Mock Quiz 6

Problem 1. If f is a differentiable function, find $\frac{d}{d x} e^{f(x)}$ and $\frac{d}{d x} f\left(e^{x}\right)$.
Answer: $\frac{d}{d x} e^{f(x)}=e^{f(x)} f^{\prime}(x), \frac{d}{d x} f\left(e^{x}\right)=f^{\prime}\left(e^{x}\right) e^{x}$.

Problem 2. If $F(x)=e^{t \sin 2 t}$, find $F^{\prime}(x)$ and $F^{\prime}\left(\frac{\pi}{6}\right)$.

Problem 3. Let C be a curve in the (x, y)-plane defined implicitly by the equation

$$
x e^{y}+e^{x} y^{2}=2
$$

(a) Show that the point $(2,0)$ belongs to C.

Answer: $2 \cdot e^{0}+e^{2} \cdot 0^{2}=2 \checkmark$
(b) Think of y as a function of x and use implicit differentiation to find $\frac{d y}{d x}$.

Answer: $e^{y(x)}+x e^{y(x)} y^{\prime}(x)+e^{x} y(x)^{2}+e^{x} 2 y(x) y^{\prime}(x)=0$, express $y^{\prime}(x): \frac{d y}{d x}=y^{\prime}(x)=-\frac{e^{y}+e^{x} y^{2}}{x e^{y}+2 e^{x} y}$
(c) Find the slope of the tangent line to C at the point $(2,0)$. Answer: $\left.\frac{d y}{d x}\right|_{(2,0)}=-\left.\frac{e^{y}+e^{x} y^{2}}{x e^{y}+2 e^{x} y}\right|_{(2,0)}=-\frac{1}{2}$
(d) Write down the equation of the tangent line to C at $(2,0)$.

Answer: $\frac{y-0}{x-2}=-\frac{1}{2}$, i.e., $y=1-\frac{x}{2}$; see the curve C and the tangent line to C at $(2,0)$ in the graph below.
(e) Think of x as a function of y and use implicit differentiation to find $\frac{d x}{d y}$ and the numerical value of $\frac{d x}{d y}$ at $(x, y)=(2,0)$.
$\underline{\text { Answer: }} \frac{d x}{d y}=-\frac{x e^{y}+2 e^{x} y}{e^{y}+e^{x} y^{2}},\left.\frac{d x}{d y}\right|_{(x, y)=(2,0)}=-2$.

