
Notes on Bayesian Changepoint Detection

Philip Bretz

November 19, 2020

1 Bayesian Online Changepoint Detection

1.1 Introduction

In nearly all contexts where we have data, we encounter situations where that data rapidly
changes. Consider an earthquake, where the movement of the ground is essentially neg-
ligible until the event occurs, leading to substantially different behavior. Or consider the
communications between a network of people, where during a normal period, the number
of communications remain roughly the same, but after some shocking event, the chatter
dramatically increases.

In any scenario where we encounter different regimes of behavior, we need a method for
identifying when those changes occur. There is always a balance between falsely classifying
normal deviations as change and missing real change when it occurs. This becomes even
more challenging in contexts where we may not even know the parameters that govern the
data in each regime.

This is precisely where Bayesian methods shine. The Bayesian approach allows us to quantify
our uncertainties in a natural way and update our beliefs about unknown quantities based
on incoming data. This is Bayesian online changepoint detection.

1.2 Overview

The standard Bayesian approach to changepoint detection, as described in Adam and MacKay’s
Bayesian Online Changepoint Detection [1], is estimating the posterior distribution of the
run length of the current regime. Essentially, we want to have an understanding, based on
the observed data up to that point, of how long it has been since the last changepoint.

The algorithm’s efficiency is due to the fact that only one of two things can happen in a
time step: either the run length can increase by 1 (remain in current regime) or it can drop
to 0 (changepoint to next regime).

The basic principle of the algorithm is ’message passing’. When a new datum comes in at
time t, the algorithm first evaluates the predictive distribution at that value for each possible

1

run length. This gives us, for each run length, a measure of the likelihood of the new data.

Next is the ’message passing’ portion of the algorithm. The posterior probability for each run
length is known at time t− 1. For each run length at time t− 1, we calculate the probability
that the run length increased by 1 by updating according the likelihood of the new datum.
This gives us the desired posterior probabilities for run lengths of 1, 2, ... at time t.

Lastly, the algorithm calculates the probability of a run length of 0 at time t. This probability
is exactly the probability of a changepoint at time t. We then have what we want; the
posterior distribution of run lengths at time t.

1.3 Probabilistic Basis

The following theory is drawn directly from Adam and MacKay [1], with minor alterations.

Let the data be x1, x2, ..., xT . We assume that the data are partitioned into different regimes
ρ = 0, 1, ... and the delineation between regimes are the changepoints. We further assume
that the data are i.i.d. from a probability distribution P (xt|ηρ), where ηρ denotes the pa-
rameters associated with regime ρ. I.e., the data follows the same distribution for all time,
but in each regime the parameters of the distribution change.1

Let the length of the current run at time t be denoted by rt. Denote the r most recent data
points at time t by x

(r)
t . For example, x

(3)
100 = x100, x99, x98. If r = 0, this set is empty. This

is the set of past data points in the current regime for a run length equal to r.

To find the posterior distribution of run lengths

P (rt|x1:t) =
P (rt, x1:t)

P (x1:t)

we use the law of total probability over the run lengths at t− 1:

P (rt, x1:t) =
∑
rt−1

P (rt, rt−1, x1:t)

=
∑
rt−1

P (rt, xt|rt−1, x1:t−1)P (rt−1, x1:t−1)

=
∑
rt−1

P (rt|rt−1)P (xt|rt−1, x1:t−1)P (x1:t−1)P (rt−1|x1:t−1)

Since P (x1:t) and P (x1:t−1) are only normalizing constants, we have

P (rt|x1:t) ∝
∑
rt−1

P (rt|rt−1)P (xt|rt−1, x1:t−1)P (rt−1|x1:t−1) (1)

1The algorithm can be altered to incorporate a model where there is only a single changepoint, but the
two regimes follow different distributions.

2

Since P (rt−1|x1:t−1) is known from the previous step, we only need to be able to (1) calculate
the conditional run length probability P (rt|rt−1) and (2) evaluate the predictive distribution
(for each rt−1) at the new datum xt.

