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1 Free groups and their automorphisms

Definition 1.1. Let T be a set. A word from the alphabet T is a map [n] := {1,...,n} — T for some n € Ny.
We denote the empty word [0] — T by €. We call n the length of a word [n] — T.

Example 1.2. For an alphabet T' = {a,b,c}, words are ¢, ab, aaa, abaca. The have the lengths 0,2,3,5,

respectively.

Definition 1.3. Let S be a set. Let T' = S x {—1, 1}, where by abuse of notation we identify S = Sx {1} C T
and write simply s for (s,1) € T. We also write s~! for (s,—1) € T. We call s~! the inverse of s.

Define an equivalence relation on the set of words from the alphabet T by adding/removing a pair of
adjacent s and s~ !.

The free group Fg is the set of all equivalence classes of words from T'. Group multiplication is given by
concatenation.

For S = {x1,...,2,} denote Fg by F,.

Exercise 1.4. Show that this describes a well defined group.

Theorem 1.5. Let G be a group. A set map S — G uniquely determines a group homomorphism Fsg — G
extending the set map via S C Fg.

Proof. Exercise. O

Definition 1.6. Let S be a subset of a group G. We say that S generates the smallest subgroup of G that

contains S.

Observe that S C G generates the group G if and only if the induced map Fg — G is surjective. More
generally, the image of Fg — G is the subgroup generated by S.

Definition 1.7. Let G be a group. An automorphism of G is a group homomorphism f: G — G, i.e.
f(gh) = f(g)f(h), that is bijective. The set of automorphisms of G is denoted by Aut(G) and it forms a

group.
Note that an element of f € Aut(F,) is determined by the images f(x1),..., f(zn).

Example 1.8. There is an inclusion of the symmetric group S, into Aut(F,,) by sending o € S,, to the

automorphism defined by z; = x,;).



Inverting the ¢th generator is an automorphism:

) zyt =i
mv;: rj —

r;  jF
Multiplying the ith generator to the jth (from the left or the right) is an automorphism:

leftmul;; @ x —
e, k#J

rightmul,; : 2 — .
Tk k#j

Theorem 1.9 (Nielsen, 1924). Aut(F),) is generated by permutations, invy, and leftmul;s.

Definition 1.10. Let G be a group. For a,b € G, the commutator is [a,b] = aba='b~1. The commutator
subgroup G’ of G is generated by all commutators. More generally, let H be a subgroup of G, denote [G, H|
to be the subgroup generated by commutators [g, h] with ¢ € G and h € H.

The lower central series of G is a series of subgroups ;G of G, defined recursively by v1G = G and
Vi41G =[G, 7% G].

We call G* := G/G’ the abelianization of G.

Proposition 1.11. There is a surjective group homomorphism
Aut(F,) — GL,(2).

Proof. Note that F2P 22 Z" (exercise). Because abelianizing is functorial (exercise), we get a group homomor-
phism
Aut(F,) — Aut(Z™).

Observe that Aut(Z"™) = GL,(Z) is the group of invertible integral n x n matrices (exercise). GL,(Z) is

-1 0 ... 0
0o 1 ... 0

generated by L | and all matrices with ones on the diagonal and one one off the diagonal
0o 0 ... 1

(exercise). All of these generators are in the image of the map Aut(F,) — GL,,(Z). More precisely, they are

images of inv; and leftmul;;. O

Definition 1.12. The Torelli subgroup of Aut(F),) is the kernel

TA,, := ker(Aut(F,,) — GL,(Z)).

Exercises

1.) The free group: Let S be a set and S~! the symbols of inverses of S. Adding and removing ss~! or s7's

for s € S defines an equivalence relation on the set of words of S U S~!. The free group Fs is the set of

equivalence classes with concatenation as group multiplication.



2.) The

Prove that in every equivalence class there is exactly one fully canceled word, i.e. one word that

Lors~lsforseS.

doesn’t contain an ss™
Prove that Fg is a group.

Prove the universal property of Fs: Let G be a group. For every set map f: S — G, there is a
unique group homomorphism Fg — G extending f.

generators of Aut(F,): Let S = {x1,...,2,} and denote Fs by F,,. A group homomorphism

f: F,, = F, is given by the images f(z1),..., f(z,). Define the length |f| of f be the sum of the lengths
of (the completely canceled words) f(x;).

(h)

Prove that |f| > n if f € Aut(F,).
Observe that every permutation o € S, defines an automorphism z; — 7, ;).

Let inv; be the automorphism of F}, defined by z; — z; for j # ¢ and z; — x;l. Prove that if
|f| =n and f € Aut(F,), then f is generated by permutations and invy.

Let leftmul;; be the automorphism of F),, defined by z, — x; for £ # j and z; — z;z;. Let
rightmul;; be the automorphism of F), defined by zj + zy for k # j and z; — z;x;. Observe that

the permutations, invy, and leftmul;s generate all leftmul;; and rightmulij.

