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Moduli spaces

A moduli space is a space (topological space, algebraic variety, or similar) is used to classify certain
objects or bundles.

Example 1. 1. The Grassmannian Grpk,Rnq is the set of all k-dimensional subspaces of Rn.
As a space it can be constructed as follows. Start with pRnqk and take the subset of tuples
pv1, . . . , vkq with linear independent vectors. This is called a Stiefel manifold V pk,Rnq. The
Grassmanian Grpk,Rnq is the quotient space of V pk,Rnq identifying tuples pv1, . . . , vkq that
span the same subspace of Rn. The set rX,Grpk,R8qs of maps up to homotopy classifies
k-dimensional vector bundles over X.

2. The moduli space Mg of algebraic curves of genus g classifies surface bundles in the sense
that the set rX,Mgs of maps up to homotopy classifies surface bundles with fiber of genus g
over X.

For all examples in this masterclass, we will consider a group action of a group G on a con-
tractible space X. The moduli space is then the homotopy quotient of this group action, that is
the classifying space BG. The cohomology of BG defines the group cohomology of G. Depending
on the action (all of them are properly discontinuous but some have finite stabilizers), this space
is closely related to the proper quotient X{G. In all of our examples, it has the same rational
cohomology.

Example 2. 1. The Teichmüller space X � Tg of a surface of genus g is a space that
parametrizes complex structures on S up to the action of diffeomorphisms that are isotopic
to the identity diffeomorphism. The mapping class group G � Modg of diffeomorphism up to
isotopy of a surface of genus g acts on Tg and the moduli space Mg is the homotopy quotient.

2. G � GLkpRq acts on the Stiefel manifold X � V pk,R8q and the Grassmanian Grpk,R8q is
X{G � V pk,R8q{GLkpRq. This is the only example where the group action is free and thus
X{G � BG.

3. Culler–Vogtmann’s Outer Space X � CVn is the space of marked metric connected graphs
with fundamental group the free group Fn and volume 1. The outer automorphism group
G � OutpFnq acts on CVn and we are interested in the cohomology of CVn{OutpFnq.

4. The special linear group G � SLnpZq acts on the symmetric space X � Symn of all positive
definite quadratic forms on Rn (or equivalently on the space of positive definite symmetric
n� n matrices). We are interested in the locally symmetric space X{G � Symn{ SLnpZq.
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5. The symplectic group G � Sp2gpZq acts on the Siegel upper half space X � Hg of complex
symmetric g � g matrices whose imaginary part is positive definite. The moduli space Ag of
abelian varieties of genus g is X{G � Hg{Sp2gpZq.

Cohomological stability

During the masterclass, we will focus on the sequences of groups Modg, OutpFnq, SLnpZq, and
Sp2gpZq and their group cohomology. For these four sequences of groups (and many more), we
have cohomological stability:

Theorem 3 (Harer, Hatcher–Vogtmann, Dwyer, Charney, . . . ). For the sequences pGnqnPN0 �
pModnqnPN0 , pOutpFnqqnPN0 , pSLnpZqqnPN0 , pSp2npZqqnPN0, the group cohomology

H ipGn;Zq

is independent of n for large n in comparison to i.

We even know what those values are in the stable range:

Theorem 4.

H�pMod8;Qq � Qrx2, x4, x6, . . . s (Madsen–Weiss)

H�pOutpF8q;Qq � Q (Galatius)

H�pSL8pZq;Qq � Qrx5, x9, x13, . . . s (Borel)

H�pSp8pZq;Qq � Qrx2, x6, x10, . . . s (Borel)

High dimensional cohomology

But what about H ipGnq for large i in comparison to n? It turns out that rationally, it vanishes.

Definition 5. The virtual cohomological dimension vcdpGq of a group G is the largest number i
such that there is a torsion-free finite-index subgroup H of G and a ZH-module M with H ipH;Mq �
0.

In our cases, that implies in particular that

H ipG;Qq � 0

for i ¡ vcdpGq. And the virtual cohomological dimensions of the groups we are considering is
finite:

Theorem 6.

vcdpModgq � 4g � 5 (Harer)

vcdpOutpFnqq � 2n� 2 (Culler–Vogtmann)

vcdpSLnpZqq �
�
g
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(Borel–Serre)

vcdpSp2gpZqq � g2 (Borel–Serre)

It turns out that even more is true. These groups are virtual duality groups which means they
satisfy a property similar to Poincaré duality:
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Theorem 7 (Harer, Bestvina–Feighn, Borel–Serre). For G � Modg,OutpFnq,SLnpZq,Sp2gpZq,
there is a (not one-dimensional) duality module D, such that

HvcdpGq�ipG;Qq � HipG;Dq.

For SLn Z, Borel–Serre determine the dualizing module be the rationalized Steinberg module
D � Qb StnQ.

The Steinberg module of a field K is the top homology

StnK :� H̃n�2pTnpKq;Zq

of the Tits building TnpKq, the simplicial complex whose p-simplices correspond to flags of sub-
spaces

0 � V0 � � � � � Vp � Kn.

Solomon–Tits proved that TnpKq is pn�2q-spherical. In particular, the Steinberg module describes
all of the reduced homology of TnpKq. The figure below depicts a typical homology class, a socalled
apartment class associated to a basis v1, v2, v3 P K3.
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For Sp2gpZq, Borel–Serre prove that dualizing module is the symplectic Steinberg module.
For Modg, Harer found a spherical simplicial complex whose reduced rational homology is the

dualizing module.
For OutpFnq, less is known about the dualizing module.

Conjecture 8 (Church–Farb–Putman). For pGnqnPN0 � pModnqnPN0 , pSLnpZqqnPN0, the group
cohomology

HvcdpGnq�ipGn;Qq � HipGn;Dq � 0

is independent of n for large n in comparison to i.

In summary, we get the following picture for the cohomology H ipGn;Qq for the sequences of
groups pGnqnPN0 � pModnqnPN0 , pOutpFnqqnPN0 , pSLnpZqqnPN0 , pSp2npZqqnPN0 .
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Progress on the conjecture:

Theorem 9.

Hpn2qpSLnpZq;Qq � 0 for n ¥ 2 (Lee–Szczarba)

Hpn2q�1pSLnpZq;Qq � 0 for n ¥ 3 (Church–Farb)

H4g�5pModg;Qq � 0 for g ¥ 2 (Church–Farb–Putman)

H4g�6pModg;Qq � 0 for g ¥ 7 (Chan–Galatius–Payne)

Goals of the masterclass

� Understand how to prove that a group is a duality group and compute its dualizing module.

� Understand how to use a description of the dualzing module to compute cohomology groups.

� Understand why the Church–Farb–Putman conjecture is wrong for mapping class groups.

� Understand the cohomology of subgroups.
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