
Markov Chain Monte Carlo techniques

Finnian Bender

May 10, 2019

1 Introduction

Monte Carlo methods can be used for a variety of tasks for which exact
simulation would be computationally infeasible. Often times, the underlying
random variable π(x) will be difficult, if not impossible, to sample directly
because of high dimensionality or extreme complexity. In these scenarios,
one powerful family of techniques that can be brought to bear are Markov
Chain Monte Carlo methods. These methods, in particular the Metropolis-
Hastings algorithm which will be expanded on later, allow us to sample from
any distribution, regardless of their complexity or number of dimensions. Of
course, these methods are not without their drawbacks, but with some extra
work these drawbacks can be mitigated.

2 Markov Chains

We will begin by defining several key concepts that will be referenced through-
out.

Definition 2.1. A stochastic (random) process X := {Xt|t ∈ T} is a family
of random variables Xt where T is an index set, generally called time regard-
less of if it is a time-based process, and Xt : Ω → S, where S is the state
space of the process.

Definition 2.2. The transition probabilities P(X1 = j|X0 = i0) give the
probabilities that a process that is in state i0 at time 0 will be in state j at
time 1. The transition probabilities may depend on multiple previous times,
e.g. P(X2 = k|X1 = j,X0 = i0)

One way of thinking about this property is that the process’s future de-
pends only on its present, and not on its past.

1

Definition 2.3. A process is said to have the Markov property if P(Xn+1 =
j|Xn = in, ...X0 = i0) = P(Xn+1 = j|Xn = in)

Definition 2.4. A Markov chain is a discrete-time stochastic process that
has the Markov property.

Definition 2.5. A (1-step)transition probability matrix P is a matrix whose
(i,j) entry gives the probability that a Markov chain in state i will move to
state j on its next move, called the transition probability pi,j. Such a matrix
is called stochastic if the sum of the rows is 1. For ease of notation, we will
often write the (i,j) element as P(i,j).

Definition 2.6. An n-step transition probability pni,j is the probability that,
given the chain is in state i at time 0, the chain will be in state j at time n.
The n-step transition probability matrix P n is the matrix whose (i,j) entry is
pni,j

Theorem 1 (Chapman-Kolmogorov). (P)n = P n

Definition 2.7. In the case where n→∞, the rows of P n go towards a single
distribution π = (...πi...), where π = π P . Additionally,

∑
i π(i)pi,j = πj and∑

i π(i) = 1. Such a π is called the stationary distribution of the Markov
chain represented by P. In general, we will write π as a function π(i).

Probabilistically, this can be understood to mean that for large enough
n, the nth step of the Markov chain will be in state i with probability π(i).

At this point, we have enough to begin outlining the prototypical Markov
Chain Monte Carlo method, the Metropolis-Hastings algorithm.

3 The Metropolis-Hastings Algorithm

We will begin with a general description of what the algorithm looks like
before providing a more rigorous definition of how it proceeds. Assume that
there is some probability density π(x) that we wish to sample but are unable
to sample directly. Then we will create a Markov chain whose stationary
distribution is the desired π(x). To do this, we will start with some arbitrary
distribution f(x). Then, we pick an arbitrary point in the state space, call it
i, to begin our chain. Next, we pick a state in the state space that is slightly
different from our starting point, call it j, and propose that our chain move
to this state. We will the flip a coin whose probability of success is the ratio
π(j)f(j|i)/π(i)f(i|j). If the flip succeeds, we move to j. If not, we stay at i.

2

After repeating this for a large number of iterations, the probability that we
will be in any given state is π(i), regardless of what the initial distribution
f(x) was.

Now we will provide a more rigorous definition of this method, as well as
justification for why it works. First, take π(x) to be our desired pdf. Then
let J(i,j) be the transition probability matrix of a Markov chain on the same
state space as π(x). Now we wish to transform J(i,j) into a Markov chain
K(i,j) with stationary distribution π(i). First, we will define the acceptance
function, acc(i,j), as follows:

acc(i, j) =
π(j)J(j, i)

π(i)J(i, j)

where acc(i, j) gives the probability that a proposed move from i to j will be
accepted.