Let f be an automorphism of F, with |f| > n. Let w;,w} be the reduced words defined by
f(z;), f~(x;), resp. By replacing the x;’s in w’ with w;, we get a word that cancels to x;. Observe
that if |w}| > 1, one of the w; T must be completely canceled only by its neighbors.

*1 is canceled completely by its neighbors where one neighbor cancels more letters than the

If a w;
other, use leftmul;; or rightmul;; to reduce the length of f.

If all w;*! that are canceled completely by its neighbors are canceled exactly in the middle, let w;*!

be one of these with minimal length and let w;*! = ab with |a| = |b|, use leftmul;; or rightmul,; to
replace b~ 1’s in the beginning and b’s in the end of a w; by a’s and a~! respectively. Prove that

this can only be done finitely many times before the length of f can be reduced using (f).

Conclude that there is a four element generator set of Aut(F,).

Prove that abelianizing is functorial. That means it is a functor from the category of groups to the category

of abelian groups. Most importantly, for group homomorphisms G — H, there exist homomorphisms

between the abelianizations that behave well under composition.

Prove the universal property of the abelianization: Let G be a group and A be an abelian group. Every

group homomorphism G — A factors uniquely through the abelianization of G.

Show that the abelianization of Fj, is Z".

Observe that the group of group automorphisms of Z" is precisely GL,,(Z).

2 VIC—modules

Definition 2.1. Let C be a category whose isomorphism classes of objects from a set. A C—module is

a functor from C to the category of abelian groups Ab. The category C—mod of C—modules has natural

transformations as morphisms.



Example 2.2. Let G be a group and C be the one-object category whose morphisms are given by G. Then
C-modules is the same as ZG-modules (which we will also call G-representations). Let F': C — Ab be a
functor and let * denote the single object of C. Then F(x) is an abelian group and for every g € G, we get an

endomorphism of F(x) given by F(g).

Example 2.3. Let C be a groupoid, i.e. all morphisms are isomorphisms. Let F' be a C—module. If objects
Cy and Cy are isomorphic, so are F(Cy) and F(C3). Thus, the category of C—modules is equivalent to the
product category of Z Aut(C)—modules for all C' in a set of representatives of the isomorphism classes of
objects of C. That is the same as a collection of Z Aut(C')-modules.

For example, let R be a commutative ring and let C be the groupoid of all finitely generated free abelian
groupsR—modules and isomorphisms. Then C'—mod is equivalent to the category of sequences (M, )nen,
where M, is a Z GL,,(R)-modiule.

Definition 2.4. Let R be a commutative ring. Define VIC(R) to be the category whose objects are finitely

generated free R—modules and whose morphisms are
Homyc(r)(V, W) :={(f,C) | f: V «—= W,C is free,im f © C = W}.
For (f,C) € Homyc(gr)(V,W) and (g, D) € Homyc(r) (U, V), the composition is given by
(f,C)o (g, D)= (fog,C& f(D)) € Homyic(r) (U, W).

We want to make some easy observations:

- VIC(R) is equivalent to the induced subcategory on only the objects R™ for n € Ny.

+ The endomorphisms Homyc(g)(R", R") are all isomorphisms and Autyc(ry(R") = GL,(R).

- Let M be a VIC(R)-module, then it gives rise to a sequence (M, )nen, of Z GL,,(R)-modules.

- The standard decomposition R" & R — R"*! induces a GL,,(R)-equivariant map ¢,,: M,, — M, 1.

Proposition 2.5. A sequence (My)nen, of Z GL,(R)-modules together with GL,,(R)-equivariant maps
On: My, — Myy1 comes from a VIC(R)-module if and only if GL,,(R) acts trivially on the image of
Onam—10-+-0¢n: My — My . Such a VIC(R)-module is then uniquely determined.

Definition 2.6. Let M (m) denote the representable functor Z Homy,c(ry(R™, —). We call a direct sum of

representable functors free.

More about free VIC(R)-modules in the exercises.

Exercises

1.) Prove that Endyc(g)(R") = Autyic(r)(R") = GL,(R).

2.) Show that Homyc(r)(R™, R") = GL,(R)/ GL,—n(R) as a GL,(R)-set.
3.) Let F': VIC(R) — Ab be a functor.

(a) Show that M, := F(R") is a GL, (R)-representation.



(b) Show that (f,C) € Homyic(gy(R"™, R"*!) given by f(e;) = ¢; for 1 < i < n and C = span(e,41)
induces a GL,,(R)—equivariant map ¢,,: M, — M, 11.

(¢) Show that GL,,(R) included into GL, 1, (R) by the block inclusion

1 0
A
0 A
acts trivially on the image of the composition

Pn Pn+t1 Pntm—1
M, — Mpy1 — -+ — Mpim.

