Mock Quiz 10

Problem 1. Write down the form of the partial fraction decomposition of the function

$$
\frac{x+5}{\left(x^{2}-4\right)\left(x^{2}+x-6\right)^{3}\left(x^{2}-12 x+100\right)} .
$$

Do NOT determine the numerical values of the coefficients.
Answer: Using that $x^{2}-4=(x+2)(x-2), x^{2}+x-6=(x-2)(x+3)$ (which can be found by solving the quadratic equation $x^{2}+x-6=0$), and $x^{2}-12 x+100=(x-6)^{2}+64 \geq 64>0$, we obtain that the denominator can be written as

$$
\left(x^{2}-4\right)\left(x^{2}+x-6\right)^{3}\left(x^{2}-12 x+100\right)=(x+2)(x-2)^{4}(x+3)^{3}\left(x^{2}-12 x+100\right) .
$$

Therefore the partial fraction decomposition has the form

$$
\begin{aligned}
\frac{x+5}{\left(x^{2}-4\right)\left(x^{2}+x-6\right)^{3}\left(x^{2}-12 x+100\right)} & =\frac{\alpha}{x+2}+\frac{\beta_{1}}{x-2}+\frac{\beta_{2}}{(x-2)^{2}}+\frac{\beta_{3}}{(x-2)^{3}}+\frac{\beta_{4}}{(x-2)^{4}} \\
& +\frac{\gamma_{1}}{x+3}+\frac{\gamma_{2}}{(x+3)^{2}}+\frac{\gamma_{3}}{(x+3)^{3}}+\frac{A x+B}{x^{2}-12 x+100}
\end{aligned}
$$

Mathematica has a command that gives the partial fraction decomposition of a rational fraction, automatically computing the values of the unknown constants. To get the partial fraction decomposition in Mathematica, I typed

$$
\operatorname{Apart}\left[(x+5) /\left(\left(x^{\wedge} 2-4\right) *\left(x^{\wedge} 2+x-6\right) \wedge 3 *\left(x^{\wedge} 2-12 * x+100\right)\right)\right]
$$

then pressed return while holding down the shift key, and obtained the result

$$
\begin{aligned}
& \frac{3}{32768} \frac{1}{x+2}-\frac{2663}{160000000} \frac{1}{x-2}+\frac{361}{8000000} \frac{1}{(x-2)^{2}}-\frac{17}{160000} \frac{1}{(x-2)^{3}}+\frac{7}{40000} \frac{1}{(x-2)^{4}} \\
& -\frac{142719}{1905390625} \frac{1}{x+3}-\frac{703}{13140625} \frac{1}{(x+3)^{2}}-\frac{2}{90625} \frac{1}{(x+3)^{3}}+\frac{8287050-389171 x}{62435840000000\left(x^{2}-12 x+100\right)} .
\end{aligned}
$$

Mathematica also computed the integral of this function - I typed

$$
\text { Integrate }\left[(x+5) /\left(\left(x^{\wedge} 2-4\right) *\left(x^{\wedge} 2+x-6\right) \wedge 3 *\left(x^{\wedge} 2-12 * x+100\right)\right), x\right]
$$

and obtained
$\frac{1}{374615040000000}\left[34297031250 \log (x+2)-6234999072 \log (2-x)-\frac{16904503680}{x-2}+\frac{19901424000}{(x-2)^{2}}\right.$

$$
\begin{aligned}
& -\frac{21852544000}{(x-2)^{3}}-28059697152 \log (x+3)+\frac{20041236480}{x+3}+\frac{4133683200}{(x+3)^{2}} \\
& \left.-1167513 \log \left(x^{2}-12 x+100\right)+4464018 \tan ^{-1}\left(\frac{x-6}{8}\right)\right]
\end{aligned}
$$

Here "log" means natural logarithm, and notice that Mathematica was a bit too cavalier about the absolute values of the arguments of the logarithms.

Problem 2. I am using a method for computing the approximate value of definite integrals. I know that the error of this method behaves like $(\Delta x)^{2}$. Let E_{10} be the error when I use the method by dividing the integration interval $[a, b]$ into 10 pieces (of equal length). What can you predict for the value of the error E_{50} that I will have if I divide $[a, b]$ into 50 pieces? Answer: When n increases 5 times, $\Delta x=\frac{b-a}{n}$ will decrease 5 times, so the error, which behaves like $(\Delta x)^{2}$, will decrease $5^{2}=25$ times.

Problem 3. Will the Trapezoidal method produce a larger or a smaller value than the true value of the integral $\int_{3}^{5} \sqrt{x} d x$?
Answer: Drawing a big picture of what happens in one interval $\left[x_{i-1}, x_{i}\right]$, and using the fact that the function \sqrt{x} is increasing and concave down (because $(\sqrt{x})^{\prime}>0$ and $\left.(\sqrt{x})^{\prime \prime}<0\right)$, we can conclude that the values $I_{\text {lRs }}, I_{\mathrm{rRs}}, I_{\text {trap }}, I_{\text {exact }}$ satisfy

$$
I_{\text {lRs }}<I_{\text {trap }}<I_{\text {exact }}<I_{\text {rRs }} .
$$

Here "IRs", "rRs", "trap" stand for the left/right Riemann sum and the trapezoidal rule; $I_{\mathrm{lRs}}, I_{\mathrm{rRs}}$, and $I_{\text {trap }}$ denote the approximate values of the integral computed by using the corresponding method, and $I_{\text {exact }}$ is the exact value of the integral.

Challenge 1: Let $E_{\mathrm{lRs}}=\left|I_{\mathrm{lRs}}-I_{\text {exact }}\right|$ stand for the error of the lRs method, and similarly for the other two methods. Using only geometry, can you prove that

$$
E_{\text {trap }}<E_{\mathrm{lRs}}, \quad \text { and } \quad E_{\mathrm{rRs}}<E_{\mathrm{lRs}} ?
$$

How about

$$
E_{\mathrm{rRs}}+2 E_{\mathrm{trap}}=E_{\mathrm{lRs}} ?
$$

(In your reasoning you have to use that the integrand is increasing and concave down.)
Challenge 2: What can you say about the value produced by the midpoint method and its error (in comparison with the errors of the other methods) applied to this integral?

Challenge 3: Can you decide if $E_{\text {trap }}$ is bigger or smaller than $E_{\text {rRs }}$ without doing any calculations?