Remark. Note that often it is convenient to pick a Markov chain with a
symmetric transition probability matrix, i.e. one in which J(i,j)=J(j,i) ∀ i,j.
In this case, we can simplify the acceptance function to instead be

acc(i, j) =
π(j)

π(i)

Now define K(i,j) as follows:

K(i, j) =


J(i, j) i 6= j, acc(i, j) ≥ 1

J(i, j)acc(i, j) i 6= j, acc(i, j) < 1

J(i, j) +
∑

k:acc(x,k)<1

(J(i, k)(1− acc(i, k)) i = j

(1)

It is not immediately obvious why the Markov chain produced by this
method will have a stationary distribution of π as we require. Rather than
attempt to directly show that

∑
i π(i)K(i, j) = π(j), we will instead prove

that K satisfies the stronger condition given by the detailed balance equation,
which states that

π(i)K(i, j) = π(j)K(j, i)

as it is trivial to show that the detailed balance equation implies that
∑

i π(i)K(i, j) =
π(j).

3

Theorem 2. The Markov chain whose transition probability matrix is de-
fined in (1) satisfies the detailed balance equation.

Proof. First, note that if i=j, then the detailed balance condition is met
trivially as

π(i)K(i, i) = π(i)K(i, i)

regardless of the value of i. Now, we look at the case when i 6= j. Note that
we can reformulate the first two cases in our definition of K(i,j) to instead
be that if i=j, then

K(i, j) = J(i, j) min{1, acc(i, j)}

From this, we have that

π(i)K(i, j) = π(i)J(i, j) min {1, acc(i, j)}

= π(i)J(i, j) min

{
1,
π(j)J(j, i)

π(i)J(i, j)

}
= min {π(i)J(i, j), π(j)J(j, i)}

(2)

A similar argument gives us that

π(j)K(j, i) = min{π(j)J(j, i), π(i)J(i, j)} (3)

Since the minimum function is symmetric, i.e., min{x,y}=min{y,x}, equa-
tions (2) and (3) give the same result, so

π(i)K(i, j) = π(j)K(j, i)

and thus the detailed balance equation holds ∀ i,j in the state space of the
Markov chain K.

4 An Implementation of MCMC: Integration

One useful implementation of Markov Chain Monte Carlo is in the esti-
mation of integrals. Let f : R → R, a, b ∈ R. To estimate the integral
F =

∫ b
a
f(x)dx, we will take N independent and identically distributed (iid)

uniform random variables X1, ..., XN with Xi ∈ [a, b] so the random variables
have pdf(Xi) = 1

b−a . Then we define the Monte Carlo estimator of f(x) as

〈FN〉 := (b− a)
1

N

N−1∑
i=0

f(Xi)

4

Theorem 3. E[〈FN〉] = F

Proof.

E[〈FN〉] = E

[
(b− a)

1

N

N−1∑
i=0

f(Xi)

]
=
b− a
N

E

[
N−1∑
i=0

f(Xi)

]
Then, since the Xi are iid, the expectation splits across sums and each sum-
mand will have equal value, so we get that

E[〈FN〉] =
b− a
N

(NE[f(Xi)]) = (b− a)E[f(Xi)]

= (b− a)

∫ b

a

f(x)pdf(Xi)dx = (b− a)

∫ b

a

f(x)
1

b− a
dx

=

∫ b

a

f(x)dx = F

Thus, E[〈FN〉] = F as required.

In fact, this theorem is a special case of a more general theorem that works
for multidimensional functions and random variables other than uniform ran-
dom variables. We will redefine the Monte Carlo estimator to instead be
given by the following:

〈FN〉 =
1

N

N−1∑
0

f(Xi)

pdf(Xi)

Then, we can state the more generalized version of Theorem 3:

Theorem 4. E[〈FN〉] = F

While the proof is similar to the proof for Theorem 3, if flows much more
smoothly.

Proof. Let S be our state space. Then

E[〈FN〉] = E

[
1

N

N−1∑
0

f(Xi)

pdf(Xi)

]
=

1

N

N−1∑
0

∫
S

f(Xi)

pdf(Xi)
pdf(Xi)dx

=

∫
S

f(x)dx = F

Thus E[〈FN〉] = F as required.

