Let S be a rose whose petals are labelled $v_1, \ldots, v_n \in \mathbb{Z}^m$. Let Γ be a blow-up. The edges with labels $\not\equiv \pm v_i$ form a forest. Blowing down this forest shows $$\text{Prop: } \text{st}(S) \text{ is b.e. to the n-2 dim complex of cactus graphs}$$
Let ω be an ordinal number and let $(S_\alpha)_{\alpha<\omega}$ be a well-ordering of the roses in Y_α.

Def: $Y_\beta := \bigcup_{\alpha<\beta} st(S_\alpha)$
\[\text{so } Y_\beta = X_{<\omega} \]

Def: $1k_\beta^\uparrow := Y_\beta \setminus st(S_\beta)$
\[\text{codim} = 1 \]

Warning: $1k_\beta^\uparrow$ is not the space of directions at s_α.

But: $Y_{\leq \beta} := Y_{<\beta} \cup st(S_\beta) = Y_{<\beta} \cup 1k_\beta^\uparrow st(S_\beta)$
Postponed: There is a well-ordering $(S_\alpha)_{\alpha<\omega}$ s.t. each lk_β is h.e. to a complex of dim $2n-5$.

Thm: $Y_{<\omega}$ is h.e. to a $(2n-4)$-dim. complex.

pf: (by transfinite induction)

We construct a family Z_β of CW-complexes of dim. $2n-4$ and homotopy equivalences $h_\beta : Z_\beta \to Y_{<\beta}$ such that $\alpha < \beta \implies Z_\alpha \leq Z_\beta$ and $h_\alpha = h_\beta|Z_\alpha$.

Then $h_\omega : Z_\omega \to Y_{<\omega}$ is what we wanted.
Assume Z_α and $h_\alpha : Z_\alpha \to Y_{<\alpha}$ are given for all $\alpha < \beta$.

To construct Z_β and $h_\beta : Z_\beta \to Y_{<\beta}$ we distinguish:

- β is a limit ordinal:

 $Y_{<\beta}$ is the ascending union of the $Y_{<\alpha}$ for $\alpha < \beta$

 Put $Z_\beta := \bigcup_{\alpha < \beta} Z_\alpha$

- h_β is defined by $h_\alpha = h_\beta |_{Z_\alpha}$ for all α

- h_β is a homotopy equivalence (colim & Whitehead)
\(\beta \) is the successor of \(\alpha \):

\[
\chi_\beta = \chi_\alpha = \chi_\alpha \cup \mathbf{lk}_\alpha \xrightarrow{\text{st}} (S_\alpha)
\]

\[
= \text{colim} \left(\chi_\alpha \xrightarrow{\text{lk}_\alpha} \xrightarrow{\text{st}} (S_\alpha) \right)
\]

Choose complexes \(S_\alpha \) and \(L_\alpha \) of \(\text{dim} \ 2n-2 \) and \(2n-5 \) and maps so that the diagram becomes homotopy commutative.

Define \(Z_\beta \) as the double mapping cone of bot rows.

Then \(\text{dim} \ Z_\beta \leq 2n-4 \).

\(h\text{-colim} \)
The h.e. \(h_\beta : Z_\beta \to Y_{\leq \alpha} \) can be chosen to agree with \(h_\lambda \) on \(Z_\lambda \), with \(\lambda_\lambda \) on \(L_\lambda \), and with \(\sigma_\alpha \) on \(S_\alpha \).

\[
\begin{align*}
Y_\alpha & \leftarrow L_{k_{\alpha}} \rightarrow \text{st}(\xi_{\alpha}) \\
\uparrow h_\alpha & \uparrow \lambda_\alpha & \uparrow \sigma_\alpha \\
Z_{\alpha} & \leftarrow L_{\alpha} \rightarrow S_{\alpha}
\end{align*}
\]

\(\iff \) the diagram is homotopy commutative. \(\square \)
III The Morse function

Def: For \(v = (a_1, \ldots, a_n) \in \mathbb{Z}^n \) define the norm

\[|v| := (|a_1|, |a_2|, \ldots, |a_n|) \in \mathbb{Z}_{\geq 0}^n \] (lex. order)

For a matrix:

\[M = \begin{pmatrix} \vdots \\ v_m \end{pmatrix} \implies |M| := (|v_{m1}|, \ldots, |v_{m1}|) \in (\mathbb{Z}_{\geq 0}^n)^n \] (lex. order)

Obs: \(|w| = |v| \implies w = v \mod 2 \)

\[|v_{i1}| = |v_{j1}|, i \neq j \implies M \text{ not invertible } \mod 2 \]
Def: For a labelled rose s, the norm $|s|$ is defined as $(|v_m|, \ldots, |v_1|)$ where v_i are the labels of the petals of s ordered such that $|v_m| < \cdots < |v_1|$.

I.e.: $|s| = |\binom{m}{2}|$ for the ordering $|v_m| < \cdots < |v_1|$.

