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I. INTRODUCTION

Area-preserving maps of a cylinder have been studied for several decades both as low-

dimensional models of physical systems and as interesting mathematical problems. Until

recently, most of these studies have dealt with twist maps which are the maps that satisfy a

certain non-degeneracy condition. Lately, maps that violate this condition locally in phase

space have been of great interest. These nontwist maps occur in various physical systems

such as, e.g., the study of magnetic field lines in toroidal plasma devices with reversed shear

profile, channel flows, and other physical applications (see, e.g., [1–8]).

Non-twist maps present new phenomena which are not observed in twist maps. Some of

these phenomena (reconnection, bifurcation, meandering tori, etc.) are discussed in [8–14].

It should also be remarked that non-twist maps appear naturally in iterations of twist maps.

This is because of the fact that, even though the twist property has dynamical consequences,

it is not preserved by composition or by a change of variables.

These maps are also of mathematical interest because many important results about

maps, e.g., KAM and Aubry-Mather theory, depend on twist condition. Even though Aubry-

Mather variational theory for twist maps does not generalize for non-twist maps, there is

an analogue of KAM theory. In [15, 16] it was suggested that one can continue shearless

circles with a Diophantine rotation number provided that one adjusts a second parameter;

this was proved rigorously in [17]. Furthermore, in [15, 16] it was observed numerically that

if the curve is continued, one reaches a critical value where the circles cannot be continued

anymore. The circle that cannot be continued – henceforth referred to as the critical circle

(or circle at breakup) – enjoys remarkable self-similar properties which are universal (that

is, they do not seem to depend on the map). The calculations of critical shearless invariant

tori in [16] were extended and refined in [18–20].

As we will show later, a natural way of representing the circle is by giving some param-

eterization in which the motion becomes a rotation. This parameterization is essentially

unique. The study of the Fourier spectrum reveals several properties of the function. One

such property to measure is the regularity of the parameterization. The study of the regu-

larity of functions – which is crucial in KAM theory – has been studied extensively in the

mathematical literature. Efficient algorithms for problems very similar to those considered

here were developed in [21].
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In this paper, we analyze further the properties of the critical invariant tori computed

in [20] by using techniques developed in [22]. Since the new calculations in [20] allow us to

compute accurately orbits of length several millions, we have a very accurate computation

of the critical invariant circle.

We have found that the functions corresponding to the critical shearless circle saturate

several bounds in harmonic analysis, so that the regularity is easy to ascertain. In the cases

we have examined, the regularity of the critical circles is the same for different rotation

numbers with the same tail of the continued fraction expansions. This is consistent with the

predictions of universality that follow from the renormalization group picture.[23]

The paper is organized as follows. Section II introduces the basic terminology of the

nontwist maps. In Sec. III, we describe the convenient parameterization used to study these

regularities and its symmetry properties. The numerical techniques are briefly explained in

Sec. IV. We discuss the results in Sec. V.

II. PRELIMINARIES

The standard nontwist map F : T1 × R → T1 × R is given by

y′ = y − b sin(2πx) , x′ = x+ a(1− y′2) mod 1 , (1)

where (x, y) ∈ T1 × R and a, b are parameters. This map violates the twist condition

∂x′

∂y
6= 0 , (2)

along the curve y = b sin(2πx) in the phase space. An orbit of the map is the set of points

{(xi, yi)}
∞
i=−∞ such that (xi+1, yi+1) = F (xi, yi). An orbit is periodic of least period n if

xi+n = xi, yi+n = yi, and n is the smallest such integer. We also consider the lift of the

nontwist map F̃ : R × R → R × R given by (1) by removing the mod 1. We denote by

{(x̃i, ỹi)} an orbit of the lift map corresponding to the orbit {(xi, yi)} of the map. The

winding (or rotation) number ω of an orbit is defined as

ω = lim
i→∞

x̃i
i
, (3)

if the limit exists. This number is independent of the lift taken. The winding number of a

periodic orbit is rational; an orbit for which winding number doesn’t exist is chaotic. A set
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homeomorphic to a circle that is mapped to itself by F is called an invariant circle. It was

already proved by Poincaré that all the points in a circle have the same winding number.

