
Cubic Spline Interpolation of Periodic Functions

A Project for MATH 5093

Cubic spline interpolation is an approximate representation of a function whose values are
known at a finite set of points, by using cubic polynomials.

The setup is the following (for more details see Sec. 5.6 of the textbook, as well as Sec. 3.4 of
the book Numerical Analysis, 8th edition, by R. L. Burden and J. D. Faires, pages of which
I sent you). Let f be a function defined on the interval [a, b], and let

a = x0 < x1 < x2 < · · · < xn−1 < xn = b (1)

be n + 1 distinct points at which the values of the function f are known. The points xj
divide the interval [a, b] into n subintervals, referred to as a partition of [a, b].

A cubic spline interpolant of f relative to the partition (1) is a function S : [a, b] → R that
satisfies the following properties:

(1) the restriction S|[xj ,xj+1] : [xj, xj+1] → R of the interpolant S to the interval [xj, xj+1]
coincides with the cubic polynomial

Sj(x) = aj + bj(x− xj) + cj(x− xj)2 + dj(x− xj)3 , j = 0, 1, . . . , n− 1 ;

(2) the function S interpolates f at the points x0, x1, . . ., xn, i.e., Sj(xj) = f(xj) and
Sj(xj+1) = f(xj+1) for j = 0, 1, . . . , n− 1;

(3) the function S is continuous, i.e.,

Sj+1(xj+1) = Sj(xj+1) , j = 0, 1, . . . , n− 2 ;

(3) the derivative S ′ is continuous, i.e.,

S ′j+1(xj+1) = S ′j(xj+1) , j = 0, 1, . . . , n− 2 ;

(3) the second derivative S ′′ is continuous, i.e.,

S ′′j+1(xj+1) = S ′′j (xj+1) , j = 0, 1, . . . , n− 2 ;

(4) the interpolant S satisfies some boundary conditions, i.e., conditions at the ends of the
interval [a, b].

In this project you will develop cubic spline interpolation of periodic functions. Without loss
of generality, you can assume that the period of a periodic function is 1, i.e., that

f(x+ 1) = f(x) for all x ∈ R .

1

Because of the periodicity, the function f is completely defined by its values on the interval
[0, 1], so below assume that [a, b] = [0, 1]. We use the notation hj = xj+1 − xj.

(A) Formulate the conditions above in the case of a cubic spline of a periodic function. In
this case the boundary conditions are provided by the condition of periodicity of f .

Hint: This case is in some sense easier than the cases of free, clamped, or not-a-knot splines
because in the periodic case there are no boundary conditions, in the sense that the boundary
points are just like the points inside the interval [a, b]. Because of the periodicity f(0) = f(1),
f ′(0) = f ′(1), f ′′(0) = f ′′(1). What do these equalities imply about the pairs of numbers
S(0+) and S(1−), S ′(0+) and S ′(1−), S ′′(0+) and S ′′(1−)? How about the pairs of numbers
S0(0) and Sn−1(1), S ′0(0) and S ′n−1(1), S ′′0 (0) and S ′′n−1(1)? Are this conditions similar to the
matching conditions at the internal points x1, . . ., xn−1?

(B) Read the derivation of the equations for the coefficients aj, bj, cj, and dj of the cubic
polynomial Sj in the case of free (natural) boundary conditions and clamped boundary
conditions from Sec. 3.4 of Burden-Faires (namely, pages 140–142 and 145–146). In these
two cases (as well as in the so-called not-a-knot boundary conditions, explained on pages 395
and 396 of Bradie), the coefficients aj, bj and dj are expressed in terms of the coefficients cj.
In each case, the coefficients cj satisfy a linear system with tridiagonal structure, so solving
the system for the cj’s requires only O(n) operations (as shown on page 219 of Bradie). Once
cj are found, it is easy to compute the other spline coefficients.

Show that in the case of cubic spline interpolation of periodic functions, the vector of the
coefficients c = (c0, c1, . . . , cn−1)

T is the solution of the linear system

A ξ = δ , (2)

where

A =

2(hn−1 + h0) h0 0 0 0 0 · · · 0 0 hn−1

h0 2(h0 + h1) h1 0 0 0 · · · 0 0 0
0 h1 2(h1 + h2) h2 0 0 · · · 0 0 0
0 0 h2 2(h2 + h3) h3 0 · · · 0 0 0
...

...
...

...
...

...
...

...
...

0 0 0 0 0 0 · · · 2(hn−4 + hn−3) hn−3 0
0 0 0 0 0 0 · · · hn−3 2(hn−3 + hn−2) hn−2

hn−1 0 0 0 0 0 · · · 0 hn−2 2(hn−2 + hn−1)

ξ =

ξ1

ξ2

ξ3

ξ4
...

