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1 Introduction

We begin with an overview of dynamical systems, including the topic of circle
maps. We then foray into the current research of one such type of circle map.
An introduction/review of symplectic geometry is provided in preparation for
the symplectic reformulation of this circle map that concludes the paper.

2 Discrete Dynamical Systems

Let
frX)=(fofo...0f)(z), (1)

i.e., f composed with itself n — 1 times. The field of discrete dynamical sys-
tems is concerned with the question, what are the properties of the sequence
z, f(z), f2(z), f2(z),...? Does the limit of the sequence exist? Does the se-
quence converge, diverge, or become periodic?

We can use graphical analysis to visualize the answer to this question for a
given value of z. We draw the graph of the function and the line y = = on the
same plot. Then we start at (z,0), and travel vertically to (z, f(z)). From there
we travel horizontally to meet the line y = z at the point (f(z), f(z)). Then
we travel until we touch the graph of f at the point (f(z), f(f(z))). We can
continue this staircase procedure to get an idea of the limit of this sequence. In
this example, f = 22 and the initial 2 is —.99.

Any such sequence f¢(z) with |z| < 1 as the starting point will converge to
zero. Clearly, also, the sequences fi(1), fi(—1), and f¢(0) are constant, and
{fi(x)||z| > 1} diverge. We can represent this in a phase portrait (Figure 2).

Phase portraits become more interesting when the function f depends on
a parameter other than z. The logistic function f(z) = rz(1 — z) is one such
well-studied function. It is often viewed as a model for population growth:
beginning with a population z, the population after one time unit is a function
of a parameter r that depends on the physical circumstances, multiplied by z
(larger population, larger growth), multiplied by (1 —z), the environment being
limited by too large a population. We draw the bifurcation diagram as r varies



Figure 1: Graphical analysis on y = z3.
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Figure 2: A phase portrait of y = z3.

between 0 and 3. For each r, we pick a starting point, iterate many times, and
eventually start plotting the iterates. Using this technique we can see attracting
points, and attracting orbits.
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Figure 3: The bifurcation diagram for f(z) = rz(1 — ).

Again there are points that attract or repel a neighborhood of points around



them. Because these points are fixed under iteration, we can solve for them.

z = f(z)

z=rz(l — z)

0=—re? +(r— 1z

mzo,r;1 2)

Neighborhoods that are attracted to a point p are stable sets of p, and denoted
W#(p). It appears that for 0 <r <1, W#(0) = (=2, 00). W*(Z=L) = =1 and
W#(—00) = (==L, —00).
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Theorem 1 (Hyperbolic Points) Let f be a C! function and p a fized point
of f. Then if |f'(p)| > 1, there exists a neighborhood surrounding p which all
points other than p must leave under iteration of f. If |f'(p)| < 1, then there
exists a neighborhood in the stable set of p.

p is called a hyperbolic fized point if |f'(p)| # 1, and a neutral fized point if
|f'(p)| = 1.

The proof is an exercise in continuity and induction and is left to the reader.

From Figure 3, one can see that at » = 3, a period-doubling bifurcation
occurs. For z = =1, f'(z) = f'(==%) = 2 — r, which switches from |f'(z)| < 1
to |f'(z)] > 1 at » = 3. Thus the fixed point becomes repelling, and the
continuity of f requires that a period two attracting orbit be added. Intuitively,
f(f(z)) has twice the degree and when r > 3, f(f(z)) = 0 admits twice the
number of real solutions.

For larger r, we will see that there exist orbits of other periods. We introduce
here Sarkovskii’s Theorem, omitting the proof.

Definition 1 (Sarkovskii’s Ordering) Sarkovskii’s ordering of the natural
numbers:
3-=5>=T7T»-+>2-3=2-5%=2-7T»---»=22.3-22.5=22.7»...»
2.3 =2 5= 2" T =23 =22 2 1.

Theorem 2 (Sarkovskii, 1964) Suppose that f is a continuous function of
the real numbers with an orbit of prime period n. Then f has orbits with prime
periods of all numbers less than n in the Sarkovskii ordering.

