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1 Introduction

1.1 Goals

In this paper, I seek to answer three questions.

Probability of Ruin First, when betting the optimal amount in this game, what is the
likelihood that a player will end up with less than 20% of their initial wealth?

In this game, there is an optimal amount to bet, but that amount depends on the prob-
ability of winning. If that probability is unknown, but estimated from data on previous
games, that introduces an element of uncertainty. There is always a risk of ruin, even with
exact knowledge of the probability of winning. However, this uncertainty will increase that
risk, in a calculable way.

Managing Overestimation Second, what is the highest a player should bet to ensure,
with a certain probability, that they are not betting more than the optimal amount?

This is a very different type of question than the first. Essentially, this question is about
managing the risk introduced by uncertainty. The danger of this game is that betting more
than the optimal amount introduces a greatly increased amount of risk.

Naturally, if the danger is overestimation, a good strategy is to bet less than we estimate.
This question deals with how much less we should bet.

Managing Ruin Third, what is the highest a player should bet to ensure, with a certain
probability, that they do not lose more than 20% of their wealth?

This question combines the first two in a natural manner. This is, of course the type
of question a player would most like to know the answer to. The player wants to know the
strategy that, with a certain probability, lets them avoid ruin.

1.2 Setup

Binomial Game In this simple betting game, each play is either a win or a loss. The
player chooses an amount to bet. If the result of a play is a win, then the player’s investment
increases from 1 to 1 + b. If the player loses a play, then the player’s investment decreases
from 1 to 1− a. Denote the player’s wealth after n plays by Xn.
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Kelly Criterion The Kelly criterion says that there is an optimal fraction of your current
bankroll you should wager to maximize wealth in the long run. Let f denote the fraction
chosen by the player. For the binomial game, the optimal fraction, f = f ∗, is known. If the
probability of a win is p and the probability of a loss is q = 1− p, then the optimal fraction
is

f ∗ =
p

a
− q

b
.

Note that for this fraction to be positive, we need pb > qa. We interpret this to mean
that if pb ≥ qa, the game is not worth playing.

While the proportion f ∗ is optimal for growth in the long run, it can be risky in the
short run. So, to manage risk, a player can choose a ’fractional Kelly’ strategy. The player
chooses a fixed fraction of the growth optimal f ∗, i.e., they choose f = λf ∗ for some fixed λ.
For example, a player might choose a half-Kelly strategy, where the fraction of their wealth
they bet at each turn is f∗

2
.

Alternate Parameters With the fractional Kelly strategy, a natural alternate parameter
to replace f is λ. In some ways this parameter is more informative than f , since it describes
the strategy of the player with respect to the optimal growth strategy.

In Appendix A, I showed that upon varying a and b, the results of the game stay fixed
when a is proportional to b. So, we can eliminate these two parameters with a single param-
eter k = b

a
(as long as a 6= 0).

Alternatively, we can just fix a = 1 and let b vary and we will not lose any information.
In this case, the condition pb > qa has a very intuitive meaning.

This inequality can be manipulated to yield p > 1
1+b

. Now, in the binomial game where

a = 1 (i.e., you lose everything you bet upon a loss), 1
1+b

is exactly the probability of winning
that is implied by the odds, which we will denote by pi. So, you should only play when the
underlying probability p is larger than the implied probability pi. It is only in this scenario
that the game is favorable to the player.

Ruin There are many different measures of ruin. For the binomial game, here is a typical
way to define ruin. For this work, we will be using this measure of ruin.

For a given level r ∈ [0, 1] and initial wealth X0, the player is in a state of ruin upon
the n-th play if the player’s wealth Xn is at or below r ·X0. Equivalently, ruin is when the
player’s relative wealth is below r:

Xn

X0

≤ r.