The winding number of orbits belonging to these circles is generically irrational.

Invariant circles that are homotopically nontrivial form barriers to transport, i.e., points

on one side cannot cross to the other side. (We will abbreviate homotopically nontrivial

invariant circles to just invariant circles.) When the perturbation increases, some of the cir-

cles cease to exist leaving behind invariant sets homeomorphic to Cantor sets. The breakup

of these circles (in both twist and nontwist maps) has been studied extensively.

In contrast to twist maps, the orbits of the standard nontwist map are generally found

in pairs – two or none – for any winding number. Also, for the standard nontwist map, the

rotation numbers are bounded from above. The orbit with the extremal winding number

occurs in the region in phase space where the twist condition fails. The curve in parameter

space along which there is only one orbit of winding number ω is called the ω-bifurcation

curve and the orbit itself is called the shearless. The rotation number of the shearless orbit

is an extremum of all the rotation numbers of orbits in the map.

Remark 1. For the integrable map b = 0, the circle with rotation number a is shearless.

Thus, the parameter values (a, 0) belong to a-bifurcation curve (i.e., to the ω-bifurcation

curve for ω = a). It was shown in [17] that if a is Diophantine, then there is an analytic

a-bifurcation curve for small perturbations.

Shearless invariant circles are present in the phase space region where the twist condition

fails. The breakup of shearless circles with noble winding numbers (with a continued fraction

expansion ending in 1) has been studied extensively in [15, 18, 20]. The breakup of shearless

invariant circles for nontwist time periodic Hamiltonian flows has been analyzed in [19, 24].

The critical circles for the three winding numbers

ω(1) = [0, 1, 1, 1, ...] = 1/γ ,

ω(2) = [0, 2, 1, 1, 1, ...] = 1/γ2 , (4)

ω(3) = [0, 2, 2, 1, 1, 1, ...] = γ2/(1 + 2γ2) ,

where γ is the golden mean, were studied in [20]. Here ω = [a0, a1, a2, ...] denotes the
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FIG. 1: Critical circles with winding numbers ω(1), ω(2), and ω(3) of (4).

continued fraction expansion [25] which is defined by

ω = [a0, a1, a2, ...] := a0 +
1

a1 +
1

a2 + · · ·

. (5)

The parameter values for which there is a critical circle was found [20] using Greene’s

residue criterion [26]. This method uses the observation that the invariant circle can be

approximated by periodic orbits of winding numbers equal to the convergents obtained by

truncating the continued fraction expansion. The residue criterion relates the stability of

these periodic orbits with the breakup (loss of stability) of the invariant circle. A rigorous

partial justification of this procedure for nontwist maps is presented in [17].

In the case of the standard nontwist map, the ω-bifurcation curve for irrational ω is

also approximated by the numerically obtained limit of bifurcation curves of the periodic

orbits. This limit shows a scaling behavior which further increases the accuracy of these

calculations, for details of which we refer to [20]. The parameter values for which the above

circles are critical are as follows:

(ac, bc)
(1) = (0.686049108, 0.74249354915518) ,

(ac, bc)
(2) = (0.425160543, 0.92446364703553) , (6)

(ac, bc)
(3) = (0.45297741955, 0.84582913999445) .

These critical circles, which are shown in Fig. 1, are not smooth, and they show a self-

similar structure [20]. Our aim here is to study numerically the smoothness of these critical

circles and details of their fine scale structure using Fourier analysis. We will first describe

the method used to parameterize invariant circles of nontwist maps.
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III. THE PARAMETERIZATION FUNCTION

In contrast with the situation for twist maps, homotopically non-trivial invariant circles

for non-twist maps can fail to be graphs. Indeed, our computations show that the critical

shearless invariant circles are not graphs in any smooth coordinate system. A convenient

way to describe circles which are not graphs is to find a parametric representation. In our

case, it is convenient to choose this parameterization in such a way that, moreover, turns the

dynamics into a rotation. Such parameterization functions are often called “hull functions,”

and they have been used extensively for computation of periodic orbits and invariant circles.

For example, they have been used as the basis for KAM theory in [27].

