numerically that cubic critical circle maps

exhibit interesting “universal” properties – for large classes of circle maps there

exist numbers and functions that are the same for all functions in the class

– similar to the Feigenbaum-Coullet-Tresser universality of unimodal maps of

the interval. (Lately similar studies were carried out for maps with critical

points of higher degrees by Dixon et al [55] and Briggs et al [17]). Shortly

after the initial numerical studies, a renormalization theory that explains these

properties was developed and some parts of the theory were put of a firm

mathematical basis in the papers of Feigenbaum et al [71], Rand et al [168],

Shraiman [180], Epstein [68], Eckmann and Epstein [65, 66], Lanford [121–123],

Rand [169, 170], Kim and Ostlund [114], Epstein [69], Rand [167], Veerman and

Tangerman [191], Tangerman and Veerman [186], Pinto and Rand [161], Rand

[171]. Recently there has been a significant progress in the renormalization
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theory of critical circle maps – see Świa̧tek [185], de Melo [47], Yampolsky

[207], de Faria [44], de Faria and de Melo [45, 46].

Shenker In [179] studied numerically a one parameter family of smooth

circle maps, {fK}, all of rotation number equal to the golden mean, σG =
√

5−1
2

.

He found that if fK is a diffeomorphism, the conjugacy between fK and the

rotation by σG is a smooth function (as predicted by the general theory [94]).

However, if fK has a cubic critical point, the conjugacy between fK and the

rotation becomes very rough. Moreover, it was noticed that the conjugacy

has a self-similar structure (which he found by studying the first 400 Fourier

coefficients of the conjugacy).

In the present paper, we study numerically the smoothness of the conju-

gacies between non-critical, cubic critical, and quintic critical circle maps. To

estimate the smoothness of the conjugacies, we use finite difference method and

tools from harmonic analysis (Littlewood-Paley theory and wavelet theory).

In some cases, we are able to calculate reliably millions of Fourier coefficients,

so we hope that our numerical estimates are quite convincing.

We expect that the numerical methodology developed here will be used

to study several other problems in the theory of critical phenomena in dynami-

cal systems in which the regularity of functions and their self-similar properties

play a role. Since the theory of circle maps has a well developed mathematical

literature, it seemed a good starting point to asses the validity of the methods.

We also find evidence that the conjugating functions are asymptoti-
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cally self-similar confirming by very different methods the results obtained

previously for cubic critical maps. (See the numerical studies by Arneodo and

Holschneider [2].)

The fact that we have precise numbers for the regularity of the con-

jugacies predicted in the theorems allows us to observe that in some cases

some simple upper bounds for the regularity of the conjugacies appear to be

sharp, whereas in other cases they seem to be very far from optimal. This in-

dicates that possibly there are conceptually different phenomena at play. (See

Section 4.7.)

This chapter is organized as follows. In Section 4.2.2, we review some

definitions and rigorous results about circle maps and conjugacies between

them (the results for the noncritical maps were discussed in Section 2.4 In

Section 4.3 we discuss how the conjugacies are calculated and explore them

visually. In Section 4.4 we collect some results from harmonic analysis and in

Section 4.5 we discuss them from point of view of numerically implementations.

In Section 4.6 we show the results from our analysis. It Section 4.7, we develop

some mathematically rigorous arguments that show that if certain scaling re-

lations are present, the regularity of the conjugacies are bounded from above.

The scaling relations can be verified numerically. We compare these upper

bounds with the regularities calculated directly. In the Conclusion, we briefly

recapitulate our findings.
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4.2 Critical Circle Maps

4.2.1 Consequences of the Nondifferentiability of the Inverse Map
in Denjoy’s Theorem

Recall that Denjoy theorem (Theorem 2.4.2) says that a circle diffeo-

morphism F with irrational rotation number and derivative of bounded vari-

ation (in particular, every C2 circle map) is topologically conjugate to a rota-

tion. In this theorem, it is important that f−1 is differentiable. If f−1 is not

differentiable, one cannot guarantee the existence of a conjugacy to a rotation

even by assuming that f is C∞. The article of Hall [88] contains an example

of a C∞ circle map with rotation number ρ (for any irrational ρ ∈ [0, 1)) which

has no dense orbit and therefore cannot be conjugate to rρ. This map is onto,

has no periodic orbits and has no more than two points where the derivative

of the map vanishes (in fact, one can construct such a map with one critical

point only).

In striking contrast with the C∞ Denjoy counterexamples of [88], it was

shown by Yoccoz [209] that the maps exhibiting the behavior of those in [88]

cannot be real analytic. More precisely,

Theorem 4.2.1 (Yoccoz). Any real analytic circle map with no periodic

orbits is topologically conjugate to a rotation.

This theorem guarantees that any two real analytic circle maps with

irrational rotation number are topologically conjugate (we will use this fact in

Section 4.3.3).

The above result was extended by Świa̧tek [184, 185].
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4.2.2 Results for Critical Circle Maps

We recall that a critical circle map is a circle homeomorphism such that

the derivative is positive except for one point where it is zero of with finite

order. The order of the zero is called the type of the critical map.

The following result was proved recently (de Faria and de Melo [45, 46],

see also de Melo [47], de Faria [44], Yampolsky [207]):

Theorem 4.2.2. Let f and g be real analytic critical circle maps with the

same rotation number ρ of bounded type. Then f and g are C1+α conjugate

for some α ∈ (0, 1) depending only on the combinatorial type, N := supn ρn,

of ρ.

It was conjectured in [47] that the Hölder exponent of the conjugacy

between two critical circle maps whose critical points are if the same order and

which have the same rotation number of bounded type does not depend on N

(although in the proof of Theorem 4.2.2 α does depend on N).

For the regularity of the conjugacies between critical maps and rota-

tions, which exist because of Theorem 4.2.1, the sharpest result we are aware

of is from Świa̧tek [185], whose Theorem 1.1 (the theorem and a previous proof

are credited to an unpublished manuscript of M. Herman) implies:

Theorem 4.2.3. Let f be an analytic critical circle map with an irrational

rotation number. The conjugacy between the map and a rotation is quasi-

symmetric if and only if the rotation number is of constant type.
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We note that it is a well-known fact in the theory of quasi-conformal

maps that the quasi-symmetric maps are Hölder (Väisälä [189, Section 18]).

Hence, we can conclude that the conjugacy between a critical map and a

rotation is Hölder. Therefore, the conjugacies between critical circle maps of

the same rotation number have to be Hölder with exponent 1.

It is not difficult to show that, when the critical maps have different

order, the conjugacy between them cannot have Hölder exponent 1.

Putting together Theorem 4.2.3, the Hölder regularity of quasi-symmetric

maps and Theorem 4.2.2, we obtain:

Corollary 4.2.4. The conjugacy between critical circle maps with golden mean

rotation number is Hölder. The Hölder exponent depends only on the order of

the critical points of the two functions.

The above results seem to give very little information about what the

actual values of these regularities are. In this paper, we will develop methods

that allow us to compute these numbers as well as to explore numerically some

geometric properties of the conjugacies.

4.2.3 Some General Heuristic Remarks on Renormalization and
Conjugacies

A unifying point of view in the study of long term dynamics – es-

pecially in one-dimensional systems – has been provided by the scaling and

renormalization group ideas.
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Formulated somewhat loosely, the unifying idea of renormalization group

can be formulated as saying that “highly iterated maps, when observed in small

scales, have forms that are largely independent of the map” (the universal

properties can be different in sets of maps of positive codimension).

In this section, we want to present a heuristic point of view on the

relations of the renormalization and smoothness of conjugacy which seems to

be applicable to a wide variety of models.

The main connection of the study of regularity properties of conjuga-

cies and renormalization group arises from the fact that the regularity of the

conjugacies is a very good test of universality properties.

Note that regularity depends on very fine scales. Moreover, formula (4.8)

that we will establish later, makes it clear that the conjugacies in increasingly

small scales are determined by the increasingly long recurrence times.

The fact that some conjugacies examined in very small scales are self-

similar leads, at least in an informal way, to several consequences of univer-

sality for the conjugacies that we will later explore empirically.

(A1) The regularity of the conjugacies between maps of the same universality

class is a “universal number”.

Note that for the case of golden mean circle maps this is a consequence

of Corollary 4.2.4.

(A2) These universal regularities between maps in the same class are higher

than those between maps of different classes.
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Note that for circle maps, this follows from the observation that critical

circle maps can be only Hölder of exponent less than one conjugate to

maps with critical points of different order and that by Theorem 4.2.2,

the conjugacies between maps of the same order is C1+α.

(A3) The functions giving the conjugacies are asymptotically self-similar.