(d) Conversely, let (M,,)nen, be a sequence of GL,(R)-representations and let there be GL, (R)-
equivariant maps ¢,: M,, — M,+1. If GL,,(R) acts trivially on the image of the composition
M, — M, 1, there is a VIC(R)-module F': VIC(R) — Ab such that F(R") = M,, and (f,C) €
HomV|C(R)(R”,R"+1) given by f(e;) = e; for 1 < i < n and C = span(e,+1) induces ¢,,: M, —
M.

4.) Let M(m) := ZHomy,c(g)(R™, —) define a free VIC(R)-module.

(a) Show that M (m) is generated by one element.
(b) Show that Homyic(r)—mod (M (m), M) = M,,.
(¢) Show that if M is generated in degrees < d, there is a set I, numbers m; < d for ¢ € I and a

surjection @, ;

5.) The following functors from VIC(R)-modules can be considered forgetful functors. Find their left adjoints.

(a) Fix m € Ny. Let VIC(R)—mod — Set be the functor sending M to the underlying set of M,,.

(b) Let VIC(R)—mod — Set™ be the functor sending M to the sequence of underlying sets of (M, )men, -

(¢) Fix m € Ny. Let VIC(R)—mod — GL,,(R) — Set be the functor sending M to the underlying
GL,, (R)—set of M,y,.

(d) Let VIC(R)—mod — [],,,cn, GLm () — —Set be the functor sending M to the sequence of underlying
GL, (R)-sets of (Mp)men,-

(e) Fix m € Ny. Let VIC(R)—mod — Ab be the functor sending M to the underlying abelian group
M,,.

(f) Let VIC(R)—mod — Ab™ be the functor sending M to the sequence of underlying abelian groups
(Mm)mENo-

(g) Fix m € Ng. Let VIC(R)—mod — GL,,(R)—mod be the functor sending M to the GL,,(R)-

representation M,,.

(h) Let VIC(R)—mod — [],,cn, GLm(R)—mod be the functor sending M to the sequence of GLy,(R)-
modules (M) men,-



3 The homology of 1A,

We first recall how group homology is constructed. Let G be a group and M be a ZG-module. Let E.G
be a projective ZG-resolution of the trivial representation. This is unique up to chain homotopy (exercise).

Group homology H;(G; M) is the homology of the chain complex
E.G®qg M.

Group homology is functorial in the following sense. Let G and H be two groups and ¢: G — H be group
homomorphism. Let M be a ZG—module and N a ZH-module. Through ¢ the module N can be considered
as a ZG-module that is denoted by ¢*N. Let ¢»: M — ¢*N be a G—equivariant map. Let ¢: E,.G — ¢« E.H
be a G-equivariant map that induces the identity map on the trivial representation. Such a map exists and is

unique up to chain homotopy because E,G is a projective resolution. Then

E.Goc M8 E.Hoy N

is a map of chain complexes and induces a homomorphism
H.(G;M) — H.(H;N).
Let
1o K—->G—-Q—1

be a short exact sequence of groups. Fix g € G and let ¢, € Aut(K) be the conjugation c,4(k) = gkg™'. Let
M be a ZG-module. Then ¢(m) = gm gives an K—equivariant map : Resg M — Resg ¢*M. Similarly,
&(x) = wg~? gives an K—equivariant map &: Resg E.G— Resg ¢*E.G. Therefore,

Res% E,G @k Res$ M 2y Res% E,G @k Res$ M

gives rise to an automorphism of H,.(K; M). Because K acts trivially by this action, H,(K; M) is in fact a
ZQ—module.
Now consider the sequence of short exact sequences

1—TA, - Aut(F,) — GL,(Z) — 1.

Then (H.(IA,;Z))nen, is a sequence of Z GL,,(Z)-modules. The inclusion IA,, C IA,; induces a GL,,(Z)-
equivariant map

bn: Ho(IA; Z) — H, (1A, 113 Z).

This data comes in fact from a VIC(Z)—-module, that we will denote by H;(IA) (exercise).

Let us concentrate now on Hq(IA).

Theorem 3.1 (Andreadakis 1965 (for n < 3), Bachmuth 1966).
Hi(IA,) = Hom(Z", /\2 Z") = (Z")* @ /\2 72
Proposition 3.2. There is a VIC(Z)-module M given by M, = (Z")* @ N> Z* and
bn: (ZM)* ®/\2 g+l (Z7L+1)* ®/\2 gn+l
e; ®(ej Nep) — ef ® (ej Neg),

where e1,. .., e, denotes the standard basis of Z™ and €3, ..., e}, its dual basis of (Z™)*.

Corollary 3.3. The VIC(Z)-module Hy(IA) is isomorphic to M from the previous proposition.



Exercises

1.)

4

Let G be a group and let M and N be ZG-modules. Let P, - M — 0 and Q. — N — 0 be projective
G-resolutions. Given a G—equivariant map M — N, show that up to chain homotopy there exists a

unique G—equivariant map of chain complexes P, — @, inducing the given map.
Let G be a group. Show H,(G;7Z) = G*P.

