
Randomness of Rods on a Ring Systems

Will Dabney

August 30, 2006

Abstract

The generation of random numbers is an application of immediate
importance for anyone who requires a secure means by which to gener-
ate cryptographic keys [Ellison, 1995]. The majority of non-hardware
based methods for generating pseudo-random numbers have an unac-
ceptably low level of randomness for cryptography. Thus, it is cur-
rently common practice to rely on hardware-based random number
generators. The randomness in these hardware-based random number
generators stems from the unpredictability of the underlying complex
physical system, specifically random bits are harvested from a mea-
surable property of the device [Davis et al., 1994]. We analyze an
existing method for generating random numbers based on a model of
a physical system, N-beads on a ring [Cooley and Newton, 2005], and
show how the randomness of the system varies with the masses of the
beads.

1 Introduction

Random numbers are numbers that are unpredictable. How unpredictable
the numbers are is the measure of randomness. While there are many ways
to measure randomness of a sequence of numbers, there are also theoretical
definitions of randomness which cannot be measured. We will go into more
details of the methods we use to measure randomness in this paper. However,
the subject of measuring randomness reliably is a complex and highly dis-
cussed topic which this paper does not attempt to explore fully. Fortunately,
others have already researched this aspect [Maurer, 1991][Soto, 1999].

1

To clarify our meaning when referring to different types of random num-
bers we use the terms true-random number and pseudo-random number [Ellison, 1995].
A true-random number is one which is impossible to guess regardless of the
resources available; while a pseudo-random number is impractical to guess
but can be guessed given sufficient resources. While the existence of true-
random numbers can be argued against, we will use this term for a more
relaxed definition of impossible such that it would be impossible to guess
the numbers given modern technology. Another common use is for random
bits, for which we say the probability of guessing the next bit correctly is no
better than 1/2 + ε for a suitably chosen ε which depends upon the method
used [Ellison, 1995].

There are many methods that can be used to generate random numbers
or harvest random bits [Ellison, 1995]. Generally these can be broken down
into two categories. Hardware-based random number generators, such as
those based on quantum effects in circuits [Jennewein et al., 2000] or air tur-
bulence in disk-drives [Davis et al., 1994], make use of measurable physical
properties of external systems to harvest random bits. Software-based ran-
dom number generators, such as discrete log [Patel and Sundaram, 1998] or
a mathematical model of a chaotic system [Cooley and Newton, 2005].

Hardware-based methods tend to have significant advantages in achieving
a high degree of randomness. These methods also suffer from a host of prob-
lems such as being slow and the potential for undetected hardware failure,
but newer approaches are improving on these problems [Davis et al., 1994].
Software-base random number generators are more likely to be classified as
pseudo-random than true-random, but have the advantage of being capable
of generating numbers much faster than their hardware counter-parts.

The problem for software-based pseudo-random number generators is that
we must assume that the “adversary,” the person attempting to guess the
numbers, has possession of the software source-code and thus knows how
the generator works. This presents a difficult problem, which any cryp-
tographically strong software-based pseudo-random number generator must
overcome.

Random numbers have a variety of uses, many of which do not depend
on a high degree of randomness. These uses, for which the randomness
required is very low, are not our concern. In those situations many efficient
algorithms exist to provide low amounts of randomness quickly. Much more
interesting are the applications for random numbers that have a high degree
of randomness. These range from generating one-time pads to choosing port

2

numbers for communication. In these situations it is very important for the
user that a highly motivated adversary be unable to predict the next random
number, even if they possess all previous numbers and access to the system.
It is these requirements that make software based random number generators
difficult.

The goal, in designing a pseudo-random number generator which meets
these requirements, is to make it infeasible for an adversary to determine with
any degree of certainty the next random number in the sequence. When
the potential adversary is assumed to have knowledge of the system and
previous random numbers, this is referred to as cryptographically strong
[Aiello et al., 1998].

Some success has been achieved through the use of chaotic physical sys-
tems [Bernstein and Lieberman, 1990]. From this, a mathematical model of
a chaotic physical system has been used for pseudo-random number gener-
ation [Cooley and Newton, 2004]. We follow on this method, using a math-
ematical model of a chaotic system to generate pseudo-random numbers,
and continue by testing the randomness of this generator. We explore the
question of whether the randomness from a model of a chaotic system will
remain cryptographically strong. To measure randomness we use entropy
[Shannon and Weaver, 1949], autocorrelation [Soto, 1999], and a universal
statistical test for randomness [Shannon and Weaver, 1949].