Therefore, the main object of our study will be a continuous map K : T1 → T1×R whose

range is the invariant circle we are seeking to describe and such that

F ◦K(θ) = K(θ + ω) . (7)

We will denote the components of K by Kx : T1 → T1 and Ky : T1 → R.

If we set K(0) to be a point on the circle, applying (7) we obtain

F n(K(0)) = K(nω) . (8)

Hence, it is very easy to compute numerically the function K at points in the set {θ =

nω}∞n=0. Since we are assuming that ω /∈ Q, this is a dense set on the circle and therefore

the continuous functionK is determined. For the numerical applications, it is quite fortunate

that {nω}Nn=0 is very uniformly distributed in the torus.

The argument above shows that the continuous solutions of (7) are unique once we fix a

point. More precisely, if K, K̂ solve (7), then there is a σ such that

K̂(θ) = K(θ + σ) . (9)

Indeed, since K̂(0) is in the circle, it can be written as K(σ). Then, applying (7), we obtain

K̂(nω) = K(nω + σ). Hence, (9) holds for a dense set.

We will also find it convenient to study lifts F̃ of the map F and lifts K̃ of the function

K. In general, a map K̃ : R → R× R is a lift of a map K : T1 → T1 × R when the map K̃

becomes the map K upon identifying the angle variables (the independent variable and the

first coordinate of the range) that differ by an integer.
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FIG. 2: The functions K̃x(θ)− θ (left) and K̃y(θ) (right) for the three winding numbers from (4).

The symmetry properties (Lemma 1) can be seen very clearly. The graphs of K̃x(θ)− θ have been

shifted by a constant for clarity.

Of course, a lift corresponds to only one map K, but a map K has infinitely many lifts.

If K̃ is a lift of K, all the other lifts are given by K̃(θ + `) + (n, 0) where `, n ∈ Z.

The lifts of a map K in the annulus satisfy

K̃(θ + 1) = K̃(θ) + (n, 0) . (10)

The number n measures how many turns are experienced by the angle variable in the range

of K̃ when the angle variable in the domain of K̃ experiences one turn. We will call n the

index of the map. In our case, we will consider only circles of index 1. It is easy to see that

circles of index bigger than 1 have self-intersections, and circles of index 0 are homotopically

trivial. The lift F̃ of our map F of the annulus also satisfies

F̃ (x+ 1, y) = F̃ (x, y) + (1, 0) .

Note that a consequence of (10) is that K̃x(θ)−θ and K̃y(θ) are periodic functions. These

are the functions we will be studying numerically. This is equivalent to studying K because

if K satisfies (7), then

F̃ ◦ K̃(θ̃) = K̃(θ̃ + ω) . (11)

The functions K̃x(θ) − θ and K̃y(θ) for the shearless circles of the winding numbers ω(1),

ω(2), and ω(3) are shown in Fig. 2.
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A. Symmetry properties

The standard non-twist map (1) is symmetric under S:

F ◦ S = S ◦ F , (12)

where S is the map of the annulus defined by

S(x, y) =

(

x+
1

2
,−y

)

.

Note that S is an involution:

S2 = Id . (13)

This symmetry (12) implies the following properties for the functions K solving (7).

Lemma 1. If the map F satisfies (12) and the circle is of index 1, then K satisfies

S ◦K(θ) = K(θ + 1/2) ,

and any lift K̃ satisfies

K̃x(θ + 1/2) = K̃x(θ) + 1/2 , K̃y(θ + 1/2) = −K̃y(θ) . (14)

In particular K̃x(θ)− θ is of period 1/2.

Proof. We have

F ◦ S ◦K(θ) = S ◦ F ◦K(θ)

= S ◦K(θ + ω) ,

so that S ◦ K is also a solution of (7) and parameterizes the same circle. Hence, by the

uniqueness result in (9), there exists a number σ for which

S ◦K(θ) = K(θ + σ) .

Noting that S2 = Id, we conclude that

K(θ + 2σ) = K(θ) . (15)

If σ were an irrational number, then (15) would imply that K(θ) is constant, which is

impossible. Hence, σ is rational.
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If σ = n/m with m odd, then

SK(θ) = SmK(θ) = K(θ + n) = K(θ) .