We now continue studying the logistic function. We make some observations
about the logistic function, then delve into Cantor sets, make a formal definition
of chaos, and finally conclude that we can find chaos in the logistic function.
r > 4 will be considered, because it has simpler dynamics.

We define A,, = {z|h™(z) is in [0,1]}. Let A =7, A,.

Proposition 1 (Logistic Function) If f(z) = rz(1 — x) and r > 4, then
a {z|z €[0,1] and f(z) #[0,1]} = (§ — Y=4r L 4 Vr2—dr)  This can be

27 " 2r 2 2r
seen by using the quadratic formula to solve f(x) = 1. Furthermore, Ay

is the complement of this interval in [0,1].




b The set A, consists of 2™ closed intervals.

¢ If I is one of the closed intervals in A, then f™: I — [0,1] is one-to-one
and onto.

Definition 2 (Cantor Sets) A Cantor set is a nonempty set B C R such that
a B is closed and bounded, i.e., compact
b B contains no intervals

¢ Every B € B is an accumulation point of B, that is, given € > 0, V3 €
B, Ng,. contains a point in B that is not 3.

The reader is probably familiar with the construction of the Cantor middle-a
set. For example, to construct the middle-thirds set, one takes the unit interval,
removes the middle third, then removes the middle third from the remaining
two intervals, etc.

Theorem 3 (A and Cantor sets) Ifr > 2+ /5, then A is a Cantor set.

Lemma 1 Let r > 2+ /5 and f be the logistic function. Then 3X > 1 such
that |f'(x)| > X whenever € Ay. Also, the length of each interval in A,, is less
than ($)"

The first part of the lemma follows from the fact that if z € A;, then |f'(z)] is
greater than or equal to the absolute value of the derivative of f at (1 + ¥ =4r),
A proof of the second part can be shown using the first part together with the
Mean Value Theorem.

Proof of Theorem We need to show that

a A is closed and bounded.
It is the intersection of closed sets, and is contained in [0, 1].

b A contains no intervals.
Suppose A were to contain an interval (z,y) with length |z — y|. Then
(z,y) must be contained in an interval of all A;. But we can find an n
such that [z —y| > (1), so that (z,y) cannot be contained in Ay,.

¢ Every point in A is an accumulation point.
Suppose z € A. Select a d-neighborhood around z, (x — §,z + §). For
each n, z is contained in one of the intervals of A,,. We can choose n large
enough that (§)™ < é. Then this entire interval of A, is contained in the
d-neighborhood. Then both of the endpoints of this interval are in the
é-neighborhood, and at least one of them is not z. Also, all endpoints of
intervals remain within A, since f applied to them is 0.



In a deceptively simple function, f(z) = rz(1 — z), we have found a Cantor set.
Now we will find chaos. In mathematics, chaos is precisely defined. One such
definition follows. An explanation of each clause will follow, with a proof that
A meets the condition.

Definition 3 (Chaos) A function f: D — D is chaotic if
o the periodic points of f are dense in D,
b f is topologically transitive, and
¢ [ exhibits sensitive dependence on initial conditions.
We consider f =rz(1 —z),and D = A, and r > 2 + /5.

Definition 4 (Density of Periodic Points) If z is any point in A and € > 0,
then there is a periodic point p € A such that |z — p| < e.

By a previous proposition, if I is one of the closed intervals in A,,, then f™ :
I — [0,1] is one-to-one and onto. This, together with the fixed-point theorem,
implies that there are 2" points in A,, with period n. These points are repelling,
and, with a large enough n, are dense.

Definition 5 (Topological Transitivity) A function f : D — D is topologi-
cally transitive if for any open sets U,V that intersect D there is a z € U and
a number n such that f™*(z) € VU D.

Equivalently, for any z,y € D, and € > 0, 3z € D such that |z — z| < € and
ly — f™(2)| < € for some n.

Let z,y € A. We will find z such that |z — 2| < €, and f*(2) = y for some
n. Choose n large enough that (%)” < €. By previous proposition, there is an
interval I, in A,, such that f™: I, — [0,1] is 1-1 and onto. Thus some point in
I,, gets taken by f™ to y, and, by our choice of n, that point is a distance less
than € from z.