Let H be a subgroup of G. Show that a projective resolution F.G — Z — 0 of ZG—modules is also a

projective resolution of ZH—modules.

Let
12 K—>G—->Q—1

be a short exact sequence of groups. This exercise proves that ) acts on the homology of K.

(a) G acts on K by conjugation. Let E,G — Z — 0 be a projective (right) G-resolution of the trivial

1

representation. Check that multiplication by ¢~ induces a map of chain complexes F,G ®x Z —

FE.G ®k 7. Thus induces an action of G on the homology of K.
(b) Check that K acts trivially through this action and deduce that @ acts.

We want to show that there is a VIC(Z)-module structure on the sequence (H;(IA,,))nen, for every fixed
i € Ng. The GL,(Z)-action on H;(IA,) follows from the previous exercise.

(a) The inclusion IA,, C IA,,;; induces a map on homology. Check that this map is GL,,(Z)—equivariant.
(b) Show that GL,,(Z) acts trivially on the image of H;(TA,) — H;(TIA,+m).

We want to prove Corollary 3.3: Recall that the Johnson homomorphism sends f € IA,, to x - F), —
f(x)z=1-[F,, F!] which is a map in Hom(Z", A\*Z"). Show that this gives a morphism of VIC(Z)-modules.

We want to prove that Hy (IA,) = Hom(Z", A> Z"). Recall that v, F,, = [F,,, F,,] and v3F,, = [Fy, [Fy, Fy]].
Let 21, ...,z, denote the basis of F,, and e; = x; - v2F), the basis of Z" = F,, /vy F,,.

(a) Prove that /\2 L™ — voF, /3 F, defined by e; A ej — [x;,x;] - 73 F), is an isomorphism.
(b) Let f € TA, and ¢ € v F),. Show that f(c) € v3F,.

)
)
(c) Prove that 1A,, — Hom(F, /v2Fy,,v2F,/73F,) given by sending f to w - o Fy, — f(w)w 13 F,.
(d) Prove that the map is surjective.

)

(e) Show that IA, can be generated by 1n*(n — 1) elements implies that Zz" (*~1) surjects onto
Hi(IA,).

(f) Finish the proof.

Central stability homology

Central stability homology is supposed to detect in which degrees syzygies of VIC(Z)-modules are generated.

Let us first construct it:



Definition 4.1. Let M be a VIC(Z)-module. For later notation, let ey, ..., e, denote the standard basis of
Z". Define

CSp(M)y = @ Mec.
(f,C)eHOmwc(Z) (Zp 72”)

Let d;: CSp(M), — CSp—1(M), map the summand M¢ corresponding to (f, C) to the summand Mcoggspan(e,)
corresponding to
(f,C) o (inc;, span(e;)) = (f o inc;, C' @ span(e;)),
where inc;: ZP~! — ZP with
e j <
inc;(e;) = ! J
€jr1 J =i
Define 9 := Y%  (=1)d;: CS,(M),, = CSp—1(M),.
We call C'S.(M) the central stability chain complex of M and its homology HS.(M) := H.(CS.(M)) the
central stability homology of M.

Theorem 4.2 (Maazen 1979, Randal-Williams—Wahl 2017). HS;(M(0)),, =0 for all n > 2i.

This theorem can be reinterpreted to a connectivity statement. There is a semi-simplicial set (d—
complex) W (n) whose p-simplicies W, (n) = Homy,c(z) (ZP*1,7Z™). Face maps are given by precomposition
of (inc;,span(e;)) € Homyic(z)(ZP, ZP*!). The reduced homology of W (n) is can be computed using its

simplicial chain complex

Cp(W(n)) = ZW,(n) = ZHomyc(z) (ZF T, Z").

It is easy to observe that

Ce(W(n)) = CS.ia (M(0)) -

Theorem 4.3 (P.). Let M be a VIC(Z)-module, N € Ny, and dy, ...,dn € Ny with diy1 —d; > 2. Then the

following two statements are equivalent.

1. There is a partial resolution

Pyv—--—>PF—->M-—0
of free VIC(Z)-modules P; generated in degrees < d;.
2. HS;(M),, 20 for alln > d;.

Proof. Exercise. O

Exercises

1.) Show that C'S.(M), together with 0 is a chain complex.

2.) A semi-simplicial set is a sequence of sets (X,),en, together with maps d;: X, = X,,_1 for i =0,...,p
such that d; o d; = d;_1 o d; for all pairs i < j.
a) Show that every semi-simplicial set is isomorphic to a set of the form, where X, C X% 1 and
(a) Y p p P 5
d;: X, — Xp—1 will drop the (¢ — 1)th entry from the sequence.

(b) Check that W,(n) = Homyc(z)(ZPT1,Z") gives a semi-simplicial set.



(c) The simplicial chain complex of a semi-simplicial set X is given by Cj,(X) = ZX, and § = >_(—1)%d,.
Check that C,(W(n)) = CS._1(M(0))y.