The chaotic system we explore is that of N-beads on a frictionless ring
[Glashow and Mittag, 1997] [Cooley and Newton, 2005]. Specifically we an-
alyze the randomness of this system for N = 3. The chaotic properties of
the system, and thus its randomness, come from the unpredictability of the
iterative impacts of the beads without knowing the exact starting parame-
ters. This raises the important question of whether the system is divergent
or convergent for starting parameters which vary only slightly. We show that
the system is divergent varying parameters.

The N-beads on a ring system has been studied previously [Cooley and Newton, 2005,
Cooley and Newton, 2004, Glashow and Mittag, 1997], and for this paper we
follow these approaches closely. Our contribution is in the analysis of the
randomness properties of this system and how they are affected by starting
parameters.

3

2 N-Beads On A Ring

Consider a frictionless two-dimensional ring of length x. There are N beads
of mass m0, m1, . . ., mN respectively. The beads have initial positions on
the ring given by their arc-lengths: x =

∑
xk. These beads slide without

friction on the ring, and have initial velocities v0, v1, . . ., vN with the re-
quirement that the total momentum is a constant P =

∑
mkvk. Following

[Glashow and Mittag, 1997], we assume that P = 0.
As the beads slide on the ring they will inevitably collide, which causes a

simple exchange of momentum in which only two beads are affected. Triple
collisions are treated a pair of double collisions, such as 1 and 2 collide fol-
lowed immediately by 2 and 3. The equations for calculating the changing ve-
locities of the masses are simple, and can be organized compactly to describe
each potential collision as a matrix product [Cooley and Newton, 2004].

This system has also been shown to be equivalent to a single billiard inside
of a triangle which collides with the sides of the triangle [Glashow and Mittag, 1997].
In this situation the billiards collision with a side of the triangle can be shown
to be equivalent to a collision of two beads in the first system. We initially
used both the classical formulation of the system and the billiard in a triangle
system to generate collisions. Code for generating random bits using both
systems is found in Appendices A and B. We found that we were able to
generate collisions efficiently with either approach, and eventually settled on
using the billiard in a triangle system.

3 Generating Random Numbers

How do we use this system to generate random numbers? Hey this is kind
of based on temperature / heat measures...

4 Measuring Randomness

We use Shannon’s entropy equation to calculate the entropy of the sequence
of random numbers generated [Shannon and Weaver, 1949]. This is shown in
Equation 1. To measure the entropy of the random numbers generated with
different relative starting masses, we varied the m1 from 10−10 to 5×103. We
then measured the entropy of a sequence of 5000 numbers generated from

4

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
2

2.05

2.1

2.15

2.2

2.25
Entropy With Varying Mass

Mass of M1 (adjusted)

E
nt

ro
py

Figure 1: Entropy for random number sequences generated with billiard in
triangle system.

these starting parameters. Figure 1 shows the resulting entropies for varying
masses.

H = −
∑

pi log pi (1)

How do we measure randomness... Really it’s how do other people mea-
sure randomness. Now, how do we specifically use that to measure our ran-
domness? Show the graphs for our measures. Give a brief evaluation of the
randomness of the system, what does the graph immediately show?

5 Discussion

What does this mean? Really...?

5

Acknowledgements

This work was funded by the NSF......

APPENDIX

A Billiard in a Triangle Code (C)

#include <math.h>

#include <stdio.h>

#include <stdlib.h>

#define acot(x) (atan(1.0 / (x)))

struct _collision {

double theta;

double sine_theta;

double position;

short int current_side;

short int previous_side;

short int other_side;

} collision;

double angle_sum[3];

double length[3];

double getAngleSum(int side1, int side2)

{

// 01, 10 -> 0; 12 21 -> 1; 02 20 -> 2

// 0 + 1 = 1, 1 + 2 = 3, 2 + 0 = 2 : 1 3 2 -> 1 2 3 -> 0 1 2

// add then subtract one

// 01,10 -> 0; 20,02 -> 1; 12,21 -> 2

return angle_sum[side1 + side2 - 1];

}

6

collision generateCollision(collision base)

{

collision result;

result.theta = getAngleSum(base.current_side, base.other_side)