Definition 6 (Sensitive Dependence) A function f : D — D exhibits sen-
sitive dependence on initial conditions if 30 > 0 such that given any © € D
and € > 0, there exists y € D and a number n such that |z — y| < € and

| () — f™(y)| > 6.

Let z € A and € > 0. Choose § = ;. Again we choose n such that ()" < e.
x € I, for some interval in A,. Recall that f* : I, — [0,1] is 1-1 and onto.
So Ja,b € I, such that f*(a) =0, f*(b) = 1. Now, f"(z) is in either [0,1) or
(1,1], since L is not in A. So f"(z) is a distance of at least & from either f"(a)

or f™(b), and we know that |2 — a| < € and |z — b| < € by selection of n.



3 The Dynamics of Circle Maps

We provide an introduction to the dynamics, specifically, of circle maps, in
preparation for our studies into the modern research of this area.

Circle maps are functions which take the circle into itself. We consider only
orientation-preserving diffeomorphisms f: St — S.

It is often easier to work within R, not S'. We therefore define the lift of f.

Definition 7 (Lift) Given a covering map 7 : R — S*,

2miz

m(z) =e = cos(2nz) + i sin(27z), (3)

then F : R — R is a lift of f if
moF = for (4)

For example, let f,(0) = 0 + 27w, i.e., translation by an angle 27w. Then
For =2+ w+kis alift of f.

For any circle map, there are an infinite number of lifts; however, they always
differ by an integer k. Additionally, F(z+k) = F(z)+k for any integer k. This
implies that F(z+1)— (z+1) = F(z)—x, so F(x)—x is a periodic function with
period 1. One can similarly show that F"(x) — x is also periodic with period 1.
Using these facts, it follows that if |z — y| < 1, then |F™(z) — F"(y)| < 1.

Definition 8 The rotation number, p, of a circle map measures the average
rotation a point experiences under iteration of the map. It is defined as the
fractional part of

p(F) = lim F(z)

n—oo N

()

It must be shown that p does not depend on the choice of z. By the triangle
inequality and previous remarks,

[ (2) = F*(y)| < [(F"(2) —z) = (F"(y) —9)| + |z — |

<1+|z—yl (6)
Therefore o n
lim |F"(2) = F"(y)] =0. (7)
n—o00 n

So any choice of x returns the same rotation number.

Suppose we have two different lifts, F; and F5. Then 3k € N such that
Fi(z) = F5(z) + k. Then F*(x) = F*(z) + nk, and p1(z) = pa(z) + k. Thus
by taking only the fractional part of p;, we have a well-defined p.

Theorem 4 (Periodic points and p) If f has a periodic point, then p(f) ex-
ists and is rational.



Proof. Let f™(0) = 6 and w(x) = 0. Then F™(z) = x + k for some k € N, and
FI™ = g + jk, and we see that

CFT@) oz _k
lim - = lim — = —.
j—oo  Jjm j—oo  Jm m

(®)

Any integer n can be written as n = jm + r,0 < r < m. Then IM such that
|F"(y) —y| < M, Vy € R, 0 <r < m. From this

[F™(z) — FI™(x)| _ |[F"(FI™(x)) — FI™ ()]
n n

<

M
—, g
- ©)
and when we take n to infinity, the limits are equal. The proof for f without
periodic points is more complicated; but again, p is well defined. We shall,
however, show the following.

Theorem 5 (No periodic points and p) p(f) ¢ Q if and only if f has no
periodic points

Proof. Given the previous theorem, it suffices to show that if f has no periodic
points, then p is irrational. We assume p is rational and derive a contradiction.
Let po(F) = lim,, an(z), i.e., p without the integer part omitted. Then for
any lift F', po(F™) = mpo(F). Thus we may assume that p(F) = 0, but f has
no fixed points. Since F also has no fixed points, we may assume F(z) > z Vz.
We must consider the two cases of F(0) < 1Vn, or 3k > 0[F¥(0) > 1. In this
latter case F™*(0) > m = po(F) > 1, which is a contradiction. In the first case
F™(0) is monotonically increasing in [0,1] and therefore must converge. This
limit point is a fixed point of F'.