This implies that −Ky(θ) = Ky(θ), so that the circle is the x axis and that Kx(θ) + 1/2 =

Kx(θ), both of which are absurd.

Hence, the only possibility is σ = n/2k with n, k ∈ N, gcd(n, k) = 1, and, in particular

n is odd. Then we can find L, p ∈ N such that nL− pk = 1. Hence, iterating (15) L times,

we obtain

K(θ) = S2LK(θ) = K

(

θ +
nL

k

)

= K

(

θ +
1

k

)

.

This will imply that the index of the circle is k. Since we are considering circles of index 1,

we choose k = 1, and the result is proved.

B. Reversibility

The map (1) is reversible, which implies antisymmetry properties of the parameterization

function. We follow the notation of [15].

Reversibility means that

I0 ◦ F = F−1 ◦ I0 , I20 = Id , (16)

where I0 is a map of the annulus. Then it is easy to see that I1 = F ◦ I0 also satisfies

I1 ◦ F = F−1 ◦ I1 , I21 = Id . (17)

The map F is just a composition of these two involutions:

F = I1 ◦ I0. (18)

For the map (1), we can take

I0(x, y) = (−x, y − b sin(2πx)) , I1(x, y) = (−x+ a(1− y2), y) .

Now we investigate the implications of reversibility for the function K. If K satisfies (7),

we also have F−1 ◦K(θ) = K(θ − ω) or, denoting L(θ) = K(−θ) we have

F−1 ◦ L(θ) = L(θ + ω) . (19)
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Also, composing (7) with I0 and using (16), we get

I0 ◦K(θ + ω) = F−1 ◦ I0 ◦K(θ) .

Thus, I0 ◦K and L satisfy the same equation, and the argument leading to (9) implies that

I0 ◦K(θ) = L(θ + σ) = K(−θ − σ) .

for some σ. Clearly, σ depends on the I0 and on the origin of coordinates we have chosen

for θ.

If we change the origin of coordinates in θ by σ/2, we obtain that

I0 ◦K(θ) = K(−θ) . (20)

Such K will be said to be antisymmetric with respect to I0. Note that if (20) holds, then

I0 ◦K(0) = K(0), so that the antisymmetry is evident if we choose K(0) on the symmetry

line (fixed point set) of I0.

Composing (20) with I1, we obtain

K(θ + ω) = F ◦K(θ) = I1 ◦ I0 ◦K(θ)

= I1 ◦K(−θ) .
(21)

So, we see that if K is antisymmetric with respect to I0, a translation in θ by ω/2 will make

it antisymmetric with respect to I1. In this case, K(0) belongs to the symmetry line for I1.

For the case of the standard non-twist map, we obtain using (21) for the x component

and (20) for the y component that

Kx(−θ) = −Kx(θ)

Ky(−θ) = Ky(θ + ω) .
(22)

Of course, the other two identities that we obtain from (20) and (21) are equivalent to (22)

and (7). One consequence of (22) is that the Fourier series of K(θ)−θ is simply a sine series

or equivalently, the phases of the complex Fourier transform (which is what we implemented

numerically) are either π/2 or 3π/2.

The equations (22) refer to parameterizations with the K(0) on the symmetry line. In

our calculations, we have chosen to take K(0) to be the indicator point [28] which is known

for sure to belong to the shearless curve. In this coordinates, we can see that the phases of
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the Fourier coefficients should be |k|σ+ rk where rk is either π/2 or 3π/2. This provides an

independent check of the calculations of the Fourier coefficients and we discuss it in detail

in Sec. VA.

We could use (14) to compute only the even (resp. odd) Fourier coefficients of Kx(θ)− θ

[resp. Ky(θ)] and carry out the analysis only for them. We have chosen not to hardwire this

symmetry into the calculations of Fourier spectra. In this way, the size of the odd (resp.

even) coefficients gives us an estimate of the numerical error in our computations.

IV. COMPUTING THE REGULARITY OF THE PARAMETERIZATION

FUNCTIONS

In this section, we will briefly describe the methods we used to compute the regularity of

the parameterization functions. A much more extensive discussion can be found in [21], to

which we refer for further details and for references to the mathematical literature.