If h1 and h2 are conjugacies of maps f1, f2 to the golden mean rotation,

(i.e., f1 ◦h1 = h1 ◦rσG
, f2 ◦h2 = h2 ◦rσG

), then f1 ◦h1 ◦h−1
2 = h1 ◦h−1

2 ◦f2. The

fact that we observe that h1 ◦ h−1
2 = k, h−1

1 ◦ h2 = ` are very smooth means

that h1 = k ◦ h2, h1 = h2 ◦ `−1, in other words, we can obtain h1 from h2 by

composing with a very smooth map. This makes precise the notion that h1

and h2 are very similar. Even if each of them is rather rough, the roughness

of one is very precisely comparable to that of the other.

We hope that the present work could serve as a stimulus for further

mathematical investigations. Our numerics are precise enough that we can

even study the corrections to (A3). We formulate them as

(A4) The convergence to self-similarity is exponentially fast.

Somewhat more precisely (but still very far from a mathematically

rigorous statement), we can write conjugacies in the form

h(x) =
∑

n

λn
1 H1(α

nx) +
∑

n

λn
2 H2(α

nx) + · · · (4.1)
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for some |α| > 1, 1 > λ1 > λ2 > · · · , where µ, λ1, λ2, . . . are universal

numbers.

Of course, scalings such as those in (4.1) do not, strictly speaking, make

sense in the case that the variables are in the circle. Nevertheless, since (4.1)

is supposed to hold in the asymptotic sense of the very small scales, we can

identify the whole circle with the real line.

We also note the following conjecture that seems to be reasonable for

many areas in which renormalization applies. For the case of period doubling

it is studied extensively by de la Llave and Schafer [133].

Conjecture 4.2.1. Consider the set Mν (for odd integer ν ≥ 1) of analytic maps

of the circle such that:

(a) The maps are homeomorphisms.

(b) They are of the form f(x) = Axν + O(xν+1) with A a nonzero constant

(hence f is a homeomorphism but not a diffeomorphism).

(c) Their rotation number is the golden mean σG.

Note that the sets Mν are manifolds.

Then in an open set Bν ∈ Mν we can find foliations Fi, integers di, and

numbers λi (di > di+1, λi < λi+1, λi → ∞) such that, if Wi
f is the leaf of Fi

passing through the map f , then:

(1) Wi
f ⊂ W

i+1
f .
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(2) Wi
f is a smooth submanifold of Mν of codimension di.

(3) The foliations Fi are Hölder (i.e., the ∞-jets of the leaves Wi
f are Hölder

with respect to f).

(4) If f ∈ Wi
g, then f is Cλi−ε conjugate to g for each ε > 0.

(5) if f /∈ Wi
g, then f is not Cλi+ε conjugate to g for each ε > 0.

The most important consequence of this conjecture is that the conju-

gacies between maps in the classes Mν can only have regularities which belong

to a discrete set {λi} (ignoring the ε’s which are as small as desired). In

particular, if we know that a conjugacy is Cλi+ε, we can conclude that it is

Cλi+1−ε.

In the rest of the paper, we will present methods that allow us to

carry high precision calculation of golden mean circle maps as well as an array

of methods that asses the regularity of their conjugacies. By comparing the

results of these different methods among themselves and with the results of the

mathematical literature, we can asses their validity and hope to apply them

to other contexts.

In the process of doing that, we also obtain some information about

the relation between the regularity and renormalization. In particular, in

Section 4.7, we obtain indications that the regularities may be limited by

other mechanisms that just simple scaling phenomena.
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4.3 Computing the Conjugacies

4.3.1 Examples Studied

Let f and g be analytic circle maps whose derivatives possibly vanish

at one point; without loss of generality we can take this point to be x = 0. We

studied numerically the following families of analytic circle maps (for values

of K for which the maps are invertible):

(i) the noncritical (N) family (0 ≤ K < 1)

fN
K, ω(x) =

(
x + ω − K

2π
sin 2πx

)
mod 1 ; (4.2)

(ii) the cubic critical (C) family (0 ≤ K < 4
3
)

fC
K, ω(x) =

[
x + ω − 1

2π
(K sin 2πx + 1−K

2
sin 4πx)

]
mod 1 , (4.3)

where the coefficients are chosen in such a way that for every K,

fC
K, ω(x) = ω + 2π2(4−3K)

3
x3 + O(x5) ;

(iii) the quintic critical (Q) family (1
2
≤ K < 3

2
)

fQ
K, ω(x) =

[
x + ω − 1

2π
(K sin 2πx+9−8K

10
sin 4πx+ 3K−4

15
sin 6πx)

]
mod 1 ,

where the coefficients are chosen in such a way that for every K,

fQ
K, ω(x) = ω + 8π4(3−2K)

5
x5 + O(x7) .
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Of course, there are similar formulae for higher order critical points, but the

numerics cannot be carried out easily.

We studied the case of rotation number equal to the golden mean σG:

τ(f •
K, ω)

∣∣
ω = Ω•(K)

= σG , (4.4)

where • stands for N, C, or Q. The golden mean is chosen because its continued

fraction expansion is periodic (and simple). Hence, renormalization arguments

can be expressed in terms of operators and, since all partial quotients of σG

are 1, renormalization operators are as simple as possible.

Since we have to iterate f •
K, ω, we need to know the value of Ω•(K) with

a very high precision. To achieve this, we used the C++ software package

doubledouble developed by Briggs [16]. This package allowed us to use about

30 decimal places floating point precision arithmetic and to find 24–25 digits

of the parameter Ω•(K) in the case of N circle maps and about 16 digits of

Ω•(K) in the C and Q cases.

To double-check the results, we also used the GNU MP library [187] –

a public domain library for arbitrary precision arithmetic. We wrote subrou-

tines for high precision trigonometric functions, which we did by using local

Taylor series expansion, and tested them by using the following elegant and

numerically stable method.

For x, y positive, define x1 := x, y1 := y, and

xn+1 :=
xn + yn

2
, yn+1 :=

√
xnyn
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for n ∈ N. The sequences {xn} and {yn} converge quadratically to a common

limit called the arithmetic-geometric mean (AGM) of x and y, M(x, y) (see,

e.g., Borwein and Borwein [13]). The AGM has many remarkable properties,

e.g.,

2

π

∫ π/2

0

dζ√
x2 cos2 ζ + y2 sin2 ζ

=
1

M(x, y)

(in particular, elliptic integrals can be calculated through the AGM). To cal-

culate precisely trigonometric functions, e.g., sin, one can use the fact that

arcsin x =
x

M(
√

1 − x2, 1)
,

and calculate sin as the inverse function by using, for instance, the program

zeroin (which is quadratically convergent, so each iteration doubles the num-

ber of correct digits).

The AGM has been used for precise computations, e.g., in Brent [15];

see also the discussion in Borwein and Borwein [12] (both papers reprinted in

Berggren et al [10]).

4.3.2 Calculating the Parameters for Rotation Number the Golden
Mean

Having chosen some K (for which f •
K, ω is a homeomorphism), we first

have to determine the value Ω•(K) such that (4.4) is satisfied. To achieve this,

we use the following method (Greene [86], Shenker [179]). First we determine

the phase-locking intervals

I•
K, n :=

{
ω ∈ [0, 1]

∣∣∣ τ(f •
K, ω) = Qn

Qn+1

}
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(n ∈ N). It is guaranteed that the value Ω•(K) we are looking for is between

I•
K, n and I•

K, n+1. If Ω•
n(K) is the end of I•

K, n that is closer to I•
K, n+1, then we

assume that

Ω•
n(K) = Ω•(K) + Cβn

• , (4.5)

for some constants −1 < β• < 0 and C (β• is a universal number that depends

only on the degree of the critical point, while C is different for different maps),

and find Ω•(K) by Aitken extrapolation (see Press et al [165]). This assump-

tion does not affect the validity of our results, but it speeds up our searches

since the rotation numbers of fewer maps are computed. We note that the

renormalization group picture also predicts (4.5). Moreover, this assumption

is in an excellent agreement with our numerics:

(a) in the N case, we find

βN = −0.381966011250 ± 10−12 = −σG
κN

for |κN − 2| < 6 × 10−12 (according to Theorem 2.4.3, κN = 2);

(b) in the C case, we find

βC = −0.3529067 ± 10−7 = −σG
κC

for κC = 2.1644347 ± 0.0000006;

(c) in the Q case, we find

βQ = −0.32858 ± 10−5 = −σG
κQ

for κQ = 2.31286 ± 0.00006.
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The values we found are in perfect agreement with those found by Shenker

[179] (for the C case), and, for different families of circle maps, by Hu et al

[99], Delbourgo and Kenny [49]. Note that what we call β is called in these

papers δ−1).

To find the phase-locking interval I•
K, n, we used that when ω enters this

interval, the map

x 7→ (F •
K, ω)Qn+1(x) − Qn

(where F •
K, ω is the lift of f •

K, ω, i.e., it is given by the same formula as f •
K, ω,

but without the mod 1) undergoes a tangent bifurcation. To determine the

values at which bifurcations occur, we used the subroutines fmin and zeroin

from Forsythe et al [74] (translated into C and slightly modified).