As we did in the previous section, we turn now to an important specific map,
and find a Cantor function.

We consider the map

fw,e(0) =0+ 27w + €sin(8) (10)

with the lift .
Focz)=z4+w+ o sin(27z). (11)

For € = 0, this is the rotation map.

For 0 <e <1, f,, is a diffeormorphism of S*.

For € = 1, the map is a homeomorphism, and for € > 1, it is no longer injective.
If w; > wy, then

the(x) > sz,e(m) (12)
for all x € R. Also,
F (x) > F, (@) (13)

for all n, and so po(Fyy,e) > po(Fius,e)- Thus pg is a nondecreasing function of
w; it can also be shown that it is continuous. Let us fix € # 0 and denote f,
as f,. The graph of p versus w looks as follows:



Figure 4: The graph of p(f,,) is also known as the devil’s staircase.

Theorem 6 For any rational rotation number %, there is an interval of w-

values for which the rotation number remains %.
Proof. Suppose that p(f,,) is rational, of the form %. Then f,, has a period ¢
point. There exists o € R such that

F! (o) =20 + k, with k =p (14)

Consider the graph of y = FJ (). This graph intersects the straight line y =
x + k at the point (o, o + k). If FZ ' # 1, then the Implicit Function Therem
tells us that there is an open interval about wy for which the graphs of each F!
also intersect the line y = x + k. If the derivative is 1, then we can use the fact
that F'Y is analytic to find an integer j for which (Fgo)(j) (zg) # 0. If j is odd,
then the graphs of nearby F must pierce the line y = = + k. If j is even, then
either F! is either concave up or concave down, and again nearby F! must
intersect the line y = z + k.

There is a unique w for which p(f,,) is a given irrational number.

The graph of p(f.,) is a Cantor function. It is constant everywhere but on a
Cantor set.

4 Research into Circle Maps

The following comes from the article Off-Center Reflections: Caustics and
Chaos, by Thomas Kwok-keung Au and Xiao-Song Lin.

We consider off-center reflection maps. To construct such a map, R, : S* —
S1, we pick a point (r,0) in the interior of the unit disk D2. Then for every
¢ € s', we emit a ray from (r,0) to ¢, and reflect ¢ by the angle made with the
origin to R,(¢).

We have

R.(¢) = ¢+7—2a mod 27 where a = a(¢) := Arg(cos ¢ —r+isin @) — @,
(15)
recalling that Arg(et?) = 6.



Ri) |

Figure 5: The off-center reflection map.

We can get another equation for the map R, by using complex numbers with
modulus 1: )
—rz
R (2) = —2"—= 16
N (16)

For future reference, we put here the first two derivatives of R,..

_ 1—4rcos¢+3r?

R (¢) = 1 —2rcos¢ + r2 an)
2 g
RI(@) = 2r(1 —r?)sing (18)

(1 —2rcos¢ +r2)?

These can be calculated by expressing « in terms of the arctangent.
For any circle map f, including R,, we get a family of lines from ¢ to f(¢).
This family is

F(¢,2,y) = (sin f(9) — sin@)(z — cos §) — (cos f(¢) — cos §)(y — sin 6)
= (sin f(¢) — sin @)z — (cos f(¢) — cos p)y —sin(f(¢) — ¢).  (19)
Definition 9 (Envelope and Caustic) The envelope of a family of lines is

the curve which touches every one of those lines. The caustic of the map [ is
the envelope of these lines. The caustic can be found by solving the equations

OF

d¢
For example, consider the family of lines shown in the following diagram.
This family is described by

1
F(a,z,y) =z + ytan(a) — cos(a) (21)
with derivative 5 in(a)
_ Yy  sin(a
6aF(a,:c,y) ~ cos?(a)  cos?(a) (22)



Figure 6: A family of lines.