1.4 Conditional Run Length Probability

In a given time step, there are only two things that can happen with the run length. Ei-
ther the run length can increase by 1 (growth) or it can drop to 0 (changepoint). So, the
conditional run length probability takes the form

P (rt|rt−1) =

1−H(rt−1 + 1) if rt = rt−1 + 1

H(rt−1 + 1) if rt = 0

0 otherwise

(2)

where H(τ) is the hazard function, describing how likely a changepoint is to occur at a
run length of τ . The simplest choice is to make this process memoryless; set H(τ) = 1/λ
constant. However, a more natural choice in our context may be to make H(τ) increasing
to penalize longer run lengths.

1.5 Predictive Distribution

A key part of the algorithm is evaluating the predictive distribution (conditional on each
possible run length) at the new datum. Conditioning on run length exactly means that we
look at the predictive distribution conditional only on the most recent data (data in that
run length). I.e.

P (xt|rt−1, x1:t−1) = P (xt|x(rt−1)
t−1) (3)

where we assume the recent data x
(rt−1)
t−1 all comes from a single regime (and is all the

past data associated with that regime).

When the data all comes from a single regime, we need only apply the standard Bayesian
approach to evaluating the predictive distribution:

P (xt|x(rt−1)
t−1) =

∫
ηρ

P (xt|ηρ)P (ηρ|x(rt−1)
t−1)dηρ

and

P (ηρ|x(rt−1)
t−1) =

P (ηρ)P (x
(rt−1)
t−1 |ηρ)

P (x
(rt−1)
t−1)

3

where ρ is the current regime and ηρ is the (unknown) parameter governing the data.

For an arbitrary prior-likelihood combination these calculations may be intractable, requir-
ing MCMC or other numerical techniques. However, for a conjugate model, the calculations
are typically very straightforward and usually just require tracking how a couple hyperpa-
rameters (or sufficient statistics) of the prior P (ηρ) respond to the data x

(rt−1)
t−1 .

Typically, if α and β are the original sufficient statistics of the prior distribution P (ηρ), with
new data y1, ..., yn they are updated in the following form:

α′ = α + v(n) and β′ = β + u(y1:n) (4)

where v and u are simple functions. Moreover, the predictive distribution P (ypred|y1:n)
is typically a known function of the updated hyperparameters α′, β′:

P (ypred|y1:n) = P (ypred|α′, β′) (5)

Denote the hyperparameters associated with data x
(rt−1)
t−1 by α

(rt−1)
t−1 , β

(rt−1)
t−1 . We can then

easily calculate Equation 3 by

P (xt|rt−1, x1:t−1) = P (xt|α(rt−1)
t−1 , β

(rt−1)
t−1) (6)

For example, with our data, I decided that the data (after some transformations) was drawn
from a normal distribution with mean 0 and unknown variance. By then choosing a gamma
inverse prior on the variance, it is a conjugate model. The hyperparameters of the gamma
inverse distribution update with new data in a very straightforward manner and the resulting
predictive distribution is a t distribution with mean 0 whose degrees of freedom and variance
depend on the updated hyperparameters.

4

1.6 Algorithm

From p. 3 of Adams and MacKay [1], with minor modifications:

1. Initializea

P (r0 = 0) = 1

2. Observe new datum xt

3. Evaluate predictive probability for every possible value of rt−1

π
(rt−1)
t = P (xt|α(rt−1)

t−1 , β
(rt−1)
t−1)

4. Calculate growth probability for each possible value of rt−1 up to a constant C b

C · P (rt = rt−1 + 1|x1:t) = (1−H(rt−1 + 1))π
(rt−1)
t P (rt−1|x1:t−1)

5. Calculate changepoint probability up to a constant C

C · P (rt = 0|x1:t) =
∑
rt−1

H(rt−1 + 1)π
(rt−1)
t P (rt−1|x1:t−1)

6. Normalize to find run length distribution

P (rt|x1:t) =
C · P (rt|x1:t)∑
rt
C · P (rt|x1:t)

7. Return to step 2

aIf we are not certain the first run begins at time 0, we can place a corresponding distribution on
r0.

bThe constant C is exactly P (x1:t−1)/P (x1:t)

One thing to note is that the sum over rt (or rt−1) is always finite. Why? The run length
can never be larger than the current time, so rt ≤ t. Alternatively, the term P (rt|x1:t) = 0
for rt > t.