3.) This exercise shall show that central stability homology gives bounds on the generation degree of syzygies.
You may use that HS;(M(0)),, = 0 for all n > 2i.

(a) Observe that a VIC(Z)-module M is generated in degrees < d if and only if HSy(M),, = 0 for all
n > d.

(b) Show HS;(M(m)), =0 for all n > 2i + m.

(C) Let dy,...,dny € Ny with di-l—l —d; > 2 and

Py— =P —-M-—=0
be a resolution of free VIC(Z)-modules P; generated in degrees < d;. Show that HS;(M), = 0 for

all n > d;.

(d) Let d; be as above and HS;(M),, =0 for all n > d;. Show that there exists a partial resolution
Pyv—-- =P —-M-—=0

of free VIC(Z)-modules P; generated in degrees < d;.

5 Highly connected simplicial complexes

Definition 5.1. An (abstract) simplicial complex X on a vertex set V' is a set of nonempty subsets of V
that is closed under subsets and contains all singletons. We call a subset in X a simplex of X. If a simplex
has (p + 1) elements it is called an p-simplex or p-dimensional. A proper subset of a simplex is called a face.

A (topological) p-simplex is the topological space given by the convex hull of the standard basis vectors in
RP*!. The simplex spanned by a proper subset of standard basis vectors is called a face. The (topological)
realization | X| of an abstract simplicial complex X is the space of topological simplicies for each simplex in

X glued along their faces.

Definition 5.2. An (abstract) A-complex X (or semisimpicial set) is a sequence of sets (Xp)pen, together
with face maps d;: Xp+1 — X, for each i € {0,...,p+ 1} and p > 1, such that

diodj:dj,1 Odi fOI‘Z<j

The (topological) realization | X| of an abstract A-complex X is the space of topological p-simplicies for

each element in X, for all p > 1 glued together along the face maps.
Exercise 5.3. Given an abstract simplicial complex, find an abstract A-complex with the same realization.

Definition 5.4. The simplicial chain complex C.(X) of a A-complex X is given by C,(X) = ZX,, and the
boundary map d = >_(—1)"d;. Denote the homology of this chain complex by H.(X). (It is isomorphic to
the (singular) homology of the realization.)

Definition 5.5. A simplicial map X — Y between simplicial complexes is a map between the vertex sets

such that the image of a simplex of X is a simplex of Y.



For a simplicial complex X, let [S?, X] be the set of equivalence classes of all simplicial maps ¥ — X
for all simplicial complexes Y whose realization is homeomorphic to the p-sphere SP under the following
equivalence relation.’ f1:Y; — X and fo: Yo — X are (freely homotopy) equivalent if there is a simplicial
complex Z whose realization is homeomorphic to S? x [0, 1] and whose two boundaries are Y7 and Ya together
with a simplicial map Z — X that restricts to f; and fo on the boundary. ([S?, X] is in bijection to the set
of free homotopy classes of continuous maps S — | X]|.)

A simplicial complex X is called n-connected if [SP, X| contains only the trivial class for all p < n.
Theorem 5.6 (Hurewicz). If a simplicial complex is n-connected than H;(X) 220 for all i < n.

Definition 5.7. Let X be a simplicial complex. The link of a simplex ¢ in X is the union of all simplicies
that are disjoint from o and whose union with o is also a simplex in X. It is denoted by Lkx (o).
A simplicial simplex X is called weakly Cohen-Macaulay of dimension n if X is (n — 1)-connected and

Lkx (o) is (n — p — 2)-connected for every p-simplex o of X.

Definition 5.8. Let PB,, be the partial basis complex of Z™, i.e. a set of nonzero vectors in Z™ form a

simplex if they can be completed to a basis of Z™.
Theorem 5.9 (Maazen 1979). PB,, is (n — 2)—connected.

Proof. Exercise. O

Definition 5.10. Let us define the simplicial complex PBC,,. Its vertex set contains all pairs (v, H), where
v € Z™ is nonzero and H C Z" is a summand such that span(v)®H = Z". The subset {(vo, Ho), . .., (vp, Hp)}

is a simplex if {vg,...,vp} is a partial basis of Z" and v; € H; for all i # j.

Definition 5.11. A join complex over a simplicial complex X is a simplicial complex Y together with a

simplicial map 7: Y — X, satisfying the following properties:
1. m is surjective.

2. m is simplexwise injective.

3. A collection of vertices yo, ..., ¥y, spans a simplex of ¥ whenever there exists simplices 6y, ..., 0, such
that for all 4, y; is a vertex of 6; and the simplex 7(6;) has vertices m(yo), ..., T(yp)-
Y2 Yo
9 m(yo) = w(y2)
0/
/s
0 —p
AN
m(y1) = 7(y3)
1
Y

Figure 1: The map 7 does not exhibit Y as a join complex over X unless 6 is a simplex of Y.