We will denote by f •
K the map f •

K,Ω•(K) for Ω•(K) such that τ(f •
K) = σG.

In the table below we give the values of Ω•(K) for the values of K we studied

numerically.

Map Ω•(K)
fN

0.2 0.617425455584922780978570
fN

0.3 0.6166923606057855021928
fN

0.5 0.6145263876774487765559862
fN

0.8 0.61007440530846512053842071
fC

0.3 0.626871059546737818
fC

0.6 0.617607758640542315
fC

0.7 0.6148131852529150525
fC

1.0 0.606661063470112017

fQ
0.6 0.633133040895040332

fQ
0.9 0.616330501795706578

fQ
1.2 0.60250115301615805

fQ
4/3 0.59694625982733198
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4.3.3 Calculating the Conjugacies on an Equidistant Grid

Having found appropriate values of the parameters of the maps f and

g such that τ(f) = τ(g) = σG, we construct numerically the conjugacy h

between them. Instead of h, it is more convenient to study

θ := h − Id . (4.6)

because θ is a periodic function, hence it is better suited for harmonic analysis.

For brevity, we will denote the map θ defined by (4.6) for h being a conjugacy

between, say, an N map f and a C map g by θNC, and will call θ a “conjugacy”.

From (2.4.3) we obtain

h ◦ fn = gn ◦ h . (4.7)

Theorem 4.2.1 guaranteeing the existence of the conjugacies between f (resp. g)

and the rotation rσG
allows us to impose the condition h(0) = 0 or, equiva-

lently, θ(0) = 0. This implies that θ(fn(0)) = gn(0) − fn(0), so the points

(fn(0), gn(0) − fn(0)) (4.8)

belong to the graph of θ and fill it densely. It is apparent that one can compute

the points in (4.8) by iterating f and g on 0.

One problem with the calculation above is that the points in (4.8) do

not have first coordinates that are distributed on a equidistant grid, and to

apply fast Fourier of wavelet transforms, we need to know the values of θ on

an equidistant grid. We used the grid

x` := 2−L` , ` = 0, 1, . . . , 2L − 1 (4.9)
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for some L ∈ N (typically about 20). Since the iterates {fn(0)} are not

equidistantly distributed, we used interpolation and calculated the values of

the interpolating function at the points {x`}2L−1
`=0 . To this end, we used the

cubic interpolation subroutines spline and seval from Forsythe et al [74] (the

periodicity of θ was taken into account).

An important source of difficulty for the numerical computation is the

fact that the iterates of a C or a Q map are very nonuniformly distributed. To

give an idea about the seriousness of the problem, we have shown in Figure 4.1

the distribution of four million iterates of fQ
0.6 and, for comparison, of fN

0.3, in

256 bins, each of size 1
256

, between 0 and 1. The number of iterates of fQ
0.6 in

a bin varies from 15 to 118304; for fN
0.5 it varies from 13076 to 18739. The

largest gap between the iterates of fQ
0.6 is 0.001308.

If the gaps are very large, it is complicated and unstable to compute

the values of the interpolating function at the gaps. The way we found to

deal with this problem is to use a large number of iterates which, however, is

very memory consuming and leads to accumulation of numerical error. This

problem becomes more severe when the order of the critical point is higher.

This is the main reason why our investigation did not cover critical maps of

degree higher than 5.

4.3.4 Conjugacies – Visual Explorations

Theorem 2.4.3 guarantees that each θNN (recall that this means a con-

jugacy between two N circle maps) is analytic, but does not say anything
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Figure 4.1: Density of the iterates of a Q map. The number of iterates in a
bin (in thousands) vs. the position of the bin, for four million iterates of fQ

0.6

(thin line) and of fN
0.5 (thick line), in 256 bins.

153



about critical circle maps. The goal of this paper is to study the conjugacies

of critical circle maps to a golden mean rotation and assess their regularity

and asymptotic scaling properties.

To motivate our subsequent analysis, we start with some preliminary

visual explorations.

In Figure 4.2 we show two θNC and one θCC. Obviously the θNC’s are

less differentiable then the θCC; visually, θCC is smoother than C1.

In Figure 4.3 we show the conjugacies between a map of type N (resp.

C, Q) and a Q map. Again, the conjugacy between two maps of the same type

is evidently more differentiable than the ones between maps of different types.

Another observation is the self-similar structure of the conjugacy be-

tween an N map and a critical (C or Q) map. To illustrate this, in Figure 4.4

we show magnified regions of the conjugacy between fN
0.8 and fQ

0.9. The self-

similarity of the conjugacies between an N and a C map is one of the predictions

of the theory of renormalization for C maps; we observed a self-similar struc-

ture in the case of the conjugacy between an N map and a Q map as well.

The self-similarity of the conjugacies of type θNC and θNQ can be seen

distinctly from their Fourier spectra displayed in log-log form (Figures 4.5

and 4.6). The self-similarity manifests itself in the “periodicity” of the Fourier

spectrum for large |k|’s.

This effect becomes even more prominent in the plot of log10(|k|λ|θ̂k|)
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Figure 4.2: Conjugacies θ between: fN
0.2 and fC

0.3 (thin solid line), fN
0.2 and fC

0.6

(thick solid line), and fC
0.6 and fC

0.3 (dashed line).
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Figure 4.3: Conjugacies θ between: fN
0.3 and fQ

0.9 (thin solid line), fC
0.6 and fQ

0.9

(thick solid line), and fQ
0.6 and fQ

0.9 (dashed line).
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Figure 4.4: Zooming in the graph of the conjugacy between fN
0.8 and fQ

0.9.

157



vs. log10 |k|, as shown in Figures 4.7 (for θNC, λ = 1.29) and 4.8 (for θNQ,

λ = 1.19). In both cases, the width of the “periodic windows” is approximately

equal to log10 σG, as predicted by renormalization theory.
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Figure 4.5: Plot of log10 |θ̂k| vs. log10 k where θ is the conjugacy between fN
0.2

and fC
0.6.
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Figure 4.6: Plot of log10 |θ̂k| vs. log10 k where θ is the conjugacy between fN
0.3

and fQ
0.9.
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Figure 4.7: Plot of log10(|k|1.29|θ̂k|) vs. log10 |k| where θ is the conjugacy be-
tweeh fN

0.2 and fC
1.0.
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Figure 4.8: Plot of log10(|k|1.19|θ̂k|) vs. log10 |k| where θ is the conjugacy be-
tween fN

0.2 and fQ
0.6.
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4.4 Methods for Studying the Regularity

In this section we describe the function spaces studied and collect the

theorems from harmonic analysis we used to compute the regularity of conju-

gacies.

4.4.1 Hölder Spaces

Let Cn(T) (n ∈ N) stand for the space of n times continuously differ-

entiable functions on T.

Definition 4.4.1. The Hölder spaces Λα(T) are defined as follows.

• For α ∈ (0, 1):

‖θ‖Λα(T) := sup
|y|>0

|θ(x + y) − θ(x)|
|y|α ,

Λα(T) :=
{

θ ∈ L∞(T) : ‖θ‖Λα(T) < ∞
}

,

• For α = n + α′ (n ∈ N, α′ ∈ (0, 1)):

Λα(T) :=
{

θ ∈ Cn(T) : θ(n) ∈ Λα′(T)
}

.

• For α = 1:

‖θ‖Λ1(T) := ‖θ‖L∞(T) + sup
|y|>0

|θ(x + y) + θ(x − y) − 2θ(x)|
|y| ,

Λ1(T) :=
{

θ ∈ L∞(T) ∩ C0(T) : ‖θ‖Λ1(T) < ∞
}

.
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• For α = n ∈ {2, 3, 4, . . .}:

Λn(T) :=
{

θ ∈ L∞(T) ∩ Cn−1(T) : θ(n−1) ∈ Λ1(T)
}

.

Remark 4.4.1. 1. C1(T) ⊂ Lip (T) ⊂ Λ1(T) and Cn(T) ⊂ Λn(T) (n ≥ 2);

all these inclusions are strict.

2. Every θ ∈ Λα(T) (0 < α) may be modified on a set of measure zero so

that it becomes continuous (Stein [182, Section V.4.1]).

The spaces in these scales have several characterizations some of which

lead to algorithms that can be used to assess the regularity of functions. Some

of these characterizations will de discussed in Sections 4.4.2, 4.4.3, 4.4.4. The

numerical implementation of these methods will be discussed in Section 4.5.

4.4.2 Finite Differences Method

In this subsection we discuss the characterization of Hölder spaces by

means of finite differences (FD) (Krantz [116]).

Let Dn
y be the finite difference operator,

(
D

n
yθ

)
(x) :=

n∑

j=0

(−1)j

(
n

j

)
θ(x + (n − 2j)y) .