We set F(a,z,y) = 0 = £ F(a,z,y) Multiplying (22) through by cos?(a), we

get y = sin(a). Thus cos(a) = /1 —sin®(a) = /1 — y2. We substitute these
terms into (21), to get +y\/% - ¢+—2 =0,s0 z = /1 —y?2, and, as you
~y -y

may have guessed, we have the unit circle.

Definition 10 (Cusp) A cusp is a point on a continuous curve where the tan-
gent vector changes sign. For example:

Figure 7: A cusp.

To solve for the caustic of a family of lines created by a map, (19) is used.

F is the first row of the following matrix; g—g is the second.

( sin f(¢) —sin¢ —cos f(¢) + cos ¢ > ( z ) _ ( sin(f(¢) — ¢) )
f(@)cos f(¢) —cosd  f(d)sinf(¢) —sin¢ y (F'(¢) = 1) cos(f(9) — ¢)

10



By solving for x and y, we obtain a parameterization of the caustic:

_ ['(¢) cos ¢ + cos f(¢)
_ J'(¢)sin ¢ + sin f(¢)
By simple calculation, the derivatives of z and y are
1oy _ [ (@)(cos § — cos f(¢)) — f'($)(1 + f'(¢))(sin ¢ + sin f(¢))
r= NI (25)
1oy "(@)(sin g —sin f(¢)) — f'($)(1 + f'())(cos ¢ + cos f(¢))
Vo= IO 20

Theorem 7 (Cusp points) For all 0 < r < 1, there are exactly four cusp
points on the caustic of R,.

Proof. Express the derivatives of z and y in terms of r and ¢, using (17) and
(25).

672 (— cos ¢ + r cos(2¢))(r — cos ¢) sin ¢
(=1 —2r2 + 3rcos ¢)?

612 (=1 + 2r cos @) (r — cos @) sin® ¢
(=1 —2r% + 3r cos ¢)*

z'(¢) =

(27)

y'(¢) =

(28)

The solutions for z'(¢) = 0 = y'(¢) are ¢ = 0,7 and two values of ¢ with
cos¢ =r.
A few diagrams are in order to show what the caustic looks like.

Figure 8: For r ~ .25, the lines between ¢ and R,-(¢) are graphed for fifty values
of ¢. Points on the caustic are boxed.

The caustic runs to infinity iff r > 1.

11



Figure 10: For r ~ .75, the lines between ¢ and R,.(¢) are graphed for fifty
values of ¢. Points on the caustic are boxed.

As one can see, further investigations in this manner would become very
computation-intensive. A symplectic approach, surprisingly, overcomes this dif-
ficulty. We will now give a quick review of manifolds and forms, and a short
review/introduction to symplectic geometry.

5 Symplectic Geometry

Definition 11 (Basic terminology) A manifold M of dimension n can be
locally transformed, through coordinate charts, to open balls in R™.

The tangent space at a point of the manifold, T, M, consists of all vectors
from the point x into the copy of R™ tangent to M at that point.

The cotangent space at a point, Ty M, is the set of all dual vectors to the
tangent space at x - i.e., it would have basis {dx,dy,dz} if M had dimension 3.

12



Figure 11: The caustic is shown here with r ~ .25. In the figure on the left, we
cannot see the part of the caustic that runs to positive infinity; it is already off
the diagram. Thus we have constructed the strange perspective of the figure on
the right. Here 0 is at the bottom, we head upwards to where —oo meets o0
in the middle, then decrease to 0 again at the top. Two parallel lines are drawn
to help with perspective - they meet at infinity! We can see that the parts of
the caustic that run to oo meet nicely.

The cotangent bundle, denoted T*M, consists of the set {(q,p): q € M,p €
R™}. It has dimension 2n. The one-forms in the cotangent space, in their most
general form, look like a;dg® + Bidp'.

A fiber is the preimage, under a map, of a point in the manifold.

A section of a bundle is a preimage of the entire manifold, under some map,
into the bundle.

Nondegerate means that if w(x,-) =0 always, then x must be zero.

Definition 12 (Symplectic manifold) A symplectic manifold is a smooth
manifold with a nondegenerate two-form w, called its symplectic structure. Let
(M,w) denote a symplectic manifold.