While the event ruin is defined naturally by the above inequality based on wealth (or
relative wealth), we can give an equivalent definition with an inequality based on the number
of wins. The player is in a state of ruin upon the n-th play if

Wn ≤ Cf,a,b,r +Df,a,bn

where Wn is the number of wins upon the n-th play and C and D are constants that depend
on the parameters f, a, b, r and f, a, b, respectively. In Appendix B, I give the proof and
show what these constants are, dependent on f, a, b, r.
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In previous notes, I investigated a different measure of ruin. Ruin occurs by the n-th
play if Xk ≤ r · X0 for some k ≤ n. I.e., rather than just looking at the final wealth, the
player is ruined if their wealth ever drops below a specified level.

While this measure of ruin is interesting, the only way to compute the probability of ruin
is recursively or to estimate by simulation. In comparison, the measure of ruin that we will
be working with can be computed directly, using the cumulative distribution function that
Wn follows.

1.3 Uncertainty

In the binomial game, if we know the true underlying probability of a win, p, we can easily
compute the optimal for growth Kelly fraction f ∗. However, in practice, we may not know
p.

In a more realistic scenario, we need to use an estimate for p, pe, given knowledge of the
outcomes of previous games. For example, if we know that in the past, a player won 2 games
out of 10, we would estimate pe = 0.20. Based on pe, we would then compute our estimated
Kelly fraction fe.

Since fe is dependent on pe, the wrong estimate can yield drastic consequences. If we
choose our Kelly fraction to be too large, the probability of ruin dramatically increases.

The question is, how can we analyze this uncertainty in p?

2 Probability of Ruin

We can consider this question in a Bayesian framework. Essentially, we assign the parameter
p a distribution that expresses the probability of values of p. We then quantify how this
distribution changes based on data.

2.1 Bayes’ Rule

Bayes’ rule states that
p(θ|y) ∝ p(y|θ) · p(θ).

The term p(θ) represents our prior belief about the distribution of the parameter θ. In our
example, this unknown parameter θ is the probability of a win, p. The term p(y|θ) represents
the likelihood of the data y, given the parameter θ. Finally, p(θ|y) represents our posterior
belief about the distribution of the parameter θ, given the data y.

2.2 Beta Binomial Conjugate Pair

In the binomial game, Wn ∼ Binomial(n, θ) where θ is the underlying probability of winning.
So, the likelihood of the data y (where y is the number of wins in n games) is distributed
y ∼ Binomial(n, θ).

If we choose the prior distribution for θ to be θ ∼ Beta(α, β), then we have what is
known as a ’conjugate prior’. This means that, using Bayes’ rule, the posterior will also
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follow a beta distribution with different hyper parameters. Since θ is the main parameter of
interest, ’hyperparameters’ refer to α and β. In this case,

θ|y ∼ Beta(α′, β′)

where α′ = α + y and β′ = β + n− y.
Let’s say that we do indeed have data from a previous game where a player had y wins

after n plays. The natural choice for our prior would be the uniform distribution. The
uniform distribution can be expressed as the beta distribution Beta(1, 1). So, the posterior
will be

θ|y ∼ Beta(1 + y, 1 + n− y).

2.3 Posterior Predictive

In the Bayesian framework, we can also construct a distribution for predicted values given
data. This is known as the posterior predictive distribution, p(y′|y). For the beta binomial
conjugate pair, the posterior predictive follows a distribution known as the beta-binomial:

y′|y ∼ BetaBin(α′, β′)

where α′ = α + y and β′ = β + n− k.
So, if we choose α = 1, β = 1,

y′|y ∼ BetaBin(1 + y, 1 + n− y).

So, given data from a previous game y, we have a probability density function for the
number of wins in a future game Wn:

Wn|y ∼ BetaBin(1 + y, 1 + n− y).

This means that we can exactly compute the probability of ruin

p(Wn ≤ C +Dn).

One thing to note is that C and D depend on fixed parameters r, a, b and our choice of
f . In the alternate parameterization, these constants depend on r, k and our choice of λ
coupled with the estimate pe. Given data y, our estimate pe will be the expected value

pe = E[θ|y] =
y

n
.