Theorem 4.4.1 (FD). Let θ ∈ L∞(T) ∩ C0(T) and 0 < α < n ∈ Z. Then

θ ∈ Λα(T) if and only if ∃ C > 0 such that ∀ y ∈ T

‖Dn
yθ‖L∞(T) ≤ C|y|α (4.10)

for all y ∈ T.
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The FD method is simple and convenient to use if one can compute the

values of the function in points that are arbitrarily close and equally spaced.

As mentioned before, this requires to use intepolation between the iterates

fn(0).

4.4.3 Fourier Methods – Littlewood-Paley Theorem

The trigonometric system {e2πikx}k∈Z is an orthonormal basis of L2(T, dx),

hence, according to the Plancherel’s theorem, a function

θ(x) =
∑

k∈Z

θ̂k e2πikx (4.11)

belongs to L2(T) if and only if

∑

k∈Z

|θ̂k|2 < ∞ .

The main result of Littlewood-Paley theory is that similar characteri-

zation of Lp(T) (1 < p < ∞) can be obtained by grouping the terms of the

Fourier series in dyadic blocks. Define the decomposition

θ =
∞∑

M=1

LMθ

of θ ∈ L1(T) in dyadic partial sums

(LMθ) (x) :=
∑

AM−1≤|k|<AM

θ̂k e2πikx ,

(M ∈ N), L0θ := θ̂0, and A > 1.
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Remark 4.4.2. Usually A is taken to be 2, since the precise value does not

make any difference for the mathematical treatment.

In the numerical applications, we will find it convenient to use some

A’s different from 2. Nevertheless, we have not introduced A in the notation,

since it will be clear from the context, and we follow the standard practice of

calling the decomposition “dyadic”.

The dyadic blocks can be written as

LMθ = (φAM − φAM−1) ∗ θ , (4.12)

where the function

φN(x) :=
∑

|k|<N

e2πikx (4.13)

plays a role of a “low-pass filter”, or, in the terminology of physicists, intro-

duces an “ultraviolet” cutoff.

To formulate the celebrated Littlewood-Paley (LP) theorem, let us in-

troduce the Littlewood-Paley d-function,

d(θ)(x) :=

( ∞∑

M=0

|LMθ(x)|2
)1/2

,

and its “continuous” analog, the G-function,

G(θ)(x) :=

(∫ 1

0

(1 − s)

∣∣∣∣
(

dPs

ds
∗ θ

)
(x)

∣∣∣∣
2

ds

)1/2

,

where

Ps(x) =
∑

k∈Z

s|k| e2πikx

=
1 − s2

1 − 2s cos 2πx + s2
, s ∈ [0, 1) (4.14)
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is the periodic Poisson kernel. Note that if ∆ is the Laplacian, then

Pexp(−2πt) ∗ θ(x) = e−t
√
−∆ θ(x)

=
∑

k∈Z

θ̂k e−2πt|k| e2πikx .

Heuristically, it seems clear that the partial sums, φn ∗ θ, behave like

the Abel means, P1− 1
n
∗ θ. In fact, one can prove that the Lp(T) norms of d(θ)

and G(θ) are equivalent for 1 < p < ∞ if θ̂0 = 0.

Remark 4.4.3. The Poisson kernel can also be considered as defined on the

real line. In that case, it can be given by the formula Pt = e−t
√
−∆ or as the

convolution with the kernel Pt(x) = π−1/2 t/(x2 + t2).

Note that we can consider a periodic function of period 1 on the real

line as a function on the circle. When we apply the real Poisson kernel to a

periodic function of period 1, it also produces a periodic function of period 1.

It is well known and not difficult to check (Poisson summation formula)

that it is the same to apply the real Poisson kernel to a periodic function of

period one defined on R or to consider the function as defined on the circle

and to apply the periodic Poisson kernel (4.14).

Remark 4.4.4. On the real line it makes sense to define scaling transformations

and to investigate how the Poisson kernel behaves under scalings. It is very

easy to check that, for every λ > 0, the Poisson kernel on R satisfies

Pλt(λx) = λ−1Pt(x) . (4.15)
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On the circle, we cannot speak about scaling, therefore the relation

(4.15) does not, strictly speaking, make sense for the Poisson kernel on the

circle when λ is not an integer. Nevertheless, for small scales, the circle can be

identified with the real line, so that the scalings of the periodic Poisson kernel

can be used when examining asymptotic features in small scales.

Theorem 4.4.2 (Littlewood-Paley). If θ ∈ Lp(T), 1 < p < ∞, then there

exist positive constants Ap and Bp such that

Ap ‖θ‖Lp(T) ≤ ‖d(θ)‖Lp(T) ≤ Bp ‖θ‖Lp(T) .

Analogous inequalities hold for G(θ) in place of d(θ).

Theorem 4.4.2 has many important implications. In particular, it gives

useful characterizations of Sobolev, Hölder, Hardy, Besov spaces – see, e.g.,

Stein [182, Chapter 5], Hernández and Weiss [96, Chapter 6], Meyer [141,

Chapter 6], Frazier et al [75].

In our numerical explorations, we used methods based on the following

two corollaries of Theorem 4.4.2, which we will call “discrete” (DLP) and

“continuous” (CLP) versions of the Littlewood-Paley theorem.

Theorem 4.4.3 (DLP). [116, Theorem 5.9] The function θ (4.11) is of

class Λα(T) (α ∈ R+) if and only if there exists a C > 0 such that for any

M ∈ N

‖LMθ‖L∞(T) ≤ C A−αM . (4.16)
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Theorem 4.4.4 (CLP). [182, Chapter 5, Lemma 5] The function θ (4.11)

is of class Λα(T) (α ∈ R+) if and only if for each η ≥ 0 there exists a C > 0

such that for any t > 0

∣∣∣∣
∣∣∣∣
(

∂

∂t

)η

e−t
√
−∆ θ

∣∣∣∣
∣∣∣∣
L∞(T)

≤ C tα−η . (4.17)

4.4.4 Wavelet Methods

In this section we discuss the application of wavelet theory.

The guiding idea of wavelet theory is to decompose functions systemat-

ically into functions that have definite scales decreasing geometrically. This is,

of course, related to the decompositions used in Littlewood-Paley (cf. (4.12)).

Since the formalism is quite systematic, it is well suited for numerical imple-

mentations.

Expansions in wavelet bases are very well suited to studying the local

properties of functions because of their localization in space. Wavelet methods

are especially appropriate for analyzing self-similar functions like some of the

conjugacies between circle maps studied in this paper. Below we introduce the

notations and collect the basic theoretical results about regularity of functions

expanded in wavelet bases. For more details we refer the reader to Meyer

[141], Daubechies [42], Mallat [138], Hernández and Weiss [96], Härdle et al

[90], Louis et al [137].

Let L2(T)2L be the “discrete” version of the space of square integrable

circle maps, i.e., the 2L-dimensional space of the circle maps defined on the
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grid x` = 2−L`, ` = 0, 1, . . ., 2L − 1. We use the following multiresolution

analysis of L2(T)2L :

V0 ⊂ V1 ⊂ · · · ⊂ VL−1 ⊂ VL = L2(T)2L .

Let Wj be the orthogonal complement of Vj in Vj+1, so that

L2(T)2L = V0 ⊕
(

L−1⊕

j=0

Wj

)
;

dim Vj = dim Wj = 2j .

The space Wj is spanned by {ψjk}2j−1
k=0 , where

ψjk(x) = 2j/2ψ(2jx − k)

and ψ is the “mother wavelet”. Let θ2L := {θ(x`)}2L−1
`=0 ∈ L2(T)2L be the

discrete representation of the function θ, and

ΠJ : L2(T)2L → VJ : θ2L 7→
J∑

j=0

2j−1∑

k=0

〈θ, ψjk〉ψjk

be the projections onto VJ , J = 0, 1, . . ., L.

Littlewood-Paley theorem can be generalized to bases other than the

trigonometric one by observing that the proofs do not use the explicit form of

φN (4.13) and Ps (4.14), but only some of their properties, so that the results

are valid for larger function classes. In particular, the following theorem holds:

Theorem 4.4.5. [96, Th. 7.16] If ψ ∈ Λα(T), then the function θ is of class

Λα(T) if and only if there exists a C > 0 such that for any j ∈ N

sup
0≤k≤2j−1

|〈θ, ψjk〉| ≤ C 2−j(α+ 1
2
) . (4.18)
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Another formulation which is useful for numerical computations is

Theorem 4.4.6. If ψ ∈ Λα(T), then the function θ is of class Λα(T) if and

only if there exists a C > 0 such that for any j ∈ N

‖θ − Πjθ‖L∞(T) ≤ C 2−jα . (4.19)

For more subtle results on applications of wavelets to studies of lo-

cal regularity of functions, see Jaffard and Meyer [103], Holschneider and

Tchamitchian [98], Jaffard [102], Meyer [142].