Exercise: Adjacent roses have different norms.
Def: \[lk(s) := s^+(s) \cup \bigcup_{s' \neq s} s^+(s') \]
\[lk'(s) := s^+(s) \cup \bigcup_{1|s'| < 1|s|} s^+(s') = lk(s) \]

Obs: Let \(s \) be a rose with labels \(|v_n| < \cdots < |v_1| \).

A blow-up \(T \) lies in \(lk(s) \) if it has a fully blown up edge not labelled \(\pm v_i \). If one of those edges has a label \(u \) with \(|u| < |v_i| \), then \(T \in lk'(s) \).
\[st(s) = \{ \text{blow ups of } \mathcal{E} \} \]

\[\forall \mathcal{E} \in st(s) \iff s \text{ can be obtained from } \mathcal{E} \text{ by blowing down a forest}. \]
Def: An edge is descending, if its label has smaller norm than at least one petal label, i.e. smaller than $1_{\mathbf{v}_1}$.

Def: A blow-up T is completely descending if all blown up edges are descending.

Note: $1k^v(s)$ def. retracts onto $1k^v(s)$ by collapsing the forest of non-descending blown up edges.
Rem: Let $\Pi \in \Omega^k(s)$ be fully blown up, i.e. all edges have length 1. We can associate to Π a polysimplicial cell C_{Π}

$$C_{\Pi} = \Delta_1 \times \cdots \times \Delta_m \times \Delta_x$$

$\Delta_i \leftrightarrow$ petal label v_i

$\Delta_x \leftrightarrow$ all other labels

$\Delta^{(m)} = \{(x_0, \ldots, x_m) \in [0,1]^{m+1} \mid \exists i : x_i = 1\}$

$\implies C_{\Pi}$ has dim $(\# \text{vertices of } \Pi) - 2$

\implies CW structure on $\Omega^k(s)$
\(\Delta_i : \Delta \) (edges with label \(\pm v_i \))

\(\Delta_x : \Delta \) (edges not labelled \(\pm v_1, \ldots \))

\[\dim C_{\Gamma} = \dim(\Delta_1 \times \cdots \times \Delta_n \times \Delta_x) = \# \text{vert}(\Gamma) - 2 \]

\(C_{\Gamma} \) has top. dim \(\iff \) \(\Gamma \) is trivalent

\[\dim(C_{\Gamma}) = 2n - 4 \]
$|v_2 + v_3| < |v_1|$

$\nabla \Rightarrow C_\Pi = \Lambda_2 = \nabla$

0.5

1
Key Lemma: Let S be a rose with labels V_1, \ldots, V_n and $|V_n| < \cdots < |V_1|$. If \(V_1 = (a_1, \ldots, a_n) \)

\[V_1 + \sum_{i=2}^{n} a_i V_i \]

is descending, then

\[|V_1 + a_2 V_2 + \cdots + a_n V_n| < |V_1| \]

is not.

\[|a + b| \leq |a| |b| \Rightarrow |a| = |b| = 0 \]

or

\[\frac{a}{b} + \frac{b}{a} \]

or

\[|a + b| = |b| \]

or

\[\|a\| > \|b\| \]

pf on layer 2.
Example: \(\Gamma \in \mathbb{K}^k(\mathcal{S}) \) with \(v_1 \) max norm

Claim: \(\Gamma \) has a free face, namely:

\[
\begin{align*}
v_2 & \\ \leadsto & \\Rightarrow \\
\end{align*}
\]

this is not completely descending (key lemma)

\[
\begin{align*}
v_1 - v_2 - v_3 & \\
\end{align*}
\]

separating edge \(\Rightarrow \) no adjacent cell
Thm: Let L be obtained from $\mathcal{K^g}(s)$ by pushing in free faces until no longer possible. Then L does not contain a top-dimensional cell, i.e. a C_7 for a trivalent blow-up Π.

\[\text{pf: Consider a } C_7 \text{ so that the } v_1 \text{-loop in } \Pi \text{ has minimal length } \ell \]

1. $\ell > 1$ otherwise v_1 is a trivalent vertex.
2) Swap order of two "adjacent" edges.

- In L by assumption.

Not in L: v_1-loop too short.

- In L because otherwise free face.
3) Use the swaps to build a gallery from C_P to C_{Δ} where the cyclic order of the edges issuing from the v_1-loop is reversed.

\[\text{not in } \text{lk}^*(S) \text{ by key lemma} \]
mapping telescope \neq 1\text{-dim.}
Rem: Put \(\Omega := \{ s : \text{labeled rose} \} \).

Extend \(s \preceq s' \iff |s| < |s'| \) to a total order \(\prec \) on \(\Omega \).

Obs: \(\prec \) is a well-ordering on \(\Omega \).

\(\mathbb{Z}_{\geq 0} ^{\omega} \) is well-ordered.

The set \((\mathbb{Z}_{\geq 0} ^{\omega})^{\omega} \) of norms is well-ordered.

Each norm is the norm of fin. many roses.

Let \(\omega \) be the order type of \((\Omega, \prec) \).