Of course, this matches up with our intuitive estimate for pe: the number of wins over the
number of plays.

So, using the posterior predictive, we can compute the conditional probability of ruin.
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2.4 Examples

For these examples I use my alternate parameter λ = f
f∗

(the fraction of the optimal Kelly

fraction) and set a, b = 1. I set λ = 1 (full Kelly). The data is simulated with a win
probability of p = 0.75. Note that this is larger than the implied win probability pi = 1

1+b
=

0.5 (the game is worth playing).
With those parameters set, I examined how the ruin probability changed in three different

scenarios. The first scenario contains 10 simulated data points, the next 50, and the third
100. Lastly, we can compute the exact probability of ruin if p is known (to be 0.75 in this
case).

Figure 1: Conditional Ruin Probabilities

The more previous data we have, the more certainty we have in our estimate pe. We see
that with more data, the probability of ruin is noticeably smaller for essentially all values of
N . Moreover, if we have very little data, the uncertainty about p can even lead to a near
constant probability of ruin as time passes.

Additionally, for more previous data, the probability of ruin converges to the probability
of ruin given exact knowledge of p. This is to be expected: for large values of α and β,
the beta-binomial distribution converges to the binomial distribution with parameter α

α+β
.

With more data, we increase the value of the hyperparameters in the beta-binomial posterior
predictive distribution, causing it to converge to the exact binomial.
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3 Managing Overestimation

3.1 Choosing λ

In this game, our only choice is how much of our wealth to bet. So, to manage risk, we
need to understand how uncertainty in p affects the chosen Kelly fraction. Again, for the
following analysis, only consider a = 1 (i.e., you lose everything you bet).

If our estimate pe differs from the true p by ε (pe = p+ ε), then our chosen Kelly fraction
fe differs from the actual Kelly fraction f ∗ by

fe = f ∗ + ε((b+ 1)/b).

Note: we consider ε both positive and negative. Positive ε correspond to an overestimate
of p and ε < 0 corresponds to an underestimate.

Now, if we allow fractional Kelly with fraction λ, then the partial Kelly fraction fλe is

fλe = λ[f ∗ + ε((b+ 1)/b].

A natural way to manage risk would be to choose λ ≥ 0 that guarantees fλe ≤ f ∗. I.e.,
we want

λ[f ∗ + ε((b+ 1)/b)] ≤ f ∗.

This equality is equivalent to
λ[pe − pi] ≤ p− pi

where pi = 1
1+b

is the implied probability from the odds b.
Now, if pe − pi ≤ 0, then fe = 0; i.e., we will always choose not to play. So, let’s only

consider pe − pi > 0. Next, if p− pi ≤ 0 then f ∗ = 0, i.e., we need to choose λ = 0. So, we
must choose λ such that

λ ≤ p− pi
pe − pi

when p > pi and λ = 0 otherwise.
So, if we think about the chosen λ as a function of p, λ = g(p), then the natural choice

for f is

λ = g(p) =

{
p−pi
pe−pi if p > pi

0 otherwise.

3.2 Distribution of λ

If λ is a function of p, a natural problem arises. Namely, the whole point of this process is
that we do not know p; we only have our estimate pe. And if p is unknown, then λ = g(p)
is also unknown.

However, while the precise value might be unknown, we do have information about p.
Namely, given previous data of y successes from n trials, and a uniform prior distribution,

p|y ∼ Beta(1 + y, 1 + n− y).

Since λ is a function of p, then λ should have a distribution as well.
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Discrete-Continuous Distribution If g(p) was strictly monotone, then we could apply
the transformation of random variables theorem and find the probability density function

fΛ(λ) = fΘ(g−1(λ))

∣∣∣∣ ddλg−1(λ)

∣∣∣∣ .
Unfortunately, g(p) is not a strictly monotone function. The problem is that g(p) maps

all p ≤ pi to 0. So, the point λ = 0 has non-zero probability mass, which is incompatible
with continuous distributions.