In this paper we will not explore local regularity, even if our numerical

methods are related to the results in Jaffard [102].

4.5 Numerical Implementation

In this subsection we discuss the numerical implementation of the the-

orems from Section 4.4.

4.5.1 General Remarks

The numerical implementation brings us a wealth of issues which we

will try to discuss.

One issue is that the characterizations mentioned above involve inequal-

ities that have to be satisfied for an infinite number of integers. Obviously, the

numerical calculation can only compute the Fourier and wavelet transform up

to a finite order. It is conceivable that the behavior of the functions is different

for high Fourier modes than for the values that can be explored.
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In spite of the above solipsistic argument, there are good reasons (a

renormalization group description) that strongly suggest that the functions

we are studying are asymptotically self-similar, so that the the study of a fi-

nite number of scales predicts accurately the behavior at all scales. Indeed, we

find empirically that the upper bounds giving the regularity become approxi-

mately identities. We see that, after a very short transient, the upper bounds

become identities up to a small periodic error whose interpretation we discuss

in Section 4.5.5.

Because of this empirical observation and the renormalization group

description, we believe that it is reasonable to extrapolate from the observed

values and conclude that the upper bounds giving regularity are saturated to

all scales.

Another issue that one has to discuss in numerical implementations is

the effect of the round off and discretization error. This analysis is very similar

to the standard considerations of numerical analysis.

Finding numerically the regularity of functions that are very smooth

is difficult because their Fourier/wavelet coefficients decrease faster. That is

why we were not able to asses the precise values of the smoothness of the

conjugacies of type θCC and θQQ, whose smoothness is more than one.

In these two cases, as well as for all conjugacies between f and g for f

being critical (C or Q), an important issue is the presence of big gaps between

the iterates fn(0) (see Section 4.3.3). This is due to the fact that we perform
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Fast Fourier Transform (FFT) or Discrete Wavelet Transform (DWT) not on

the exact values of θ at the points x` (4.9), but on the values of the interpolating

cubic polynomials at these points, which significantly deteriorates the precision

of the spectra.

For the FFT, we used the routines four1 and realft from Press et

al [165] (for long double precision).

For the DWT, we used the freely available C routines documented in

detail in the book by Wickerhauser [195].

For the graphing and some of the data analysis, we used the plotting

tool ACE/gr.

Numerically, the most important restriction on the number of Fourier

or wavelet coefficients computed was not the speed, but the memory usage (in

some of the cases about 200 Mb).

4.5.2 Calibration of the Methods

To asses the validity of the numerical methods that have been em-

ployed, we have taken an empirical approach, testing them on functions whose

regularity is known.

One particularly good class of functions for calibration are the Weier-

strass functions

wa,b(x) =
∞∑

k=1

ak sin(2πbkx) , (4.20)

where a < 1, b ∈ N. As it is well known, wa,b ∈ Λ− logb a and for any δ > 0,
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wa,b /∈ Λ− logb a+δ.

To calibrate our numerical methods, we have generated the wa,b func-

tions at points obtained by iterating the diffeomorphisms we are studying.

Then, we obtained the regularity applying the methods outlined above.

This procedure gave us an idea of the severity of the problem of the

lack of equidistribution of the iterates.

We think that the use of Weierstrass function to calibrate the methods

is appropriate because the working hypothesis (A3) asserts that the functions

we are studying are very similar to the functions (4.20). Hence, one can hope

that the problems of interpolation and lack of distribution can be assessed by

testing the methods on (4.20).

4.5.3 Finite Differences Method

We applied Theorem 4.4.1 for y = 2−j, in which case (4.10) yields

log2 ‖Dn
2−jθ‖L∞(T) ≤ const − αj

(naturally, one can consider the case of arbitrary y’s). As examples of the

results obtained by applying this method, we show in Figure 4.9 the plot of

log2 ‖D1
2−jθ‖L∞(T) as a function of j for four conjugacies of type NC (x’s) and

four ones of type CQ (circles); to calculate θNC, we used 107 iterates and

222 interpolated values, while for θCQ these numbers were 2 × 106 and 222,

respectively.

In the favorable case (NC), we see that the numerical results correspond
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Figure 4.9: Plot of log2 ‖D1
2−jθ‖L∞(T) vs. j for four θNC’s (x’s) and four θCQ’s

(circles).
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to parallel straight lines that cover the whole range plotted. On the other hand,

in the unfavorable case (CQ), the numerical results present two straight lines

joined by a break.

This can be clearly explained because the graph presented for the NC

case includes computations of in which many of the points in the finite differ-

ence operator are included in the gaps. Hence, the finite difference operator is

observing the regularity of the interpolating spline.

In the NC case the gaps between the iterates did not exceed 1.5×10−7.

At the same time, in the CQ case the maximum gap was about 2×10−4 ≈ 2−12,

which corresponds quite exactly to the position of the break in the graph.

When we restrict the differences to regions which are larger than the

gaps, the method produces results consistent with the other methods.

4.5.4 DLP Method

Theorem 4.4.3 implies that

logA ‖LMθ‖L∞(T) ≤ const − αM ,

i.e., the Hölder exponent of θ is the negative of the slope of the graph of

logA ‖LMθ‖L∞(T) vs. M .

Graphs of this type for some classes of conjugacies are shown in Fig-

ure 4.10. Each case is represented by two conjugacies, the first one depicted by

a big empty shape, and the second one – by a small full shape: (fN
0.3, fC

0.6) and

(fN
0.3, fC

0.7) – circles, (fN
0.5, fQ

0.6) and (fN
0.5, fQ

0.9) – squares, (fC
0.6, fQ

0.6) and (fC
0.3,
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fQ
0.9) – diamonds, (fC

0.6, fC
0.3) and (fC

0.7, fC
0.6) – triangles down, (fQ

0.6, fQ
0.9) and

(fQ
0.9, fQ

1.2) – triangles up. Clearly, the smoothness of the conjugacies of differ-

ent classes is different, but this graph does not allow us to find the smoothness

of the conjugacies precisely (and for θCC and θQQ the results are very poor).

The reasons for this are the following.

Firstly, each point on this graph is computed by using not all Fourier

coefficients of θ, but only a dyadic block of them, so for small M the points on

the graph are based on a small number of Fourier coefficients. For large M the

points are based on larger number of Fourier coefficients, but these coefficients

are affected by the numerical noise. Also, the number of points in the figure is

of order logA of the number of Fourier coefficients found, i.e., it is significantly

smaller than the number of coefficients. In our explorations we used values of

A around 1.5.
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Figure 4.10: Plot of log10 ‖LMθ‖L∞(T) vs. M (for A = 1.4) for pairs of conju-
gacies of five different types.
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4.5.5 CLP Method

From numerical point of view, CLP method (based on Theorem 4.4.4)

is much better than DLP.

First of all, we can calculate ‖ ∂η

∂tη
e−t

√
−∆f‖L∞(T) for as many values of

t as we wish. Furthermore, for each value of t, the value of this norm is based

on the values of all known Fourier coefficients of f . Finally, one can perform

calculations for different values of η and check whether they yield the same

value of α – this is a very good test of the reliability of the numerical results.

To illustrate how well this method works, we show in Figure 4.11

plots of log10 ‖ ∂2

∂t2
e−t

√
−∆w0.57, 3‖L∞(T) vs. log10 t for 222 (circles), 213 (x’s), and

210 (pluses) Fourier components based on the values of w0.57, 3 at the points

(fN
0.5)

n(0) for n = 0, . . . , 221 − 1. Evidently, the position of the plateau for

small t’s depends on the number of Fourier coefficients used in the computa-

tion. Theoretically, the regularity of w0.57, 3 is − log3 0.57 = 0.5117 . . .. The

slope of the straight line that fits best the full circles in the figure is −1.4908,

so the numerically found regularity according to (4.17) is 2− 1.4908 = 0.5092

– a value that differs from the exact one by only 0.002.

Figure 4.12 shows graphs of log10 ‖ ∂η

∂tη
e−t

√
−∆θ‖L∞(T) vs. log10 t for η =

1, 2, 3; θ is the conjugacy between fN
0.2 and fC

0.6. The results of the linear

regression of these data are the presented in the table. The uncertainties are

just the the standard errors of the regression.
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Figure 4.11: Plot of log10 ‖ ∂2

∂t2
e−t

√
−∆w0.57, 3‖L∞(T) vs. log10 t.
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Figure 4.12: Plot of log10 ‖ ∂η

∂tη
e−t

√
−∆θ‖L∞(T) vs. log10 t for η = 2 and η = 3 of

all 12 conjugacies between an N and a C map for four N and three C maps
with different parameter values. Each line connects 146 points; to obtain each
point, we have used 106 iterates and 221 ≈ 106 spline points.