Code Snippet: Below is a code snippet of the basic algorithm for finding the run prob-
abilities. It takes in the data x, and a model that contains the prior distribution of the
parameters η and the choice of hazard function H(τ). It returns a numpy array run probs
of run probabilities where each row is the posterior distribution of run lengths at the given
time.

5

def run prob (x , model) :
Each row i s a time frame
T = len (x)+1
run probs = np . z e r o s ((T,T))
I n i t i a l i z e a t time 0
run probs [0 , 0] = 1
for i in range (len (x)) :

Evaluate p r e d i c t i v e p r o b a b i l i t i e s
pred = p r e d i c t i v e (x [0 : (i +1)] , model)
Ca lcu l a t e changepoint p r o b a b i l i t y
run probs [i +1 ,0] = cp prob (i , run probs , pred , model)
Ca lcu l a t e growth p r o b a b i l i t i e s
for s in range (1 , i +2):

prob , p = run probs [i , s −1] , pred [s −1]
run probs [i +1, s] = growth prob (prob , p , model)

Normalize the row
run probs [i +1 ,] = run probs [i +1 ,]/sum(run probs [i +1 ,])
Truncate very sma l l p r o b a b i l i t i e s and re−normal ize
run probs [i +1 ,] = truncate (run probs [i +1 ,])

return run probs

1.7 Locating Changepoints

Adams and MacKay describe in depth the algorithm for determining the run probabilities.
However, they omit a method for determining the location of a changepoint based on those
run probabilities, other than visual clues.

The basic idea behind detecting changepoints from the run length distributions is fairly
straightforward. Inside of a regime the probability mass shifts up by one at every time step,
and at a particular time t, if the center of the mass is r, the beginning of the regime was at
time t− r.
To detect when a changepoint is occurring, ideally we want to find a time when the prob-
ability mass shifts to 0. However, because the updating process can be slow to respond to
change, we do not usually see a clear shift to 0 in a single time step.

A better approach is to locate a time t when the probability mass was centered at r(t−1) at
the previous time, but instead of moving to r(t−1) + 1 decreased significantly to a value r(t).
We can then extrapolate back to estimate that the changepoint occurred r(t) frames ago, or
at time t− r(t).
My current implementation is very crude. At each time t, I locate the maximum probability,
and let that location be r(t). I let a ’significant decrease’ be a decrease of more than 5,
though the function I wrote allows that parameter to be chosen by the user. Even so, it

6

works decently.

The following is a more natural method for selecting the probability mass center r(t). If I bin
the run length distribution where I let the bin size be chosen by the user and take the value
at each bin to be the sum of the probabilities inside it, that will work better at determining
shifts in the center of probability.

Code Snippet: Below is a code snippet of a basic algorithm for detecting regime changes
given an array of run length probabilities. It takes in the array probs and a value tol
that determines how much of a movement of the location of maximum probability defines a
changepoint. The function Regime(ID, location, detected) produces an object of class
’Regime’ where the first entry defines which regime it is, the second entry defines where the
regime began, and the third entry is when the regime was detected. When I ran my code on
the data, I set tol to 5.

def det ec t (probs , t o l =0):
T = probs . shape [0]
prev max loc = 0
reg imes = [Regime (0 , 0 , 0)]
for i in range (1 ,T) :

cur rent max loc = np . argmax (probs [i ,])
i f abs (prev max loc −(current max loc −1)) > t o l :

reg imes . append (Regime (number , i−cunrrent max loc , i))
prev max loc = current max loc

return reg imes

1.8 Notes on Efficiency

Implemented exactly as written, this algorithm is O(n2) in time and memory. Clearly, this
is not optimal if we are looking at a long time series. A simple solution I implemented
was placing a cap on the possible values of rt. This cap would represent our belief in the
maximum possible length of a regime time. Introducing such a cap cuts both time and
memory down to O(n).

We can cut down storage even more if we only keep track of the run length distribution at the
current time and previous time. If we do this, whatever process we use to find changepoints
will need to be done inside the algorithm.

Another issue is that for run length values that the algorithm finds to be exceedingly un-
realistic, the probability could be small enough that we encounter floating point errors. A
simple solution I implemented is to continually round values in the run length distribution
below a set ε > 0 down to 0 at every time step. This is the truncate() function in the code
snippet.