In this paper, we will only use the two methods that were found to be the most accurate

in [21], namely the so-called “Continuous Littlewood-Paley” and the “Difference methods”.

Notably, we do not consider the methods based on wavelets that were implemented in [21].

We refer to [21] for a comparison of various numerical methods.

A. Some mathematical results

Following the standard mathematical notation, we will express the regularity of the func-

tions considered by saying that the function belongs to certain spaces in a family indexed

by a number. We will use the following definition.

Definition 1. For α = n+β with n ∈ Z, β ∈ (0, 1), we say that the function K is in Λα(T)

when K is n times differentiable and

|DnK(θ)−DnK(θ̃)| ≤ C|θ − θ̃|β (23)

for some constant C.

The above definition does not cover the case when α is an integer. It is a fact of life that

many of the characterizations we will use become delicate when α is an integer. Fortunately,

for the applications here, we do not need to consider the case when α is an integer.
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The following results can be found in [29, Ch. 5, Lemma 5] and [30], respectively.

Theorem 1 (CLP). The function K is in Λα(T) if and only if for some η ≥ 0 there exists

a C > 0 such that for any t > 0
∣

∣

∣

∣

∣

∣

∣

∣

(

∂

∂t

)η

e−t
√
−∆K

∣

∣

∣

∣

∣

∣

∣

∣

L∞(T)
≤ C tα−η . (24)

Remark 2. If the above result holds for some η ≥ 0, then it holds for all η ≥ 0.

Remark 3. The operator e−t
√
−∆ is the Poisson kernel, which appears very often in the study

of boundary value problems.

Theorem 2 (FD). Let Dn
θ be the finite difference operator,

(Dn
θK) (θ) :=

n
∑

j=0

(−1)j
(

n

j

)

K(θ + (n− 2j)θ) .

Then K ∈ Λα(T) if and only if ∃ C > 0 such that ∀ θ ∈ T

‖Dn
θK‖L∞(T) ≤ C|θ|α . (25)

Remark 4. The mathematical theory only requires (24) and (25) to be upper bounds. Nev-

ertheless, we note that in our case, the bounds become identities for a significant range of

parameters. The fact that the upper bounds are saturated is very possibly a consequence

of the fact that, because of the renormalization picture, the functions we are considering

are very self-similar. The same effect was also observed for the functions considered in [21].

(See also the discussion in Sec. III B.)

B. Some remarks on the numerical implementation

Both numerical methods considered here are made easier if the function K is specified at

equally spaced points. The computation described in Section III, however, gives the function

values for {θ = nω}Mn=0. Hence, the first step is to compute the function on an evenly spaced

grid of size 2−N . This is done using a cubic interpolation spline. Here N is chosen such that

2N ≈M .

To use Theorem 2 numerically, we note that substituting θ = 2−j and n = 1 in Equation

(25) gives

log2 ‖D
1
2−jK‖L∞(T) ≤ const− αj . (26)
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Thus, the finite difference method simply evaluates the difference operators for various j,

and we fit a straight line to a logarithmic plot of ‖D12−jK‖L∞(T) versus j.

For the CLP method (Theorem 1), the most effective way to compute the Poisson kernel

is to observe that it is diagonal in Fourier series. Specifically, if

K(θ) =
∑

n∈Z

K̂ne
−2πinθ , (27)

then
(

∂

∂t

)η

e−t
√
−∆K(θ) =

∑

n∈Z

(−2π|n|)ηK̂ne
−2πt|n|e−2πinθ . (28)

Using the Fast Fourier transform – which becomes possible once we have the function inter-

polated in an equally spaced grid – it is very efficient to compute the Fourier coefficients,

multiply them by the appropriate coefficients, compute the inverse Fourier transform and

then take the supremum over θ. By repeating the computation for several values of t and

then fitting a straight line in a double logarithmic plot of
∣

∣

∣

∣

∣

∣

(

∂
∂t

)η
e−t

√
−∆K

∣

∣

∣

∣

∣

∣

L∞(T)
versus t,

we obtain a good estimation of the regularity.