- base.theta;

result.sine_theta = sin(result.theta);

result.position = length[base.other_side] -

((base.position * base.sine_theta) /

result.sine_theta);

if(result.position < 0)

{

double base_theta_prime = 180 - base.theta;

double base_sine_theta_prime = sin(base_theta_prime);

result.theta = getAngleSum(base.current_side, base.previous_side)

- base.theta;

result.sine_theta = sin(result.theta);

result.position = length[base.previous_side] -

(((length[base.current_side] -

base.position) * base_sine_theta_prime) / result.sine_theta);

result.current_side = base.previous_side;

result.previous_side = base.current_side;

result.other_side = base.other_side;

}

else

{

result.current_side = base.other_side;

result.previous_side = base.current_side;

result.other_side = base.previous_side;

}

return result;

}

int main(int argc, char *argv[])

7

{

float mass1 = 0, mass2 = 0, mass3 = 0, numberCollisions = 0;

float tri_length1 = 0.0, tri_length2 = 0.0, tri_length3 = 0.0;

float angle1 = 0.0, angle2 = 0.0, angle3 = 0.0;

float start_loc = 0.0;

int start_side = 0;

float start_angle = 0.0;

float[3] angles;

// rndGen mass1 mass2 mass3 numCollisions

if(argc < 8)

{

printf("Usage: RandGen Mass1 Mass2 Mass3 X1 X2 X3 NumberCollissions\n");

exit(0);

}

mass1 = atoi(argv[1]);

mass2 = atoi(argv[2]);

mass3 = atoi(argv[3]);

x1 = atoi(argv[4]);

x2 = atoi(argv[5]);

x3 = atoi(argv[6]);

numberCollisions = atoi(argv[7]);

double M = mass1 + mass2 + mass3;

double L = x1 + x2 + x3;

double cPi = mass1 * mass2 * mass3;

double factor = sqrt(cPi/M);

angle[0] = acot(factor / mass1);

angle[1] = acot(factor / mass2);

angle[2] = acot(factor / mass3);

length[0] = L * sqrt((mass1*(mass2 + mass3))/(M*M));

length[1] = L * sqrt((mass2*(mass1 + mass3))/(M*M));

length[2] = L * sqrt((mass3*(mass1 + mass2))/(M*M));

angle_sum[0] = angles[1] + angles[2];

8

angle_sum[1] = angles[0] + angles[2];

angle_sum[2] = angles[0] + angles[1];

return 0;

}

B N-Beads on a Ring Code (Matlab)

%%

% matrixRndGen

% Arguments: numRods The number of rods in the system

% masses An array containing the masses of the rods

% arcLengths An array containing the arc lengths of the rods

% velocities An array containing the absolute velocities

% numCollisions The number of collisions to simulate

%

% Returns: An array, c, containing a list of all collisions.

% Or, returns -1 if the total momentum of the system doesn’t

% equal zero.

%%

function [c d] = matrixRndGen (numRods, masses, arcLengths, velocities, numCollisions)

% Ensure that the total momentum of the system is zero

if(sum(masses .* velocities) ~= 0)

c=[-1];

return;

end

% For our absolute positions on the ring:

location = cumsum([0; arcLengths(2:numRods)]);

ringLength = sum(arcLengths);

9

% Use a single array of all ones to calculate the constants

% This is an array of size numRods, with all ones.

unit_vector = zeros(numRods, 1) + 1;

% Calculate the constants used for adjusting velocities

% We form matrices containing the the correct values using

% Tensor products

m = unit_vector * masses’ + masses * unit_vector’

mu = unit_vector * -masses’ + masses * unit_vector’

mu_s = 2 * masses;

maxError = 0;

minError = 1000;

% Initialize the collisions list to zero

collisions = -1;

w = 1;

graph = location;

times = 0;

% Generate collisions

for i=1:numCollisions

% Calculate the time till the next collision

t = timeToCollision(velocities, arcLengths);

% Remove times less than zero

valid = t <= 0;

t = t + (valid * realmax);

% Choose the minimum, and keep the index (location) of it

[t0, index] = min(t);

% Update the arcLengths for all the rods

% x_i’ = x_i - t_0 * (v_i - v_i+1)

% Using convolutions to do this quickly

u = [-1; 1];

vel = [velocities; velocities(1)];

velDiff = conv(u, vel);

velDiff = velDiff(2:numRods+1);

minError = min(minError, abs(min(velDiff)));

arcLengths = arcLengths - (t0 * velDiff);