Theorem 5.12 (Hatcher—-Wahl 2010). Let Y be a join complex over X viaw: Y — X. Assume X is weakly

Cohen—Macaulay of dimension n. Further assume that for all p-simplices 7 of Y, the image of the link

m(Lky (7)) is weakly Cohen—Macaulay of dimension (n —p —2). ThenY is 52 —connected.

1You may assume that the link (defined below) of a g-simplex is homeomorphic to S9—P~1.
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Theorem 5.13 (Randal-Williams-Wahl 2017). PBC,, is 252 —connected.

Proof. In the exercises, it is shown that PBC,, is a join complex over PB,,. The other conditions for the

previous theorem are also shown. O

Definition 5.14. Let X be a simplicial complex. Define X°'d = (X;Td)peNO to be the A-complex whose
p-simplices are

X = {(zo,...,7,) € XJ' | {zo,..., 2} is a p-simplex in X}.
Proposition 5.15 (Randal-Williams—Wahl 2017). Let X be a simplicial complex that is weakly Cohen—

Macaulay of dimension n then X°'4 is (n — 1)-connected.
Proof. Exercise. O
Corollary 5.16. HS;(M(0)), =0 for all n > 2i.

Proof. Exercise. O

Exercises

1.) Given an abstract simplicial complex, find an abstract A-complex with the same realization.

2.) In this exercise, we want to show that PB,, is weakly Cohen—Macaulay of dimension n — 1, following a
proof by Church—Putman 2017.

(a) Let V be a summand of Z" and vp,...,v, a basis of V. Observe that Lkpg, ({vo,...,vp}) is
independent of the choice of basis of V. Denote this link by Lkpg, (V).

(b) Let PB} = Lkpg,,,, (Z™). Show that Lkpgmn (c) = PBxfpp for every (p — 1)-simplex o of PB;".

(c) Fix an F: Z™t" — Z and N > 0. For a subcomplex X of PB", define X<V to be the full

n

subcomplex of X spanned by the vertices v with |F(v)| < N. Let ¢ be a simplex of PB]" that has a
vertex v with F(v) = N. Show that Lkpgm (o) can be retracted to Lkpgm (o).

(d) We will prove that PB]" is (n — 2)—connected by induction over n. For n = 0 there is nothing to

show. For n = 1, prove that PBY" is non-empty for m > 0.

(e) For the induction step, fix a map ¢: S? — PB" with 0 < p < n — 2. (We may assume that there is
a triangulation of SP such ¢ is simplicial.) We want to nullhomtope ¢. Let F': Z™t™ — Z be the
map that returns the last coordinate and let

R(¢) = max(F(v) | v a vertex of PB]" in the image of ¢).

Show that the sphere can be coned off if R(¢) = 0.

(f) If R = R(¢) > 0 then there is a simplex o of S? of maximal dimension (with respect to the following
condition) such that F(¢(x)) = R for all z € o. Check that ¢ maps Lkgr (o) into Lkpgm (¢(c))<%.

(g) Assume that o is k-dimensional. You may use that Lkgs (o) homeomorphic to SP~*=1. Assume
that ¢(c) is (~dimensional. (Note that k > ¢.) Prove that Lkpgm (¢(0))< is (n — £ — 3)-connected.
(h) Homotope ¢ to replace ¢(c) by a subcomplex in Lkpgm (0)<V.

(i) Observe that we can get reduce R(¢) this way. And finish the proof.
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3.) Show that the link of a simplex in PBC,, is isomorphic to a PBC,,, for some m < n.
4.) Show that PBC, is a join complex over PB,, by the map 7 that forgets the complement.
5.) Let 7 be a p—simplex of PBC,,. Show that Lkpgp, (¢(7)) is weakly Cohen—Macaulay of dimension n—p — 3.

6.) Use Proposition 5.15 and the previous exercise to show that HS;(M(0)),, = 0 for n > 2i.

6 Quillen’s spectral sequence argument for homological stability

In this lecture, we want to revisit Quillen’s argument for homological stability with twisted coefficients and

look at a similar argument for representation stability.

Theorem 6.1. Let M be a VIC(Z)-module. The map ¢, : M, — M1 induces a stabilization map on

homology
H.(GL,-1(Z); My,—1) — H.(GL,(Z); M,,).

Assume that HS;(M) =0 for all n > ki + a for some k > 2. Then the stabilization map is an isomorphism
for alln > k(i +1) +a+ 1 and surjective for alln > k(i + 1) + a.

Proof. Consider the double complex
E, GLn(Z) XGL,(2) CS, (M)n

There are two spectral sequences coming from this double complex, which both converge to the homology of

the total complex of the double complex. The first spectral sequence takes central stability homology first:
E;;q = Ep GL, (Z) ®GL7L(Z) HSq (M)n

Since HS;(M), = 0 for all n > ki + a, we get in particular Ezl)q = 0 for n > k(p + ¢q) + a. The spectral
sequence therefore converges to zero in that range.
The second spectral sequence takes group homology first:

Y Y G n ~J
Ej, = Hy(GLy(Z); CSy(M)y) 2 Hy(GLy(Z);ndg " @ ) M,y ) 2 Hy(GLy(Z); My,)

This spectral sequence converges to zero in the same range. It turns out that d': E}, — E} is the stability

p—1l,q
map H,.(GL,,—,(Z); My,—p) — H.(GLy—p11(Z); My—pt1) if p is odd and zero if p is even.