In the application of the CLP method, it is convenient to choose η in such a way that

the power in t that results in the decay is as close to zero as possible. The reason is that

the coefficients which are very close to zero are strongly affected by round-off error in the

calculations.

Remark 5. In [21] it was argued that the CLP method was numerically more stable while

the difference method was more susceptible to numerical error. Hence, in this paper, we will

obtain the regularities from the CLP method and use the FD method as a confirmation.

V. RESULTS AND DISCUSSION

A. Visual observations of the Fourier spectrum

As mentioned earlier, the critical circles have self-similar structure which is manifested

in the self-similarity of the parameterization functions. We can see this by looking at their

Fourier spectra (the modulus of the Fourier coefficients). Fig. 3 shows the spectra ofKx(θ)−θ

for the three frequencies studied. We see that the Fourier spectra are periodic with a period

of 6 log10 γ. Similar structure is also observed for the spectra of Ky(θ). We note that the

peaks in the spectra are observed at values that are the denominators of the truncations
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FIG. 3: Plot of log10(n|K̂n|) vs. log10 n where K̂n are the Fourier coefficients of Kx(θ)− θ for ω(1)

(left), ω(2) (center), and ω(3) (right). The abscissas marked here are the denominators of continued

fraction convergents for that specific frequency.

of the continued fraction expansion of the corresponding winding number, with every sixth

denominator showing a major peak while those in between show minor peaks. Specifically,

the peaks occur at Fibonacci numbers only for the first two winding numbers.

Remark 6. In the case of twist maps, the period of such a plot is log10 γ. The factor of

6 for the nontwist maps is related to the fact that the critical nontwist map belongs to a

period-12 cycle of the renormalization group operator whereas the critical twist map is a

fixed point of that operator.

As we noted in Sec. III B, the functions Kx(θ)− θ and Ky(θ) can be made antisymmetric

with appropriate choice of initial conditions, i.e., values of these functions at θ = 0. These

initial conditions (the points of intersection of the critical shearless circle with the symmetry

lines) are known with a limited accuracy whereas the indicator points that we used as initial

conditions are guaranteed to lie on the shearless circle. Indeed, in our calculations, the

odd (resp. even) Fourier coefficients of Kx(θ) − θ [resp. Ky(θ)] are smaller when using the

indicator points (10−11 to 10−10) than when using the symmetry lines (10−10 to 10−9).

Since we chose the indicator point as initial conditions, the phases of Fourier spectra lie

on straight lines. The slope of these lines is 2πy0 where y0 is the point of intersection of the

shearless circle with the symmetry line of I0 while the intercept is π/2 or 3π/2.

To check the numerical accuracy of the Fourier coefficients, we also calculated the spectra

after choosing the initial conditions to make the function Kx(θ) − θ antisymmetric, i.e.,

choosing Kx(0) to be a fixed point of I0. Figure 4 shows the phases for all n < 2× 106 (left

panel) and also for n for which log10 |K̂n| > −9.5 (right panel). We see that the phases are
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FIG. 4: The phases of the Fourier transform of Kx(θ)−θ with Kx(0) chosen to be on the symmetry

line of I0. Left panel shows all the phases while the right panel shows phases for n for which

log10 K̂n > −9.5 .

indeed π/2 or 3π/2 for all n < 1.6× 106 with log10 |̂Kn| > −9.5 .

B. Regularity using CLP method

We compared results from different grid sizes to check for robustness of the methods

used here. Figure 5 shows the plots of log10

∣
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∣
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)2
e−t

√
−∆ (K̃(θ)− θ)

∣

∣

∣

∣

∣

∣

L∞(T)
versus log10 t

computed with 2−N number of points for N = 24 (boxes) and N = 22 (circles). In order

to assess the accuracy, we also calculated the above norms for N = 24 by setting all the

Fourier coefficients K̂n with magnitude less than 10−7 or 10−9 to zero, shown in Figure 5

with pluses and crosses respectively. We see that the plot for N = 22 compares very well

with that for N = 24 with all |K̂n| < 10−9 set to zero. We also see that for log10 t > −5, all

the calculations give essentially the same results.