10

if(sum(arcLengths < 0) > 0)

[o,p] = min(arcLengths);

while(o < 0)

arcLengths(p) = 0;

[o,p] = min(arcLengths);

end

end

% Update positions on the ring

location = location + velocities .* t0;

% location = mod(location, ringLength);

graph = [graph location];

t1 = size(times);

times = [times; times(t1(1)) + t0];

% Now we should record the collision and change the velocities

% v’ = M_ij * v

% Instead of using matrices here we can just update the velocities for

% the two colliding rods

% For multiple collisions occuring at the same time we must handle it

% by looking at arcLengths of 0, and velocity differences greater than

% 0, at the same rod.

s = sum((velDiff > 0) .* (arcLengths == 0)) > 0;

%if(s <= 0)

% arcLengths

% velDiff

% t0

% min(arcLengths)

%end

if(s <= 0)

t0

end

while(s > 0)

[y,j] = max((velDiff > 0) .* (arcLengths == 0));

11

if(arcLengths(j) == 0)

index = j;

ip1_index = j + 1;

if(ip1_index > numRods)

ip1_index = 1;

end

v_i = velocities(index);

v_ip1 = velocities(ip1_index);

velocities(index) = (v_i * mu(index, ip1_index) + v_ip1 * mu_s(ip1_index))/ m(index, ip1_index);

velocities(ip1_index) = (v_i * mu_s(index) + v_ip1 * mu(ip1_index, index))/ m(index, ip1_index);

% index uniquely identifies the collision

collisions = [collisions; index];

end

vel = [velocities; velocities(1)];

velDiff = conv(u, vel);

velDiff = velDiff(2:numRods+1);

s =sum((velDiff > 0) .* (arcLengths == 0)) > 0;

end

maxError = max(maxError, abs(sum(masses .* velocities)));

% graph = [graph arcLengths];

end

velocities

maxError

minError

c = graph;

d = times;

References

[Aiello et al., 1998] Aiello, W., Rajagopalan, S. R., and Venkatesan, R.
(1998). Design of practical and provably good random number genera-
tors. Journal of Algorithms, 29.

12

[Bernstein and Lieberman, 1990] Bernstein, G. M. and Lieberman, M. A.
(1990). Secure random number generation using chaotic circuits. IEEE
Transactions on Circuits and Systems, 37.

[Cooley and Newton, 2004] Cooley, B. and Newton, P. K. (2004). Random
number generation from chaotic impact collisions. Regular and Chaotic
Dynamics, 9.

[Cooley and Newton, 2005] Cooley, B. and Newton, P. K. (2005). Iterated
impact dynamics of n-beads on a ring. SIAM Rev., 47(2):273–300.

[Davis et al., 1994] Davis, D., Ihaka, R., and Fenstermacher, P. (1994).
Cryptographic randomness from air turbulence in disk drives. In CRYPTO
’94: Proceedings of the 14th Annual International Cryptology Conference
on Advances in Cryptology, pages 114–120, London, UK. Springer-Verlag.

[Ellison, 1995] Ellison, C. (1995). P1363: Appendix e cryptographic random
numbers. http://std.com/ cme/P1363/ranno.html.

[Glashow and Mittag, 1997] Glashow, S. L. and Mittag, L. (1997). Three
rods on a ring and the triangular billiard. Journal of Statistical Physics,
87.

[Jennewein et al., 2000] Jennewein, T., Achleitner, U., Weihs, G., Wein-
furter, H., and Zeilinger, A. (2000). A fast and compact quantum random
number generator. Review of Scientific Instruments, 71:1675–1680.

[Maurer, 1991] Maurer, U. M. (1991). A universal statistical test for random
bit generators. Lecture Notes in Computer Science, 537.

[Patel and Sundaram, 1998] Patel, S. and Sundaram, G. S. (1998). An Effi-
cient Discrete Log Pseudo Random Generator. Springer.

[Shannon and Weaver, 1949] Shannon, C. E. and Weaver, W. (1949). The
Matematical Theory of Communications. University of Illinois Press.

[Soto, 1999] Soto, J. (1999). Statistical testing of random number genera-
tors. In Proceedings of the 22nd National Information Systems Security
Conference.

13