One solution is to have λ follow a mixed discrete-continuous distribution. At λ = 0, fΛ

is a discrete distribution with mass P (p ≤ pi) and for λ > 0, fΛ is a continuous distribution
with p.d.f according to the transformation of random variables theorem.

While this will certainly work, there is a simpler method.

Alternate Transformation We assigned λ the piecewise function

λ = g(p) =

{
p−pi
pe−pi if p > pi

0 otherwise

because we interpreted λ < 0 to mean we should not play the game, and consequently
set λ = 0 when that occurred. This is the natural interpretation.

However, we could allow λ < 0 without subsequently setting λ = 0. While negative
λ values seem somewhat artificial, there is no problem with interpreting them. We simply
retain our view that λ < 0 means we should not play, while still allowing for such values.

With this in mind, we can assign λ to be a slightly different function of p, namely,

λ = h(p) =
p− pi
pe − pi

for all values of p. Since h(p) is strictly increasing, we can now apply the transformation
theorem.

P.D.F. of λ To apply the transformation theorem, we first need to compute h−1(λ). This
is simply

h−1(λ) = λ(pe − pi) + pi.

Additionally, ∣∣∣∣ ddλh−1(λ)

∣∣∣∣ = pe − pi.

So, given p|y ∼ Beta(1 + y, 1 + n− y) the conditional p.d.f. of λ|y is

fΛ|Y (λ|y) =
[λ(pe − pi) + pi]

y[1− (λ(pe − pi) + pi)]
n−y

B(1 + y, 1 + n− y)
(pe − pi).
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Mean, Variance, and Quantiles It is important to note that h(p) is a particularly nice
transformation. Namely, it is linear. With this in mind, the mean and variance of λ are
simple:

E[λ] =
E[p]− pi
pe − pi

and

V ar(λ) =
V ar(p)

(pe − pi)2
.

Additionally, we would typically estimate pe from the distribution of p. I.e., we will
normally choose pe = E[p]. When we do this, we get

E[λ] = 1.

Another thing to note is that for any strictly monotone transformation like λ = h(p),
probability mass is preserved, so P (λ ≤ λ0) = P (p ≤ h−1(λ0)) or, equivalently,

P (p ≤ p0) = P (λ ≤ h(p0)).

I give the proof in Appendix C.
So, for a given probability c, we might want to find λc such that the probability we did

not overestimate the true λ is exactly c (P (λ > λc) = c). We can do this by finding pc such
that P (p > pc) = c and then λc = h(pc). Essentially, the transformation (and any monotone
transformation) preserves quantiles.

3.3 Examples

Setup For these examples, set a, b = 1 and simulate data from underlying p = 0.75. For
this game, pi = 1

1+b
= 0.5.

Given the data, let’s find the value λc we should pick so that the probability the true λ
is above λc is c. I.e., find λc such that

P (λ > λc) = c.

We will do this by finding pc such that P (p > pc) = c and then λc = h(pc).
Why do we want the true value of λ to be above our chosen λc? Well, if this is the case,

then by underestimating lambda, we will be betting less of our wealth. So, by choosing λc,
we ensure that with probability c, we are incurring less risk than we would if we chose the
actual best value of λ.

Varying Data Size First, let’s examine how λc changes when we fix c, but vary the size
of the simulated data. We should expect that with more data, we have more certainty about
our estimate pe, so λc should tend towards 1. I.e., when we have more certainty about pe,
we should tend closer to a full Kelly strategy, the strategy we choose when we know the true
value of p.

Let’s use previous data with size 10, 100, and 1000 with c fixed at 0.95. I.e., we are
finding λ0.95 such that, with probability 0.95, we are underestimating the true value of λ.
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Figure 2: Varying Data Size

As expected, with very little data, we have to choose a small value of λ0.95 to manage
the risk of overestimating p. But as we grow more certain about the underlying probability
of winning, we have larger values of λ0.95 that approach 1.