The observations in Figure 5 make it apparent that there is a substantial range of values

of log10 t for which (24) is close to a equality. (See also Figure 6.) This range is limited on

one side (of small log10 t) by the numerical error (round-off and truncation of Fourier series)

and on the other side (of larger log10 t) by the universal self-similar structure which is only

true asymptotically.

Once we have identified the range where (24) is an equality, a good measure of the

regularity is obtained by the slope of the linear fit within that range. We will see in Sec. VC
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FIG. 6: The plots of log10
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L∞(T)
versus log10 t for Kx(θ) − θ (left) and

Ky(θ) (right) used to calculate the regularity using the CLP method.

that the deviations from the linear fit show a universal behavior. Thus, a systematic way of

choosing the range of fit is where the universality applies. Table I shows the regularities found

using such ranges. The errors shown are the standard deviations of the linear regression.
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η ω(1) ω(2) ω(3)

Kx(θ)− θ 1 0.700± 0.005 0.718± 0.004 0.698± 0.005

2 0.679± 0.006 0.656± 0.005 0.671± 0.005

3 0.647± 0.018 0.647± 0.018 0.636± 0.015

4 0.687± 0.007 0.669± 0.007 0.676± 0.007

5 0.683± 0.008 0.667± 0.009 0.672± 0.009

Ky(θ) 1 0.724± 0.007 0.728± 0.003 0.730± 0.006

2 0.700± 0.006 0.692± 0.006 0.692± 0.006

3 0.645± 0.015 0.622± 0.015 0.629± 0.015

4 0.690± 0.008 0.675± 0.008 0.680± 0.008

5 0.690± 0.005 0.702± 0.006 0.698± 0.005

TABLE I: Regularities of the parameterization functions for three frequencies using the CLP

method with different η. The error shown is the standard error from the linear regression. The

ranges of log10 t were chosen so that corrections to the linear behavior are periodic, as explained

in detail in Section VC.

Increasing the number of values of t at which the norm is calculated obviously decreases

the standard deviation of the linear fit. Thus the errors shown in Table II can be made

smaller or larger. Of course, choosing different ranges of log10 t for the linear fit give slightly

different regularities, depending on whether the jumps in the deviation from the linear

behavior (as seen in, e.g., Figure 7) are included or not. Thus, the errors shown in Table II

include these systematic errors from all the five values of η used here.

Remark 7. The three frequencies considered here are all noble numbers. As a consequence,

the invariant circles with rotation numbers ω(2) and ω(3) for the standard nontwist map

are equivalent to circles with rotation number ω(1) for maps which are obtained from the

standard nontwist map by renormalization. The fact that the regularities we find here are

the same for all the circles is equivalent to saying that they are the same for circles of rotation

number ω(1) for different maps. Hence, the fact that the regularities for different frequencies

are seen to be the same is an evidence of universality of critical noble invariant circles.
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C. Universal corrections to the CLP bound

If the inequalities (24) were identically saturated, we would have that R(log10 t) ≡

log10

∣
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)2
e−t

√
−∆K

∣

∣

∣

∣

∣

∣

L∞(T)
would be an affine function of log10 t and the plot of R(l) versus

l would be a straight line.

Nevertheless, it is a prediction from renormalization group theory that there are sys-

tematic deviation from the linear behavior of R. In particular, there should be a periodic

oscillation.

As it was argued in [21], the deviation of R(l) from an affine behavior is related to the

fact that the scaling predicted by the renormalization group is not a continuous scaling but

just a discrete one. The renormalization group predicts that, for sufficiently small t > 0 (i.e.,

large negative log10t), there are numbers a, b so that R(l + a) ≈ R(l) + b. This leaves open

the possibility that, superimposed on the linear behavior of R(l) versus l, there is a periodic

behavior. That is, R(l) ≈ (b/a)l+P (l) where P (l) is a function of period a. According to the

renormalization group picture, the function P should be universal. Of course, for different

functions in the same universality class, the asymptotic behavior may manifest itself only

for very large negative values of l.

The periodic correction to R(l) is closely related to the approximate periodicity found for

the Fourier coefficients |K̂n| as a function of log10 |n| which we already observed in Figure 3.