We prove the theorem by induction over i. The statement is trivial for ¢ < 0. Let us assume that the
statement is true for ¢ < i. Observe that EZq =0 for g <iandn > kqg+p+a+ 1. This implies that
E§,; = Eg5 =0 for n > k(i+1) 4 a and thus the stability map is surjective in that range. Likewise, it implies
that E121 = Ee =0 for n > k(i + 1) + a+ 1 and thus the stability map is injective in that range. O

For representation stability, let us consider the spectral sequence
E, Aut(F,) @1, Ci_1(Y(n)),

where Y (n) is a semi-simplicial set similar to W (n) but for Aut(F,). In particular, C,—1 (Y (n)) & Ind} " ?Zﬁp Z

and the following connectivity result is true.

Theorem 6.2 (Hatcher-Vogtmann 1998, Randal-Williams-Wahl 2017). H;_1(Y (n)) = 0 for n > 2i.

12



Thus both spectral sequences associated to this double complex converge to zero for n > 2(p + ¢q). The

spectral sequence taking group homology first turns out to be
E}, = HS,(Hy(IA))n,

where H,(IA) is the VIC(Z)-module introduced in Lecture 4. Clearly, Ho(IA) = M (0) and therefore E ; =
for n > 2p. This implies that Eg ; = HSo(H1(IA)), =0 for n > 4 and Ef ; = HS,(H;(IA)), =0 for n > 6.
This means that Hq(TA) is generated in degrees < 4 and related in degrees < 6.

We know the first homology of IA,, exactly already, though. And it will turn out that these bounds

are not sharp. Together with bounds on when E? | = HS),(H;(IA)), vanishes for p € {2,3}, we can make

statements about Hy(TA). These will likely also not be sharp, but very little is known about the second
homology of TA,,.

Exercises

1.) Let us fill in the details of the proof of Theorem 6.1:

(a) Check that

CSp(M)n = @ Mo = Indg:,p M, _, = ZGL,(Z) RGL,_p(Z) M,_p.
(f,C)eHomyc(z) (ZP,Z™)

(b) Prove Shapiro’s Lemma: Let H be a subgroup of a group G and let M be a ZH-module. Then
H.(G;Ind$ M) = H,(H; M).
¢) Show that every face map d;: CS,(M),, — CS,_1(M),, induces the stability map
P P

Ezlaq = Hy(GLn—p(Z); My —p) = Hy(E. GLy(Z) OGL, (2) CSp(M)n

— Ep 4 2 Hy(GLy—p1(Z); My—pi1) = Hy(Ey GL,(Z) ®qr, z) CSp—1(M)s.

p—1lq
As a consequence d' : E;q — Ezl)fl’q is the stability map if p is odd and zero if p is even.

2.) For the spectral sequence given by the double complex

E, Aut(F,) @14, Co_1(Y(n)),

we want to prove that
E}, = HS,(Hg(IA)),.

(a) Show that
B, Aut(F,) ®1a,  Z

n—p
is a Z GL,,—,(Z)-module.
(b) Find the isomorphism

Aut(Fy,)

qu ~ B, Aut(F,) ®a, Indy i)

~ GL,(Z
z=ndg"Y, B Aut(F,) @1a,_, Z.

(c) Prove that face maps of Y (n) precisely induce the face maps of C'Sy(H,(IA)),.
(d) Finish the proof.
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7 Polynomial functors

Polynomial functors have a long history and come in various forms. The prototypical polynomial functor
Ab — Ab sends an abelian group A to its kth tensor power A®*. These and similar play an important role in
algebraic geometry and representation theory of group schemes. In 1950, Eilenberg—Maclane defined them
in terms of “cross effects” to compute the homology of Eilenberg—Maclane spaces K (m,n). In homological
stability, polynomial functors were introduced by Dwyer in 1980 to compute algebraic K-theory groups. We

will use a variant of Dwyer’s definition that seems to be most general.

Definition 7.1. Let M be a VIC(Z)-module. Define ¥M to be the VIC(Z)-module that is M precomposed
with the functor Z&—: VIC(Z) — VIC(Z) that sends (f, C') € Homy,c(z)(4, B) to (idz® f, C) € Homy,c(z) (Z®
A,Z @ B).

There is a canonical VIC(Z)-homomorphism M — XM given by the maps M4 — Mzga induced by
(ACZ®A,Z) € Homycz) (A, Z D A).

Let us denote

(co)ker(M) := (co)ker(M — L M).

Let d € Ng U {—o0}. We say M has polynomial degree —oo in ranks > d if M,, =0 for all n > d.