Moreover, we even see λ take on a negative value. This means that the small amount of
data suggested the game was unlikely to be favorable to us with probability 0.95. So, given
this data, and our chosen level of c = 0.95, we would choose not to play.

Varying c Now, let’s vary c with the simulated data fixed. We should expect λc to increase
as c decreases, since we are allowing for more risk.

Additionally, the value c′ for which pc′ = pe (i.e., the percentile of the mean of p) will
give λc′ = 1. Any values of c larger than c′ will give λc < 1 and any values c < c′ will give
λc > 1. If the posterior distribution for p|y ∼ Beta has no skew, then the median and mean
are the same: this will occur at c′ = 0.50.

Let’s simulate 100 data points and test c = 0.95, 0.75, 0.50, 0.25.

Figure 3: Varying Probability of Underestimation

As expected, λc increases as c decreases and at c = 0.50, we have λc very close to 1.
Moreover, if we allow more risk at the c = 0.25 level, we have λc > 1.

4 Managing Ruin

To be written up.

5 Conclusions

To be written up.
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6 Appendices

6.1 A. Dependence of Parameters a and b

Let k = a
b
. Then

f ∗ =
1

b
(p(k + 1)− 1).

Let Xn denote our wealth after the nth play and Wn denote the number of wins after
the nth play. Let’s examine our relative wealth:

Xn

X0

= (1 + fb)Wn(1− fa)n−Wn .

If we use f = λf ∗ and replace a = kb, we find that this simplifies to

Xn

X0

= [1 + λ(p(k + 1)− 1)]Wn [1− λk(p(k + 1)− 1)]n−Wn .

The key here is that our relative wealth is only dependent on parameters p, λ, and k
and the stochastic process Wn (which only depends on parameter p). So, if we fix f = λf ∗,
then when considering the properties of the game, such as the probability of ruin, we can
eliminate a parameter, which will be useful for analysis.

6.2 B. Derivation of Constants

If we let Wn be the number of wins after n plays, then

Xn = (1 + fb)Wn(1− fa)n−WnX0.

Then, an alternate characterization of Xn/X0 ≤ r is

(1 + fb)Wn(1− fa)n−Wn ≤ r.

Taking logarithms gives

Wn log(1 + fb) + (n−Wn) log(1− fa) ≤ log(r)

and with some algebraic manipulation,

Wn ≤
log(r)

log
(

1+fb
1−fa

) +
log
(

1
1−fa

)
log
(

1+fb
1−fa

)n.
Note that this manipulation requires

log

(
1 + fb

1− fa

)
> 0.

If fa < 1, this reduces to b > −a, which is trivially true since both a, b are chosen to be
strictly positive. The statement fa < 1, on the other hand, is informative. The intuitive
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meaning is that when we bet we choose a fraction f such that we do not risk losing more
than we currently have. This is a very reasonable choice, since if we do not do so, we will
encounter ruin with probability 1.

So, if we let

C = Ca,b,r,f =
log(r)

log
(

1+fb
1−fa

) and D = Da,b,f =
log
(

1
1−fa

)
log
(

1+fb
1−fa

)
we can recharacterize the event of ruin. Ruin upon the n-th play is simply

Wn ≤ C +Dn.

6.3 C. Proof of Probability Mass Preservation

For simplicity, just consider h(p) strictly increasing. Then d
dλ
h−1(λ) > 0, so we can leave off

the absolute value in the transformation theorem. First, apply the theorem:

P (λ ≤ λ0) =

∫ λ0

−∞
fΛ(λ)dλ (1)

=

∫ λ0

−∞
fΘ(h−1(λ))

d

dλ
h−1(λ)dλ. (2)

Now, perform the substitution p = h−1(λ). Then dp = d
dλ
h−1(λ)dλ.

P (λ ≤ λ0) =

∫ h−1(λ0)

−∞
fΘ(p)dp

= P (p ≤ h−1(λ0)).

Of course, this is entirely natural. The transformation theorem is constructed precisely
so that probability mass is preserved under the transformation.
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