A symplectic manifold always has even dimension.
For example, the cotangent bundle has a natural symplectic structure, with
w =dq" N\ dp'.

Definition 13 (Lagrangian manifold) An n-dimensional submanifold L of
a symplectic manifold is Lagrangian if the restriction of w to L vanishes (is zero
everywhere).

Theorem 8 (Darboux Coordinates) There ezist coordinates, called Darboux
coordinates, (q¢*,p',q%,p%,...,q",p") that make the non-degenerate two-form
associated with a symplectic manifold look like w =), dg* A dp*.

(The following proofs will lapse into easier vector space notation; manifolds
are locally isomorphic to R”, a vector space, so this is admissible.)

13



Definition 14 (w-orthogonal complement) Consider a symplectic vector space
(V,w) and a subspace W of V.. We define the w-orthogonal complement of W
in'V as follows:

“={veVVweW:w,w) =0} (29)

If the intersection of W and WY is trivial, then quite clearly W is a symplec-
tic subspace. dim W¥+ dim W = dim V. Additionally, W is also symplectic.
By our previous description of Lagrangian, we see that W is Lagrangian if
W = W¥, and the dimension formula confirms that dim W must be dim V/2.

Proof of theorem. We construct a basis for (V,w), {q1,p1,92,D02, - qn,Pn}

such that w(g;, pr) = djk, w(gj,qr) = w(pj,pr) = 0.
Pick a nonzero vector g;. Then, since w is nondegenerate, we can find a vector
p1 such that w(gy,p1) = 1. Call the subspace spanned by {g1,p1}, V1. Clearly
V1 is symplectic, and by the previous paragraph we have V = V; @ V¥, where
V is the direct sum of 2 symplectic manifolds. We can continue to operate
inductively on V{¥, cutting off two vectors at a time, until we have constructed
the desired basis.

Definition 15 (Standard symplectic form) We can now define the stan-
dard symplectic form. If we let V. = R*™ and {q1,p1,492,P25---,Gn,Pq} b€ a
basis of V constructed as above, then, with

n
Z ajq; +bjp;) and v' = Za :qj + bip; (30)
Jj=1 j=1

it follows naturally that

= i(aﬂ’} — ajb;) (31)

=1

For example, fibers of a cotangent bundle are Lagrangian manifolds. T; M =
{X L+ Y o } The ¢ are coordinates in the base manifold; the p’ are
coordlnates in the fiber. w = dqg' A dp’. Since we are selecting fibers, we use
only the p?, so a member of the fiber looks like Zaipj. w(Zlaipj, Zzaipj) =0.

Another example: Given a smooth function on a manifold B with dimension
n, the graph of its differential, considered as a section of the cotangent bundle,
is a Lagrangian manifold in 7*B. Let f : B -+ R. df = gqfi dq', a one-form.
w = dq* A dpt. w(df,dg) = 0.

Consider a function on a symplectic manifold M, H : M — R, the Hamilto-
nian function. It naturally deﬁnes a vector field, called the Hamiltonian vector
field, X5, where Xu(q',p',...,q",p") € T(g pr,....qnpm)M. We will write a
vector in X g as A’ ‘9 + Bi 2 37 We can use w and Xg to define an isomor-
phism between the tangent and cotangent bundles. We want w(Xg,-) = dH.
We are using w to change a vector in the tangent space into a 1-form. Recall
dH = O g7,

14



i i i ing 4i 0 ; 0
w(Xu,) = _(dg' ® dp' — dp’ @ dg’)(A o T8 5 (32)

%

So, to make the right-hand side equal dH, we see that A" = 2 and B = — 28

— opi I
__OH 8 _ 0H 0o
Thus XH = Bpi 87 8qt Bp° °

6 The Dynamics of Circle Maps - Symplectic
Reformulation

We denote the coordinates of the unit cotangent bundle ST*(R?) by (pz, Py, Z,¥),
where z,y € R* and p2 + p? = 1. This bundle is a 3-dimensional manifold with
the 1-form p,dz + p,dy. The cotangent manifold 7*(R?) is symplectic with the
symplectic 2-form d(p,dz + p,dy).