The universality of periodic function P (l) is related to the fact that there is an asymptotic

shape for the period of the scaled Fourier coefficients.

We have verified the existence of a universal periodic function P (l) by computing the

finite differences in the plot of R(l) versus l. The results for η = 2, 4 for Kx(θ)− θ and for

η = 1, 3 for Ky(θ) are depicted in Figure 7. We also see that, as commented earlier, the

smaller values of η are more accurate, i.e., the periodicity of these corrections is more clearly

seen for smaller η.

We note that the period of the oscillations in these plots is 6 times longer than the period

observed in the problems in [21]. This is due to the fact that the renormalization operator in

our case has period 6 rather than a fixed point as in the cases considered in [21]. This effect

is clearly visible in the period of the Fourier coefficients as seen already in Section VA.

We also note that for different ω we obtain a different phase in the periodic correction.

This is due to the fact that our ω have a different entry in the first place of the continued



19

-5

-4

-3

-2

-1

0

-9 -8 -7 -6 -5 -4 -3 -2 -1 0

η = 2

η = 4

Kx(θ) - θ

-3

-2.5

-2

-1.5

-1

-0.5

0

-9 -8 -7 -6 -5 -4 -3 -2 -1 0

η = 1

η = 3

Ky(θ)

FIG. 7: The finite differences in the plots of log10
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versus log10 t for η = 2, 4

for Kx(θ)−θ (left) and for η = 1, 3 for Ky(θ) (right). The ranges selected for getting regularities are

shown by arrows. Plots for all three frequencies are shown but those for ω(2) (- - -) and ω(3) (- - -)

have been shifted horizontally to match that of ω(1) (· · · ).

fraction expansion, so that they need one more application of the renormalization to start

exhibiting the periodic behavior. Hence, in the figure, we have shifted the finite differences

to exhibit that, for our examples, they agree as predicted by universality.

The existence of a periodic correction to the linear dependence of R as well as its agree-

ment in the examples studied, gives us good confidence that we are observing real effects.

From a more practical point of view, it gives us the following criterion: We fit a straight

line to the plot of R(l) versus l only in the region where the periodicity of the correction is

manifest. These regions are shown in Figure 7. All these tasks were greatly facilitated by

the remarkable public domain program xmgrace.

D. Regularity using the finite difference method

As with the CLP method, we first compare results for different grid sizes. The plot of

the log2 ‖D
1
2−jK‖L∞(T) vs. j is shown in Fig. 8 for K̃x(θ) − θ for the frequency ω(1) = 1/γ

for N = 20, 22, and 24. We note that there is a break at j = 10. The regularity obtained

from the plot with j > 10 agrees very well with the CLP method while that obtained from

all the points with j > 5 is lower. Since this method is affected more by round-off errors, we

have used it only as a quick confirmation of results from the CLP method. The agreement

between the two methods is much better for Ky(θ) probably because the round-off errors in
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2−jK‖L∞(T) vs. j for Kx(θ)−θ (left) and Ky(θ) (right) used to calculate

the regularity using the finite difference method.

iterating the map F propagate faster along the angle coordinate (x) [and hence in Kx(θ)]

than in the action coordinate (y) [and hence in Ky(θ)].[26, Appendix C].

Figure 9 compares the plots of log2 ‖D
1
2−jK‖L∞(T) versus j for N = 24 for all the three

frequencies for Kx(θ)−θ and Ky(θ) with the line whose slope is the regularity obtained from

the CLP method. We see that the bound in (25) is not saturated for j < 10 for Kx(θ)− θ.

From the regularities of the parameterization functions Kx(θ)−θ and Ky(θ) for the three

frequencies ω(1), ω(2), and ω(3) shown in Table II, we conclude the universal regularity of

K(θ) for critical shearless noble circles to be 0.69± 0.03.
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ω(1) ω(2) ω(3)

Kx(θ)− θ 0.68± 0.02 0.67± 0.02 0.67± 0.01

Ky(θ) 0.69± 0.02 0.68± 0.03 0.69± 0.03

TABLE II: Regularities of Kx(θ)− θ and Ky(θ) for the three frequencies.
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