ξn−2

ξn−1

ξn

, δ =

3
h0

(a1 − a0)− 3
hn−1

(a0 − an−1)
3
h1

(a2 − a1)− 3
h0

(a1 − a0)
3
h2

(a3 − a2)− 3
h1

(a2 − a1)
3
h3

(a4 − a3)− 3
h2

(a3 − a2)
...

3
hn−3

(an−2 − an−3)− 3
hn−4

(an−3 − an−4)
3

hn−2
(an−1 − an−2)− 3

hn−3
(an−2 − an−3)

3
hn−1

(a0 − an−1)− 3
hn−2

(an−1 − an−2)

;

2

where aj = f(xj), j = 0, . . . , n−1 (following the notations of Bradie and Burden-Faires). You
are allowed to use any intermediate results from the Bradie and Burden-Faires derivations,
there is no need to derive everything from scratch. In fact, if you answered (A), you can
avoid doing any calculations, just look at the equations for the spline coefficient at the
internal points for the case of the free or clamped splines.

(C) The n×n matrix A is “almost” tridiagonal – its only entries that violate the tridiagonal
structure are the (1, n) and (n, 1) entries (both of which are equal to hn−1). This prevents
you from using a program that solves a tridiagonal system, but in this particular case there
is a very efficient algorithm that allows solving a linear system with coefficient matrix with
such structure by only O(n) operations.

An important fact about the matrix A from (2) is that it is strictly diagonally dominant (see
the definition on page 211 on Bradie), which implies, in particular, that the system (2) has a
unique solution, and that Gaussian elimination can be performed without row interchanges
(see the theorem on page 211 of Bradie). Since A is a very structured and sparse matrix
(“sparse” means that many of its entries are zero), the system (2) can be solved with only
O(n) operations, and without pivoting!

In this part of the problem you have to write a MATLAB code called tridiag_corners.m

that uses a simple and efficient algorithm for solving a linear system with the same structure
as (2). Consider the linear system with augmented matrix

β1 γ1 0 0 0 0 · · · 0 0 0 α1 δ1
α2 β2 γ2 0 0 0 · · · 0 0 0 0 δ2
0 α3 β3 γ3 0 0 · · · 0 0 0 0 δ3
0 0 α4 β4 γ4 0 · · · 0 0 0 0 δ4
...

...
...

...
...

...
...

...
...

...
...

0 0 0 0 0 0 · · · αn−2 βn−2 γn−2 0 δn−2
0 0 0 0 0 0 · · · 0 αn−1 βn−1 γn−1 δn−1
γn 0 0 0 0 0 · · · 0 0 αn βn δn

, (3)

where the coefficient matrix is strictly diagonally dominant (as in (2)).

Perform elementary row operations of type ERO3 in the notations of Bradie (see page 150
of his book) to transform this augmented matrix (3) to the form

β̃1 γ̃1 0 0 0 0 · · · 0 0 0 α̃1 δ̃1
0 β̃2 γ̃2 0 0 0 · · · 0 0 0 α̃2 δ̃2
0 0 β̃3 γ̃3 0 0 · · · 0 0 0 α̃3 δ̃3
0 0 0 β̃4 γ̃4 0 · · · 0 0 0 α̃4 δ̃4
...

...
...

...
...

...
...

...
...

...
...

0 0 0 0 0 0 · · · 0 β̃n−2 γ̃n−2 α̃n−2 δ̃n−2
0 0 0 0 0 0 · · · 0 0 β̃n−1 α̃n−1 δ̃n−1
γn 0 0 0 0 0 · · · 0 0 αn βn δn

. (4)

3

The tildes signify only that these elements may differ from the elements without tildes. Note
that we have not changed the nth row of the augmented matrix. To be memory-efficient,
overwrite the elements αj by α̃j (for j = 1, . . . , n − 1), etc. Then perform elementary row
operations to transform (4) to the form

β̄1 0 0 0 0 0 · · · 0 0 0 ᾱ1 δ̄1
0 β̄2 0 0 0 0 · · · 0 0 0 ᾱ2 δ̄2
0 0 β̄3 0 0 0 · · · 0 0 0 ᾱ3 δ̄3
0 0 0 β̄4 0 0 · · · 0 0 0 ᾱ4 δ̄4
...

...
...

...
...

...
...

...
...

...
...

0 0 0 0 0 0 · · · 0 β̄n−2 0 ᾱn−2 δ̄n−2
0 0 0 0 0 0 · · · 0 0 β̄n−1 ᾱn−1 δ̄n−1
γn 0 0 0 0 0 · · · 0 0 αn βn δn

(5)

(again, the bars simply mean that the corresponding elements may have changed their nu-
merical values). Note that the nth row of (5) is still the same as in (3).