The unit vector (p;,py) in the direction from ¢ to R,(¢) is as follows, and
can be visualized with Figure 12.

Py =cos(p+m— a), py = sin(¢ + 7 — ). (33)

P+mT—

Rr(@

Figure 12: The unit vector located at the point ¢.

Consider the map L:

Da cos(¢p + 7 — )

(¢>,_> Py | _ sin(¢ +7 — a)
S x cos(¢) + Scos(¢p+ m — )
y sin(¢) + Ssin(¢ + 7 — )

15



Rr(@

Figure 13: The point (z,y) with the tangent vector.

Graphically, depending on S and ¢, we map (z,y) to a point somewhere along
the line between ¢ and R, (¢) (Figure 13).

The map L : St x Rl — T*(IR?) can be thought of as a flow in the parameter
S of unit speed in the direction of the reflection lines.

Let p: T*(R?) — R? be the canonical projection, i.e.,

Dz
.| Py T
pi| P —><y>
Yy

The Jacobian J(po L) is (taking -, 8%):

(p+7—a) —sin(¢)—S(l-a)sin(¢+m—a) \ _ '
det( Z?§(¢+ﬂ_2) css(¢)+5(1—a?é)cf)s(¢+7r—ao)é ) = —cos(a)+S(1-a')

Setting the Jacobian to zero, we get the equation for the critical curve.

_ cos(a)
C1-o

S

(34)

Proposition 2 The critical curve, when mapped to the (x,y) plane, is the caus-
tic of R,.

Intuitively, why is this so? First let us get a deeper understanding of the caustic.
¢,x, and y determine a two dimensional surface embedded in R3. The caustic
is the projection onto R? of the points at which ai = 0, i.e., where one can
travel in the ¢ direction and x and y will not change. A few perspectives of a
3-D diagram will illustrate this (Figure 14).

When the Jacobian of poL is zero, we are mapping very small ¢ x S rectangle-
neighborhoods, not into warped rectangles, but into something degenerate - a
line, or a point. Along the caustic, by our previous definition, ai = 0 on these
neighborhoods, so we have shrunk our ¢ x S rectangles to lines with no ¢-width.

We can further use the symplectic structure we have developed.
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Figure 14: Four views of a twisted plane, drawn in Blender. The top left panel
gives a clear view of the figure. When the horizontal lines in the surface are
viewed from above, projected downward, we get the image in the bottom right
panel - one can clearly see the caustic.

Theorem 9 We have the following equality:
pzdx + pydy = sinadg + dS. (35)
Proof.

dy = d(cos ¢ + Scos(¢p + 1 — a))
=cos(¢p + 7 — a)dS + (—sing — S(1 — o) sin(¢p + 7 — a))d¢
dy = d(sin¢g + Ssin(¢ + 7 — @))
=sin(¢+ 7 — a)dS + (cosp — S(1 — a') cos(¢p + 7 — a))d¢
pedz + pydy = (cos’ (¢ +m — a) +sin*(¢ + 7 — @))dS
+ [(sin(¢ + ™ — @) cos @ — cos(¢ + T — ) sin ¢)
+S(1 —a')(cos(p + 7 — a)sin(¢+ 7 — )
—sin(¢ +7 — a) cos(¢p + 7 — a))]d¢
Pzdx + pydy = dS +sin(¢p + 1 — a — ¢)do
Pzdx + pydy = dS + sin ad¢ (36)

Taking the exterior differential of both sides, d(sinad¢ + dS) = 0, so the
image of L is a Lagrangian cylinder in 7*(R?). Since « is an odd function of ¢,
we know that

/ sinadgp =0 (37)
Sl

so we have an ezact Lagrangian cylinder. To get a section of this cylinder, we
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can use the two-form to define a function S(¢) on the circle by

[
S(¢) = — /0 sin adop. (38)

The properties of S can be used to study the shape of the caustic, including the
shape of the caustic formed by iterations of R,.(¢).
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