181



η Range of log10 t Regularity
1 [−5.0,−4.0] 0.5247 ± 0.0009
2 [−3.5,−2.5] 0.5253 ± 0.0012
3 [−3.0,−1.5] 0.5244 ± 0.0008

In Figure 4.13, we show log10 ‖ ∂η

∂tη
e−t

√
−∆θ‖L∞(T) vs. log10 t for η = 1, 2

for all the 16 conjugacies between the four N and four C maps we considered.

We call attention to the fact that not only the lines are parallel, but they are

also very close.

The CLP method can be used also to test some features of the expansion

(4.1). Since (4.1) is supposed to hold only in the asymptotic limit of very small

scales, we can use Remark 4.4.4 and the scalings (4.15). Note that, taking the

convolution of (4.1) with the Poisson kernel and using (4.15), we obtain:

Pt ∗
[

∑

n

λn
1 (H1 ◦ αn)(x) + λn

2 (H2 ◦ αn)(x) + · · ·
]

=
∑

n

[
λn

1 [Pαnt ∗ H1](α
nx) + λn

2 [Pαnt ∗ H2](α
nx) + · · ·

]
.

If we take suprema in x and then logarithms, we obtain that the structure of

the main term for the resulting function considered as a function of log t is

a sum of a linear function and a function that is periodic. The slope of the

linear function is, of course, according to Theorem 4.4.4, the degree of differ-

entiability, but if we subtract off the linear part, we should see the periodicity.

This exploration of the first differences is undertaken in Figure 4.14,

where we plot the first differences of the graph of log10 ‖ ∂η

∂tη
e−t

√
−∆θ‖L∞(T) as

a function of log10 t (for η = 2, 3) at equally spaced points.
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Figure 4.13: Plot of log10 ‖ ∂η

∂tη
e−t

√
−∆θ‖L∞(T) vs. log10 t for η = 1, 2 for 16

conjugacies of type NC.
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Figure 4.14: Plot of the first differences of the graph of log10 ‖ ∂η

∂tη
e−t

√
−∆θ‖L∞(T)

(in arbitrary units) vs. log10 t for η = 2 and η = 3 for four θ of type NC.
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Note that taking first differences turns a linear function into a constant

and a periodic function into a periodic function. Higher order differences

eliminate the linear function and receive contributions of the periodic part.

In Figure 4.15, we show the same plot as above for four conjugacies of

type NQ and the first and second differences of the plot.

We call attention to the fact that the periodic corrections we plot

quickly become independent of the functions we start with which corresponds

to the fact that the function H1 is universal. This is particularly remarkable

for the case of second differences since they are very susceptible to numerical

errors. Hence, this gives us confidence on the reliability of the methods we

have used.

We note that the computation of first differences is one of the data

analysis features included in ACE/gr, so that it is quite feasible to carry out

these explorations in an interactive way for a variety of functions.
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Figure 4.15: Plot of log10 ‖ ∂2

∂t2
e−t

√
−∆θ‖L∞(T) vs. log10 t for four θ of type NC

and the first and second differences.
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4.5.6 Decay of Wavelet Coefficients

Theorem 4.4.5 can be used to asses the regularity of the functions we

study by examining the decay of the coefficients of wavelet transform.

Nevertheless, we do not think that for our functions it is necessary to

appeal to Theorem 4.4.5.

Note that the working hypothesis (A4) gives a representation of the

function.

It is not difficult to show that, for functions of the form (4.1) in the

working hypothesis (A4), the degree of regularity is a simple ratio between the

logarithms of λ and the scaling factor α defined in (4.1).

For functions of this form, the logarithm of the size of the projections

on a space Vj should decay linearly with j irrespective of what is the wavelet

used. In particular, one does not need to use wavelets which are smoother

than the regularity observed to obtain the scaling exponents, which also give

the regularity.

In our numerical studies we have used Daubechies wavelets of order 4,

10, 20, which we will denote as D4, D10, D20 respectively. It is known that

D4∈ Λ0.55... and not in any more regular space. For large N , D2N ∈ ΛlN where

lN ≈ 0.20775N (see, e.g., Härdle et al [90, Section 7.1]).

We note that even if Theorem 4.4.5 does not apply to the measurements

of regularity with D4 in some of the cases we consider, nevertheless, we obtain

decays which are extremely similar to those obtained using D10 or D20, for
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which Theorem 4.4.5 does apply and also extremely similar to the regularities

obtained by other methods.

Moreover, we also note that the upper bounds given by Theorem 4.4.5

are identities.

We interpret the coincidence of the rates of decays obtained by any

wavelets and the saturation of the bounds as (at least circumstantial) evidence

that the the asymptotic scalings in (4.1) indeed hold. As we will discuss later,

similar coincidences are observed for other methods.

In Figure 4.16 we show log2 supk |〈θ, ψjk〉| vs. j for several θQN and θNQ

maps. The slope of the straight lines on this graph is −(α + 1
2
).

There is one reason why this method works much better with wavelet

instead of Fourier coefficients (cf. Figure 4.10): The cubic interpolation in the

large gaps distorts all Fourier coefficients. At the same time, in the case of

wavelets it only affects the ones whose support intersects the gap; moreover,

the “artificial local smoothing” due to the interpolation decreases the wavelets

supported at the gap, which does not change supk |〈θ, ψjk〉| for fixed j.
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Figure 4.16: Plot of log2 supk |〈θ, ψjk〉| vs. j for 12 conjugacies of type NQ
(for 222 interpolated values based on 107 iterates) and 12 of type QN (for 221

interpolated values based on 106 iterates).

189



4.5.7 Approximation with Wavelets

The method based on Theorem 4.4.6 yields very good results. In Fig-

ure 4.17 we show plots of log2 ‖θ − Πjθ‖L∞(T) vs. j for several θNC and θCN.

The slope of the straight lines in this graph is −α.

As in the previous case, we note that we have used D4, D10 and D20.

Theorem 4.4.6 does not apply to D4 in some cases. We, nevertheless, find

the same linear decay as with the other methods and we interpret it as a

confirmation of the asymptotic scaling of the function.
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Figure 4.17: Plot of log2 ‖θ − Πjθ‖L∞(T) vs. j for 12 conjugacies of type NC
(for 222 interpolated values based on 107 iterates) and 12 of type CN (for 221

interpolated values based on 2 × 106 iterates).
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4.6 Results

In this section we give the numerical values of the Hölder exponents of

the conjugacies.

To determine these values, we used the methods based on Theorems

4.4.1, 4.4.3, 4.4.4, 4.4.5, 4.4.6.

To find the smoothness of a particular type of conjugacy, we applied all

these methods to study numerically the smoothness of the conjugacies between

all possible combinations of circle maps studied (four N, four C,and four Q

maps).

As an example, we show in the tables below the results of our analysis of

the regularity of the conjugacies between N and Q maps as well as the results

of the same methods applied to the test functions w0.66745,3, whose Hölder

exponent, 0.36800..., is close to the one of the conjugacies of type θNQ.

The column “Function” indicates the function analyzed: “w on fN
0.2”

means the regularity of the function w0.66745,3 calculated at the points (fN
0.2)

n(0),

and θ (fN
0.2/f

Q
4/3) means the conjugacy between fN

0.2 and fQ
4/3.

The column “Finite diffs” shows the results of the smoothness found

by using the finite difference method.

The columns “CLP, η = 1, 2, 3” display the results of the CLP analysis

for different numbers of derivatives.

“Decay D4, D10, D20” contain the results of analysis of the decay rate

of the coefficients of Daubechies 4 (resp. 10, 20) wavelets, while “Approx D4,
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D10, D20” shows the results of the study of the speed of the approximation

using these wavelets.

The meaning of the notations below is the following: 0.3661(13) means

0.3661 ± 0.0013. The error is the standard error of the linear regression.

