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1 Filtering

1.1 Introduction

While analyzing time dependent data, we frequently encounter the situation where the data
has an underlying trend obscured by noise. The goal then, is to extract that trend, or smooth
out the noise. This is filtering.

There are a variety of tools for doing this. However, a particularly powerful method is the
Kalman filter. In the Kalman filter, we treat the underlying trend as an unknown state. We
then infer information about that state by applying Bayesian methods to the observed data.

The Kalman filter requires that the system in question follows a particular model. The less
the data follows that model, the worse the filter is at extracting the trend. In some cases,
this necessitates the use of alternative approaches, such as applying transformations to the
data or using the more versatile particle filter.

1.2 General Filtering

A standard state-space model is a sequence of states θt and observations Yt. Typically, the
states are unobservable, but of interest. It has the following dependence structure:

1. θt is dependent only on θt−1,

2. Yt is dependent on θt, and

3. Yt|θt is independent of Yt−1|θt−1.

Filtering is the process of finding the distribution of the state θt given the observations Y1:t.
The standard framework is recursive, where π(θt−1|Y1:t−1) is known and used in a three step
process to adjust to the new piece of data Yt and get the distribution π(θt|Y1:t). The following
is from p. 51 - 52 of Dynamic Linear Models [1]:
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1. The first step is finding the one-step ahead state probability density. We need to
know the distribution of θt−1, π(θt−1|Y1:t−1) as well as the transitional conditional
π(θt|θt−1). It is computed by

π(θt|Y1:t−1) =

∫
π(θt|θt−1)π(θt−1|Y1:t−1)dθt−1. (1)

2. The next step is finding the one-step ahead observation probability. We need the
conditional θt|Y1:t−1 from the previous part as well as the conditional π(Yt|θt).
It is computed by

π(Yt|Y1:t−1) =

∫
π(Yt|θt)π(θt|Y1:t−1)dθt. (2)

3. The last step is computing the desired filtering density. This is found simply by
applying Bayes’ rule using the previous parts:

π(θt|Y1:t) =
π(Yt|θt)π(θt|Y1:t−1)

π(Yt|Y1:t−1)
. (3)

At the beginning, when no observations are available, θ0 is given a chosen prior distribution.
Also, note that equation 2 will yield a numerical value, since Yt is a known data point. Alter-
natively, we can see that it is simply the denominator in equation 3, which is a normalizing
constant.

1.3 Kalman Filter

Dynamic Linear Model The specific case when all the conditionals are linear and Gaus-
sian is known as a Dynamic Linear Model (DLM). In a DLM, all posteriors are also Gaussian
and can thus be described purely by two parameters, mean and variance. When applying
this recursive filtering process in that case, one only needs to keep track of those two pa-
rameters. Moreover, those two parameters behave in a set manner that depends only on the
model parameters and the new data, Yt. This is the Kalman filter.

The standard state-space form of a DLM is

Yt = Ftθt + νt

θt = Gtθt−1 + ωt

(4)

where νt ∼ N(0, Vt) and ωt ∼ N(0,Wt). In this there are four parameters, Ft, Gt, Vt,Wt

that are chosen beforehand according to knowledge about the underlying system and/or
statistical estimation from subsets of the data. They are allowed to be time-varying, but
again, must be predetermined.
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In our specific case, Yt and θt are scalars, but in general, a DLM allows for these to be vector
valued.

Kalman Filter The Kalman filter updates sequentially, requiring knowledge of the distri-
bution of the state at the previous time given the data up to that time. I.e., before updating
at time t, we need θt−1|Y1:t−1 ∼ N(mt−1, Ct−1). We keep track of how the parameters mt and
Ct (the mean and variance of the state distribution) evolve over time. Our goal in the update
process is to get the values mt and Ct that are the correct parameters for the distribution
θt|Y1:t ∼ N(mt, Ct).

For the above DLM, the Kalman filter updates in this manner[1].

First, the one-step ahead state distribution is Gaussian with parameters:

at = Gtmt−1

Rt = GtCt−1G
′
t +Wt.

Next, the one-step ahead predictive distribution is Gaussian with parameters:

ft = Ftat

Qt = FtRtF
′
t + Vt.

Last, the filtered distribution is Gaussian with parameters:

mt = at +RtF
′
tQ
−1
t (Yt − ft)

Ct = Rt −RtF
′
tQ
−1
t FtRt.

Typically, we keep track of the quantity Yt − ft, which is exactly the forecast error.

2 Our Data

2.1 Context

The data I am examining is drawn from a stick-slip simulation where constant shearing force
is applied to a system of granular media. The simulations are designed to mimic earthquake
behavior, where pressure in the system builds up due to shearing force, eventually resulting
in a slip, followed by another period of pressure build up, and so on.

Using persistent homology, my colleagues calculated a persistence diagram for each frame
of the simulation. The data that I am looking at is, for each time, the Wasserstein distance
between the current persistence diagram and the persistence diagram of the previous frame.
Essentially, this is a measure of how the system changes as a whole at each time.

With this time series that gives a broad overview of the system, my colleagues are interested
in predicting when an upcoming slip will occur. However, the data appears to have a
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great deal of noise around an underlying curve. Consequently, this is an extremely natural
application of the Kalman filter, where we can remove the noise in order to analyze the
underlying curve itself.

2.2 Parameters

I did not apply the Kalman filter directly to the W2 (Wasserstein) distances. The W2

distances appear to have an exponentially decreasing behavior during a stick, punctuated
by wild jumps during a slip; hardly linear. Instead, I took the logarithm of the distances,
yielding data that is (roughly) piecewise linear.

Before applying the Kalman filter, we need to set the four parameters Ft, Gt, Vt,Wt. I chose
Ft = 1, Gt = 1, Vt = 0.5,Wt = 0.01. What do each of these mean? Ft = 1, Vt = 0.5 means
that the observations are based directly on the state with observation noise that is Gaussian
with variance 0.5. Gt = 1,Wt = 0.01 means that the state evolves by only small (normal,
variance 0.01) jumps from the previous state. Heuristically, these choices mean that the filter
treats changes in the observations as arising from observation noise unless there is strong
evidence that the true state has changed.

2.3 Results

Applying the filter to the logarithm of the W2 distances yields excellent smoothing. Ad-
ditionally, when I examined the forecast error in a few examples, I saw distinct behavior
during a stick, which changed leading up to a slip, and then during the slip itself. Below is
the filtered log-transformed data and the forecast error, with the slip occurring between the
black lines.

Figure 1: Kalman Filter
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2.4 Issues

Unfortunately, we can note that the filter lags behind the data, especially during the slip.
This is entirely expected. Why?

The Kalman filter, with the parameters that I used, assumes that the data is basically a
random walk with observational noise. This is, of course, clearly not the case. During the
stick, the data has a distinctly decreasing trend, while at the beginning of the slip, the data
has a sharply increasing trend. Neither of these are a random walk, so the Kalman filter has
trouble smoothing the curve.

A possible solution is to incorporate a drift term that is allowed to be time-varying. If we
allow the drift term to learn, in a Bayesian manner, when the data is decreasing/increasing
and how much, this will give a more responsive filter. A potential method is incorporating
Bayesian changepoint detection [2].
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