7

2 Our Data

2.1 Context

The data I am examining is drawn from a stick-slip simulation where constant shearing force
is applied to a system of granular media. The simulations are designed to mimic earthquake
behavior, where pressure in the system builds up due to shearing force, eventually resulting
in a slip, followed by another period of pressure build up, and so on.

Using persistent homology, my colleagues calculated a persistence diagram for each frame
of the simulation. The data that I am looking at is, for each time, the Wasserstein distance
between the current persistence diagram and the persistence diagram of the previous frame.
Essentially, this is a measure of how the system changes as a whole at each time.

With this time series that gives a broad overview of the system, my colleagues are interested
in predicting when an upcoming slip will occur. Consequently, this is an extremely natural
application of changepoint detection, where different regimes in the data have a strong
physical interpretations (slip, stick, just before slip, etc.).

2.2 Transformations

The raw data is not quite conducive to direct application of the changepoint algorithm.
Preferably, the data in each regime would appear to be derived from the same distribution,
but with different parameters for each regime. Looking at the example data below, this is
clearly not the case. This is data taken from the beginning of the 7th slip until the end of
the 8th slip, or from time 4798 to 5268.

Figure 1: Raw Data

An example of what we would prefer is data that is normally distributed in each regime,
where each regime has a different variance. If we take the logarithm of the data and then
look at the second difference, we get a time series that appears to do exactly that. While

8

many features are no longer available (increasing, decreasing, or slow changes in concavity),
we can see sharp changes very clearly. These correspond to ’jerk’ in the system.

Figure 2: Second Difference

2.3 Model

Assuming the data is normally distributed with an unknown variance, it has a likelihood of

x ∼ N(0, σ2).

The natural choice of prior for a conjugate model is the scaled inverse chi-squared distribution
with hyperparameters ν and σ2

0. The hyperparameters update, with data x1, ..., xn by

ν ′ = ν + n and (σ2
0)′ =

νσ2
0 +

∑n
i=1 x

2
i

ν + n
.

The posterior predictive distribution is the T-distribution on ν degrees of freedom and σ2
0

estimated variance, or
xpred|x1, ..., xn ∼ tν′(0, (σ

2
0)′).

I decided on a memory-less function for the conditional run distribution, or

rt|rt−1 =

1
λ

if rt = 0

1− 1
λ

if rt = rt−1 + 1

0 otherwise

I chose a vague prior νprior = 1, (σ2
0)prior = 1 and λ = 100.

2.4 Preliminary Results

My algorithm needs some fine tuning, but overall, it worked fairly well. Below are the plots
with detected changepoints marked.

9

Figure 3: Regime Detection

The algorithm missed the event around the 300th frame, which is to be expected. Why?
The second difference, which is what we are applying the algorithm to, does not have a sharp
variance change for the corresponding mini-slip in the W2 distances.

If we then look at where these detected changepoints lie on the plot of the horizontal wall
velocity (velocities above a certain threshold are defined as slip frames), we see exactly what
we hope; they precede an increase in the velocity.

Figure 4: Wall Velocity

10

2.5 Future Plans

First, I need to make my model slightly more sophisticated. A natural way to do this will
be by incorporating the first differences:

Figure 5: First Difference

I want to use the idea that changepoints occur not just at locations of large variance, but
also at places like frame 300, where the first difference sharply increases to positive values.

Until I decide on the appropriate way to incorporate that into the model, I will locate
changepoints from the second difference for some other time frames to see how the detection
performs.

Ideally, I will be able to locate all changepoints. In each regime, I will use learning algorithms
to understand how different features of the curve affect the duration of the regime. With an
appropriate model, there should be a few key parameters that I can use to predict the time
to the next slip event, as well as its duration and intensity.

11

References

[1] Ryan Prescott Adams and David J.C. MacKay. Bayesian online changepoint detection.
Arxiv, 2007.

12

	Bayesian Online Changepoint Detection
	Introduction
	Overview
	Probabilistic Basis
	Conditional Run Length Probability
	Predictive Distribution
	Algorithm
	Locating Changepoints
	Notes on Efficiency

	Our Data
	Context
	Transformations
	Model
	Preliminary Results
	Future Plans