Function Finite diffs CLP, η = 1 CLP, η = 2 CLP, η = 3

w on fN
0.2 0.3508(162) 0.3556(4) 0.3661(13) 0.3683(94)

w on fN
0.3 0.3511(156) 0.3625(2) 0.3659(13) 0.3680(93)

w on fN
0.5 0.3483(155) 0.3632(2) 0.3661(13) 0.3681(94)

w on fN
0.8 0.3486(155) 0.3634(4) 0.3660(13) 0.3682(94)

θ (fN
0.2/fQ

4/3
) 0.3652(33) 0.3611(10) 0.3682(8) 0.3676(2)

θ (fN
0.2/fQ

0.6) 0.3642(34) 0.3622(12) 0.3675(9) 0.3710(6)

θ (fN
0.2/fQ

1.2) 0.3649(33) 0.3613(10) 0.3681(8) 0.3670(3)

θ (fN
0.2/fQ

0.9) 0.3684(29) 0.3623(11) 0.3680(8) 0.3667(3)

θ (fN
0.3/fQ

4/3
) 0.3635(27) 0.3616(10) 0.3685(8) 0.3677(3)

θ (fN
0.3/fQ

0.6) 0.3626(28) 0.3625(12) 0.3679(10) 0.3703(5)

θ (fN
0.3/fQ

1.2) 0.3633(28) 0.3618(10) 0.3684(8) 0.3671(3)

θ (fN
0.3/fQ

0.9) 0.3615(29) 0.3628(11) 0.3685(8) 0.3668(3)

θ (fN
0.5/fQ

4/3
) 0.3646(25) 0.3610(10) 0.3677(9) 0.3671(2)

θ (fN
0.5/fQ

0.6) 0.3641(27) 0.3616(11) 0.3672(9) 0.3684(3)

θ (fN
0.5/fQ

1.2) 0.3647(27) 0.3612(10) 0.3676(9) 0.3666(3)

θ (fN
0.5/fQ

0.9) 0.3757(36) 0.3620(10) 0.3681(9) 0.3664(3)

θ (fN
0.8/fQ

4/3
) 0.3674(28) 0.3607(10) 0.3680(9) 0.3654(4)

θ (fN
0.8/fQ

0.6) 0.3640(26) 0.3615(10) 0.3681(9) 0.3645(3)

θ (fN
0.8/fQ

1.2) 0.3666(28) 0.3612(10) 0.3679(9) 0.3649(5)

θ (fN
0.8/fQ

0.9) 0.3592(37) 0.3624(10) 0.3683(7) 0.3649(5)
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Function Decay D4 Decay D10 Decay D20 Approx D4 Approx D10 Approx D20

w on fN
0.2 0.3548(126) 0.3455(340) 0.3558(461) 0.3672(36) 0.3658(102) 0.3636(136)

w on fN
0.3 0.3563(126) 0.3460(350) 0.3554(469) 0.3685(38) 0.3657(101) 0.3650(141)

w on fN
0.5 0.3569(123) 0.3478(344) 0.3550(461) 0.3659(32) 0.3642(100) 0.3645(140)

w on fN
0.8 0.3559(126) 0.3482(345) 0.3514(455) 0.3678(33) 0.3641(101) 0.3620(138)

θ (fN
0.2/fQ

4/3
) 0.3686(104) 0.3667(247) 0.3643(161) 0.3713(12) 0.3706(75) 0.3664(69)

θ (fN
0.2/fQ

0.6) 0.3674(106) 0.3556(160) 0.3670(161) 0.3717(11) 0.3710(76) 0.3660(72)

θ (fN
0.2/fQ

1.2) 0.3684(105) 0.3670(249) 0.3647(162) 0.3711(12) 0.3702(75) 0.3661(70)

θ (fN
0.2/fQ

0.9) 0.3677(105) 0.3744(217) 0.3629(155) 0.3710(13) 0.3672(49) 0.3658(70)

θ (fN
0.3/fQ

4/3
) 0.3692(108) 0.3658(246) 0.3638(155) 0.3701(8) 0.3691(71) 0.3669(67)

θ (fN
0.3/fQ

0.6) 0.3686(109) 0.3632(270) 0.3661(155) 0.3703(7) 0.3698(73) 0.3665(68)

θ (fN
0.3/fQ

1.2) 0.3691(108) 0.3695(234) 0.3644(155) 0.3698(8) 0.3688(72) 0.3666(67)

θ (fN
0.3/fQ

0.9) 0.3684(108) 0.3546(345) 0.3630(169) 0.3700(8) 0.3725(61) 0.3665(67)

θ (fN
0.5/fQ

4/3
) 0.3694(106) 0.3631(249) 0.3735(164) 0.3712(9) 0.3772(77) 0.3728(70)

θ (fN
0.5/fQ

0.6) 0.3696(107) 0.3641(195) 0.3812(140) 0.3712(9) 0.3780(79) 0.3724(72)

θ (fN
0.5/fQ

1.2) 0.3694(106) 0.3663(216) 0.3742(165) 0.3710(9) 0.3766(77) 0.3725(70)

θ (fN
0.5/fQ

0.9) 0.3689(106) 0.3642(308) 0.3847(166) 0.3709(10) 0.3594(58) 0.3723(70)

θ (fN
0.8/fQ

4/3
) 0.3676(105) 0.3682(249) 0.3629(181) 0.3684(7) 0.3687(73) 0.3692(66)

θ (fN
0.8/fQ

0.6) 0.3673(107) 0.3701(239) 0.3560(186) 0.3685(7) 0.3699(66) 0.3695(68)

θ (fN
0.8/fQ

1.2) 0.3675(105) 0.3681(250) 0.3634(182) 0.3683(7) 0.3686(73) 0.3691(66)

θ (fN
0.8/fQ

0.9) 0.3619(101) 0.3355(325) 0.3440(218) 0.3687(7) 0.3550(86) 0.3694(66)

As seen from the tables above, the results obtained by using different

methods are consistent, the most precise being the ones based on using CLP.

In the table below, we give the Hölder exponent of the conjugacy between the

maps f and g. The margins of error are determined empirically, and only in

very few cases outliers are ignored.

In the case of conjugacies of types CC and QQ for reasons explained

in the text, we were not able to determine the smoothness of the conjugacies,

but only to give a rough estimates.

↓ f g → N C Q
N Analytic 0.527 ± 0.003 0.368 ± 0.003
C 0.63 ± 0.02 1.4+0.4

−0.2 0.71 ± 0.03
Q 0.54 ± 0.05 0.86 ± 0.02 1.7 ± 0.5
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4.7 Some Bounds on the Regularity of Conjugacies

In this section, we derive some bounds for the regularities of the congu-

gacies.

4.7.1 Some Simple Bounds

It follows directly from the definition of Λα, 0 < α < 1, that if h1 ∈ Λα1
,

h2 ∈ Λα2
, then h1 ◦ h2 ∈ Λα1α2

. It is not difficult to produce functions that

saturate the above bounds (just take hi(x) = |x|αi) as well as functions for

this bound is not optimal (take h1(x) = |x|α1 , h2 = |x − 0.1|α2).

We also note that if h1,2 ◦ f1 = f2 ◦ h1,2, h2,3 ◦ f2 = f3 ◦ h2,3, and we

define h1,3 by h1,3 = h1,2 ◦ h2,3, we have h1,3 ◦ f1 = f3 ◦ h1,3.

Let ρa,b (where a, b are among N, C, Q) be the regularities of the con-

jugacy between golden mean circle maps of class a to circle maps of class b,

i.e., the entries in the table above.

It follows from the regularity of the composition that when a, b, c are

such that a 6= b, b 6= c, we should have

ρa,c ≥ ρa,bρb,c (4.21)

The inequality (4.21) can be verified in two cases in the table that we

have. Namely, we can take a = N, b = C, c = Q, or a = Q, b = C, c = N.

When we carry out this verification, we find out that, up to the error of the

calculation, we obtain that (4.21) becomes an identity.
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This is presumably not a coincidence. We believe that it is again a

manifestation of the self-similarity of the function at small scales. If we com-

pose two functions that in each small scale have oscillations comparable to

those allowed by the Hölder exponent, the resulting function will also have

oscillations that are comparable to the product of the Hölder exponents. Note

however that this argument does not suggest that there is a simple relation

between the regularity of a function and its inverse.

We note that the equation (4.21) can be described as saying that the

regularities of the conjugacies as indexed by the classes form a multiplicative

supercocycle. We find empirically it is a cocycle.

In the following section, we will derive upper bounds for the regularity

that are cocycles.

4.7.2 Scalings of the Recurrence and Upper Bounds on Hölder Ex-
ponents of Conjugacies

In this section, we discuss the relation between the scaling properties

and smoothness of the conjugacy.

Scalings have been studied numerically from the beginning of renor-

malization theory. Some of them have been probed to hold.

In this section, we will report some rigorous results that show that if

certain scalings hold, then there are bounds for the regularity of the conjugacy.

Since these scaling relations – hypothesis to our lemma – are numer-

ically accessible, we can use the rigorous results to obtain numerical upper
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bounds.

One of the first numerical observations that were made in the study of

the golden mean rotation number critical circle maps was that

(f •)Qn(0) ≈ ι−n
• , (4.22)

where • stands for N, C, Q, and ι• are universal constants. The numbers ι•

play a fundamental role in the fixed point equations.

For non-critical maps, because of Theorem 2.4.3, ιN is the same as for

rotations by golden mean, and, by using the well-known relation

Qn

Qn+1

= σG + C(−σG
2)n + o(σG

2n) ,

we obtain ιN = σG
−1.

We note that for the cubic critical case, there are unpublished computer

assisted proofs (Mestel [140], Lanford and de la Llave [124]) that establish the

existence of the ιC, upper and lower bounds for it, and the fact that (4.22)

holds for maps in open sets.