5

Thanks to the Strong Law of Large Numbers, P(limx→∞Xi = E[X]) = 1,
so if we take N to be large enough we will eventually converge to the right
answer. At this point, a reasonable question would be to ask what the vari-
ance or standard deviation of the estimator is. This is fairly straightforward
to calculate, once again due to the iid nature of our random variables.

σ2[〈FN〉] = σ2

[
1

N

N−1∑
0

f(Xi)

pdf(Xi)

]
=

1

N2
σ2

[
N−1∑
0

f(Xi)

pdf(Xi)

]

=
1

N2

N−1∑
0

σ2

[
f(Xi)

pdf(Xi)

]
=

1

N
σ2

[
f(Xi)

pdf(Xi)

] (4)

Let Yi = f(Xi)
pdf(XI)

. Then we can write our variance as σ2[〈FN〉] = 1
N
σ2[Yi], or

in terms of standard deviation we write

σ =
1√
N
σ[Yi]

Note that this implies that the variance from using this method of estimating
our random variable does not depend on the number of dimensions of our
integral as all of the terms are independent of the number of dimensions.
From this we can see that there are two main methods of decreasing the
amount of error in our estimator. Either we can increase the number of
random variables, or we can try to reduce the variance of Yi by choosing a
random variable whose pdf resembles a scaled version of the function we are
integrating. In the best case, we would pick our random variable such that
pdf(Xi) = αf(x), where α is some constant, In this case, we would find that

σ2[Yi] = σ2[
f(Xi)

αf(Xi)
] = σ2[α] = 0

Thus, if you pick your random variable such that it is directly proportional to
the function of integration, there will be zero variance! However, in practice,
we cannot pick such a random variable, as

αf(x) = pdf(Xi) =⇒
∫
αf(x) =

∫
pdf(Xi) =⇒ α =

1∫
f(x)

and thus finding α is equivalent to solving the integral that we are using α
to solve.

While the algorithm involves repeatedly sampling some random variable, in
practice it is difficult for computers to randomly sample from distributions

6

that are not simple. In practice, we will use Markov Chain Monte Carlo
methods to create a Markov chain with a stationary distribution equal to
our chosen pdf, thus eliminating the need for the computer to sample our
chosen random variable and instead only requiring it to be able to sample
from a uniform random variable to determine if a proposed move should be
accepted or rejected.

Using R, I coded a basic integrator that utilizes this method to estimate
one-dimensional integrals with which I created the following figures.

Figure 1: Convergence of the integral on a single run

Figure 1 demonstrates how the estimated value converges to the actual
value of the integral over the course of a single run. In this case, the accuracy
was checked every 1000 iterations of the Metropolis-Hastings algorithm, and
the program ran for a total of 100000 iterations. The y-axis gives the per-
centage error of the estimate at that point. As we can see, this method can
both over- and under-estimate the value of the integral, and as the number
of iterations increases we see that the variance of the estimate decreases, as
predicted by our derivation of the variance in (4).

To measure the how the error of our estimate compares to the number of

7

Figure 2: Log-log plot of error vs number of iterations

iterations, we made the following assumption:

error = Cnα

where C and α are constants. In order to solve for them, we can take the log
of both sides to get

log(error) = logC + α log n

Thus, if we were to make a log-log plot of error vs number of iterations, the
slope of the trend line would tell us our value of alpha. To create Figure 2,
the program was run twenty times at each of 210, 211, ..., 221 iterations. Then,
the log of the average error for each number of iterations was plotted against
the log of the number of iterations. In Figure 2, the trend line has a slope of
approximately -0.5, as the line’s slope was rounded to four decimal places so
we cannot say what it was exactly equal to. Thus, we get that

error = Cn−0.5 = C
1√
n

This agrees with the 1√
N

factor that appeared in our calculation of the stan-

dard deviation of our estimate in (4).