Finally, use elementary row operations to make the coefficient matrix in (5) upper-triangular,
and then use back substitution to solve the system. Since there are many zeros in the
transformed coefficient matrix, make sure that you do everything as efficiently as possible.

Your MATLAB code tridiag_corners.m should take n-dimensional arrays α = (αj), β =
(βj), γ = (γj) and δ = (δj) as input variables, and should produce the solution x = (xj) of
the linear system with augmented matrix (3). As a model you can use the MATLAB code
tridiagonal.m available at the class web-site. Note that, if you are testing your code that
solves (3), the coefficient matrix in (3) should be strictly diagonally dominant (which in this
case means that |βj| > |αj|+ |γj|).

(D) Write a MATLAB code cubic_spline_periodic.m that performs cubic interpolation
of a periodic function of period 1. Your code should takes the values 0 = x0, x1, . . ., xn−1
(as in see (1)) and the values y0 = f(x0), y1 = f(x1), . . ., yn−1 = f(xn−1) of the periodic
function f at each of these points. Because of the periodicity of f , you do not need to use
the point xn = 1.

Use that aj = f(xj) (for j = 0, . . . , n− 1), hj = xj+1−xj (for j = 0, . . . , n− 1, with xn = 1),
then set up the linear system (2) and solve it by calling your code tridiag_corners.m,
after which compute the values of the coefficients bj and dj (for j = 0, . . . , n − 1). Your
code should return a matrix with five columns, containing the values of xj, aj, bj, cj, and
dj, respectively. Be careful with the indices because MATLAB starts with index 1!

In creating cubic_spline_periodic.m you can use as a model the code cubic_clamped.m

(available at the class web-site). That code computes the coefficients of the cubic spline
interpolant S in the case of clamped boundary conditions, i.e., when we know the derivatives
of the function f at the endpoints a and b. The input are the vector x = (xi) of the values of
the argument at which the function f is known, the vector y = (yi) = (f(xi)) of the values
of the function f at the points xi, and the values of the derivatives f ′(a) and f ′(b). The

4

output is a five-column matrix containing the information that defines the clamped cubic
spline interpolant (namely, xi in the first column, ai = yi in the second, bi in the third, ci in
the fourth, and di in the fifth). The code cubic_clamped.m calls the code tridiagonal.m

to compute the spline coefficients cj.

(E) Write a MATLAB code spline_periodic_eval.m that takes the matrix with the
spline coefficients produced by cubic_spline_periodic.m, and a value z ∈ [0, 1] (or several
values {zk} ⊂ [0, 1]), and returns the value S(z) (respectively, the values of S at each of the
points zk). As a model you can use the MATLAB code spline_eval.m (available at the
class web-site) which does the same, but for the case of a clamped cubic spline, taking the
spline coefficients produced by the code cubic_clamped.m.

Here is an example of using the codes cubic_clamped.m (which calls tridiagonal.m) and
spline_eval.m. In this example f = sin πx

2
, [a, b] = [0, 1], f ′(0) = π

2
, f ′(1) = 0, and the

cubic spline S interpolates the function f at the points 0, 0.25, 0.5, 0.75, and 1:

xx = linspace(0,1,5); % creates the array xx = (0 0.25 0.5 0.75 1)

yy = sin(pi/2*xx); % computes the values of f(xx_i)

fpa = pi / 2.0; % derivative f’(0) at the left end

fpb = 0.0; % derivative f’(1) at the right end

csc = cubic_clamped(xx, yy, fpa, fpb); % spline coefficients

y_exact = sin(pi/2*0.7) % exact value f(0.7)

y_approx = spline_eval (csc, 0.7) % interpolated value S(0.7)

abs(y_exact - y_approx) % absolute error at 0.7

xx_dense = linspace(0,1,1001); % array of argument values

yy_exact = sin(pi/2*xx_dense); % f(xx_k)

yy_approx = spline_eval (csc, xx_dense); % S(xx_k)

plot(xx_dense, yy_exact - yy_approx); % plotting f(xx_k)-S(xx_k)

[xx_dense; yy_exact; yy_approx; yy_exact-yy_approx]’ % comparison

(F) Run the codes cubic_spline_periodic.m and spline_periodic_eval.m with n = 10,
n = 50, and n = 250 points (xj, f(xj)) (where xj = j/n for j = 0, . . . , n−1), for the periodic
function f(x) = sin(2πx) − 1

2
cos(6πx) − 1

3
sin(10πx), and find empirically how the global

absolute error depends on h = 1
n
. In each case, estimate the global absolute error as

max
m=0,...,M−1

|f(µm)− S(µm)| ,

where M is some very large integer (say, M = 106 or 107), and µm = m/M for m = 0, . . . ,M .
Compare your findings with the result about clamped cubic spline on page 402 of Bradie’s
book.

5