Some relation between the scaling properties of the returns and the

regularity of the conjugacy is given by

Lemma 4.7.1. Let

fQn

1 (0) = C1ι
−n
1 + o(ι−n

1 ) (4.23)

fQn

2 (0) = C2ι
−n
2 + o(ι−n

2 ) (4.24)
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and

α := log |ι2|/ log |ι1| /∈ N. (4.25)

Then, if h satisfies h ◦ f1 = f2 ◦ h, h(0) = 0, then, for every δ > 0,

h /∈ Λα+δ.

Proof. For any χ > 0 we have

h ◦ fQn

1 (0) − h(0)[
fQn

1 (0) − 0
]χ =

fQn

2 (0)[
fQn

1 (0)
]χ =

C2ι
−n
2 + o(ι−n

2 )

Cχ
1 ι−χn

1 + o(ι−χn
1 )

. (4.26)

We argue by contradiction: if h ∈ Λχ for some χ > α, we use (4.26)

to prove by induction that h(n)(0) = 0 for all n ≤ α, n ∈ N. Then we note

that h ∈ Λα+δ (for any δ > 0) would imply that if we substitute χ = α + δ

in (4.26), the left-hand side is bounded uniformly in n. At the same time, the

right-hand side of (4.26) is unbounded in n.

We emphasize that Lemma 4.7.1 does not conclude anything when β ∈

N; in particular, it does not conclude anything in the cases when f1 and f2

have the same scaling factor ι, which happens when f1 and f2 are in the same

universality class.

We have verified the relations (4.22) for the maps we considered and

obtained values of ι as follows:

ιC = −1.2886 , ιQ = −1.194 , (4.27)
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which agree with the values reported in Shenker [179] (for the C case), and

those in the papers Hu et al [99], Delbourgo and Kenny [49], even though

they consider functions that are periodized versions of polynomials which are

not C1.

Taking the values in (4.27) and the exact value for ιN , we obtain the

following upper bounds for the regularity of the conjugacies between the maps

f and g.

↓ f g → N C Q

N ? 0.5269 0.368
C 1.898 ? 0.70
Q 2.72 1.43 ?

We note that the in the cases NC, NQ, CQ, the upper bounds obtained

applying Lemma 4.7.1 agree within the margin of error with the values of the

regularity reported. In the other cases, the results are absurd.

We conjecture that indeed the upper bounds produced by applying

Lemma 4.7.1 are sharp for those cases.

Note that the fact that the upper bounds that work in one case are

far off in another seem to imply that there are different mechanisms limiting

the regularity. In the cases CN, QN, QC, these mechanisms cannot be just a

simple scaling argument.

We note that since the α defined in (4.25) is the ratio of a quantity

depending on the domain and a quantity depending on the range, the upper

bounds that we have derived form a multiplicative cocycle.
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For the sake of completeness, we also point out that there is a very

similar argument that gives upper bounds for the regularity of the conjugacy

for the maps in the same class. The following set of ideas was found useful in

de la Llave and Schafer [133]. There it is shown that this argument produced

upper bounds that were sharp in the case of conjugacies of limiting sets of

unimodal maps.

Lemma 4.7.2. Assume that

fQn

1 (0) = C1ι
−n + D1ι̃

−n + o(ι̃−n)

fQn

2 (0) = C2ι
−n + D2ι̃

−n + o(ι̃−n)

with |ι| < |ι̃|, C1C2 6= 0,

D2 6= (C2/C1)D1 (4.28)

and α := log |ι̃|/ log |ι| /∈ N. Then, if h satisfies h ◦ f1 = f2 ◦ h, h(0) = 0, then

h /∈ Λα+δ for any δ > 0.

Proof. The argument is very similar to the argument that proved Lemma 4.7.1.

Note that the assumptions imply that α > 1. Hence we are only ex-

cluding regularities higher than C1.

We argue by contradiction, assuming that h ∈ Λα+δ. We note that

h ◦ fQn

1 (0) − h(0) = fQn

2 (0) . (4.29)
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Since h ∈ Λα+δ, and α > 1, we conclude that h′(0) = C2/C1 6= 0. Hence h is

invertible in a neighborhood of zero and h−1 ∈ Λα+δ.

We note that h(t) = P (t) + R(t) where P (t) is a polynomial of degree

[α] and |R(t)| ≤ |t|α+δ.

Given the assumptions on the degrees we have made, we have

P (C1ι
−n + D1ι̃

−n + o(ι̃−n)) = h′(0)ι̃−n +
∑

j

Cj(ι
j)−n + o(ι−n([β]+1))

We also note that R(C1ι
−n + D1ι̃

−n + o(ι̃−n)) = o(ι̃−n).

Equating the coefficients of the ι̃−n in (4.29), we obtain D2 = (C2/C1)D1,

which contradicts our assumption (4.28). This is the desired contradiction

with the assumption that h admitted a Taylor expansions near 0 with Hölder

bounds.

Note that in contrast with Lemma 4.7.1, Lemma 4.7.2 contains a hy-

pothesis (4.28) which could fail for a finite codimension set of maps. This

is to be expected since the other hypothesis allows to take f1 = f2, h = Id.

In this situation, the conjugacy h is very regular. The elementary theory of

renormalization tells us that (4.28) indeed occurs in a set which is of positive

codimension.

The conjecture 4.2.1 amounts to the fact that the upper bounds pro-

duced by applying Lemma 4.7.2 are sharp.
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At the moment, unfortunately, we do not have accurate enough values

for the ι̃ for cubic critical or quintic critical maps and, hence, cannot give

concrete values for the upper bounds of the regularity in the CC or QQ cases.

It is interesting to remark that in the NN case, these bounds are far from

optimal.

4.8 Conclusion

We have studied the problem of the smoothness of maps of the circle

with critical points and golden mean rotation number.

The first step was to obtain an extremely precise calculation of the

parameters of the function that put us in the correct universality class.

The most important step is to develop a numerical toolkit based on a

wide array of methods from harmonic analysis (Littlewood-Paley, wavelets) to

study the regularity and the fine scale structure of these functions.

We have used the combination of the methods applied to critical circle

maps to asses their range of validity.

We have found indication that the regularity of critical circle maps is

limited by considerations other than just scaling of recurrences.
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Appendix A

Fermi Acceleration

In this Appendix we give more details on the derivation of the map

related to the Fermi acceleration, mentioned in Section 2.1.10. The derivation

is very similar to the derivation of the circle maps in Section 2.3.5, and we are

going to use very similar notations.

Let the ball be moving along the x axis between two (infinitely heavy)

walls perpendicular to the x axis and having x coordinates 0 and a(t), respec-

tively. Assume that the collisions of the ball with the walls are elastic.

Let {τn} be the times at which the ball bounces back from the sta-

tionary wall, {θn} the times at which it reaches the oscillating wall (these

notations are the same as the one in Figure 2.2, but now the piecewise linear

lines correspond to the “world lines” of the ball). Let vn be the magnitude of

the velocity of the ball just before it hits the moving wall for nth time, i.e.,

vn = lim
t→θn−0

v(t) .

Since the collision is elastic,

vn+1 = |vn − 2a′(θn)| .
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The ball is moving at a speed vn + 1 in the time interval (θn, θn+1),

during which it travels from the moving to the stationary wall and back to the

stationary one, so the total traveled distance is a(θn) + a(θn+1). Thus,

θn+1 = θn +
a(θn) + a(θn+1)

vn+1

.

Now recall that the function a is periodic of period 1, so we do not need

to know θ, but only θ (mod 1). The speed v can take any nonnegative values,

so we obtain the map

W : T × R+ → T × R+ : (θn, vn) 7→ (θn+1, vn+1) ,

defined implicitly by

θn+1 =

[
θn +

a(θn) + a(θn+1)

vn+1

]
mod 1

vn+1 = |vn − 2a′(θn)| .

The map W is two-dimensional, so its dynamics is much more compli-

cated than the dynamics of the circle maps occurring in our treatment of the

problem of pulsating optical resonator.

Note that since the map W is implicitly defined, a simplified (explicit)

version of it, which is similar to the standard (Chirikov-Taylor) map, was often

studied in the literature instead of W.
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‘
atek. On critical circle homeomorphisms. Bol. Soc. Brasil. Mat.

(N.S.), 29(2):329–351, 1998.

[186] F. M. Tangerman and J. J. P. Veerman. Scalings in circle maps. II.

Comm. Math. Phys., 141(2):279–291, 1991.

[187] GMP Team. The gmp home page. http://www.swox.com/gmp/.

[188] S. M. Ulam. On some statistical properties of dynamical systems. In

Proc. 4th Berkeley Sympos. Math. Statist. and Prob., Vol. III, pages

315–320. Univ. California Press, Berkeley, Calif., 1961.
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