8

5 Appendix

This is the R code used to create the MCMC integrator featured in part 4

#Set the upper and lower bounds of integration

lower_bound=1

upper_bound=10

#Calling this function calls the probability density function that has been

chosen for the integration.

probdens=function(x){

dunif(x,min=lower_bound,max=upper_bound)

}

#This function creates a plot of absolute error of the estimated value of

the integral vs its true value

errorplot=function(x,actual){

plot(x,abs(actual-x))

}

#Calling this function calls the function that is to be integrated

intfunc=function(x){

x^2

}

#Calling this function provides a proposal for the next step to move to

in the Markov Chain

proposal=function(a,b){

runif(1,a,b)

}

#Calling this function performs a single iteration of the Metropolis

algorithm

metro=function(x,epsilon=10){

y=runif(1,x-epsilon,x+epsilon)

9

if (runif(1)>probdens(y)/probdens(x)){

y=x

}

return(y)

}

#This function performs an estimation of an integral using a Markov

Chain with a transition distribution that the computer draws from directly

mcest=function(n=1000){

acc=rep(0,ceiling(n/100))

states = rep(0,n)

for(i in 1:n){

y = proposal(lower_bound,upper_bound)

states[i]=intfunc(y)/probdens(y)

if(i%%100==0){

acc[ceiling(i/100)]=sum(states)/i

}

}

mylist=list("est"=sum(states)/n,"acc"=acc)

}

#This function performs and estimation of an integral using a Markov

Chain whose distribution is sampled using the Metropolis algorithm. This function returns a list whose contents are its estimate of the value of the integral, a vector containing the estimate’s accuracy at regular intervals through the process, and the number of moves that were rejected by the Metropolis algortihm.

mcmcest=function(n=1000,epsilon=2){

acc=rep(0,ceiling(n/100))

states = rep(0,n)

y = proposal(lower_bound,upper_bound)

states[1]=intfunc(y)/probdens(y)

numreject=0

for(i in 2:n){

k=metro(y,epsilon)

states[i]=intfunc(k)/probdens(k)

if(y == k) numreject=numreject+1

y=k

if(i%%100==0){

acc[ceiling(i/100)]=sum(states)/i

}

}

mylist=list("est"=sum(states)/n,"acc"=acc,"rejects"=numreject)

10

}

This is the code used to create the plot measuring convergence of the
integral for a single run. For illustration purposes, the code produces several
graphs which can be compared to verify that the convergence happens at
different rates for different runs of the program.

#Set the number of repetitions of the Metropolis algorithm to perform

reps=100000

col=rainbow(5)

#Then, run the program five times and plot the convergence for each run

for(i in 1:5){

obj=mcmcest(reps,5)

plot((obj$acc-integrate(intfunc,lower_bound,upper_bound)$value)/

integrate(intfunc,lower_bound,upper_bound)$value,

ylab="Error",xlab="1000 iterations",col=col[i],

main="Convergence of the estimate to the actual value")

}

This is the code used to create the log-log plot for measuring the er-
ror/convergence rate of the method when the number of iterations of the
Metropolis algorithm is varied.

#First, create a table of base 10 logarithms of the number of

iterations performed at each step. Because the algorithm behaves

poorly forlow valuse of convergence, we will begin at 2^10 iterations

iters=11

logerr=rep(0,iters)

logs=rep(0,iters)

for(i in 1:iters)

{

logs[i]=log10(2^(9+i))

}

#Then, for each step perform the given number of iterations

20 times and take the mean of the base 10 logs of the error

in each attempt

11

for(n in 10:(10+iters)){

err=rep(0,20)

for(i in 1:20){

obj=mcmcest(2^n)

err[i]=abs(obj$est-integrate(intfunc,lower_bound,upper_bound)$value)

}

logerr[n-10]=log10(sum(err)/20/integrate(intfunc,lower_bound,upper_bound)$value)

print(n)

}

#Finally, create a plot of the log errors vs log number of

iterations and plot a linear regression to find the slope, which gives

the exponent for our rate of convergence

reg=lm(logerr~logs)

coeff=coefficients(reg)

eq = paste0("y = ", round(coeff[2],4), "*x +", round(coeff[1],1))

plot(logerr~logs,main=eq)

abline(reg)

12