We say M has polynomial degree < 0 in ranks > d if (ker M),, = (coker M),41 = 0 for all n > d.

Let r > 1. We say M has polynomial degree < r in ranks > d if (ker M),, = 0 for all n > d and coker M has
polynomial degree < r — 1 in ranks > d — 1.

(For simplicity, we will define 0 — 1 = —o0.)

Proposition 7.2. If a VIC(Z)-module M has polynomial degree < r in ranks > d, then there is a polynomial
p € Q[X] of degree < r such that vk M,, = p(n) for all n > d.

Theorem 7.3 (Dwyer 1980). If M has finite polynomial degree then
H;(GL,-1(Z); M,,—1) — H;(GL,,(Z); M,,)

s an isomorphism for n > i.

Exercise 7.4. Check that H;(IA) has polynomial degree < 3 in ranks > —oo.

Theorem 7.5 (Miller-P.-Petersen). Let M be a VIC(Z)-module that has polynomial degree < r in ranks > d.
Then
HS;(M), 20 forn > max(d+4,2i + 7).

Corollary 7.6 (Miller-P.-Wilson, Miller-P.-Petersen). H>(IA) is presented in degrees < 9.

Exercises

1.) We want to compare different definitions of polynomial functors.

(a) Show that there is a VIC(Z)-module that sends a finitely generated free Z—-module to its underlying

abelian group that has polynomial degree < 1 in ranks > —oo.

(b) Show that there is a VIC(Z)-module that sends a finitely generated free Z—module to the dual of its
underlying abelian group that has polynomial degree < 1 in ranks > —oo. (Here GL,,(Z) acts via

its transpose.)
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(¢) Let F: Ab — Ab be a functor. Show that there is a functor cry(F): Ab — Ab called the first cross
effects of F' such that F(A) = F'(0) & cry(F)(A) for all abelian groups A.

(d) Let F: Ab — Ab be a functor. Show that there is a functor cro(F): Ab x Ab — Ab called the second
cross effects of F' such that F(A@® B) = F(0) @ cr1(F)(A) @ cr1(F)(B) @ cr2(F) (A, B) for all pairs
of abelian groups A, B.

(e) Let VIC(Z) — Ab the functor that forgets about the complement. Let F': Ab — Ab be a functor
whose second cross effects vanish. Consider F' as a VIC(Z)-module. Show that it has polynomial

degree < 1 in ranks > —oo.
(f) Prove that if a VIC(Z)-module has polynomial degree < r in ranks > d then there is a polynomial
p € Q[X] such that rk M,, = p(n) for all n > d.
2.) We want to show that H;(IA) has polynomial degree < 3 in ranks > —o0.
(a) Let M, M', M" be VIC(Z)-modules and M’ — M — M" morphisms such that
0— M, — M, =M, =0
is a short exact sequence for n > d. Prove that if N’ has polynomial degree < r in ranks > d and

N" has polynomial degree < r in ranks > d — 1, then N has polynomial degree < r in ranks > d.

(b) Let M and N be VIC(Z)-modules and assume that M has polynomial degree < r in ranks > d and
N has polynomial degree < s in ranks > e. Prove that M ® N has polynomial degree < r 4+ s in
ranks > max(d, e).

(¢) Show that there is a VIC(Z)-module M with M,, = Homap(Z", A’Z™) that has polynomial degree

< 3 in ranks > —o0.

(d) Show that M coincides with the VIC(Z)-module H; (IA).

8 Central stability homology for polynomial VIC(Z)-modules

Proof of Theorem 7.5. We prove the theorem by a double induction over r and 7. If r = —o0 or ¢ < 0 the

theorem is true. We thus may assume that if M has polynomial degree < s in ranks > d,
HSy(M), =0 for n > max(d + ¢,2q + s)

as long as s < r or q < i.

Consider two double complexes:
Xpg = @ @ Mim foD

(f,0)eHomyic(z) (ZP,Z") (9,D) €Homvic(z) (29,0)

= CS,(CSy(EPM))y,

= CS5,(CS,(M(0)) @ M),

and
Ypg = @ EB Mp
(f,C)eHomyc(z)(ZP,Z™) (g9,D)€Homyic(z) (24,C)

= 05, (C5,(M))n
= CS,(CS,(M))p.
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Let
E,, = CS,(HSy(SPM)),,

denote the spectral sequence associated to X. It converges to zero in the range n > 2(p + q).
Let us denote the spectral sequence associated to Y by E\gq. It turns out that d': Eiq — E&q is always
the zero map.
The map of double complexes
Ypg — Xpg
induces maps
Epy — By,
that are surjective for n > max(d+p+q—1,p+2¢+r—1) and injective for n > max(d+p+q,p+2q+r+1).
This uses the induction hypothesis.

Therefore
E§ (M), = Ej; = HS;(M),  for n>max(d+1i,2i+r).

The theorem follows because by induction
E}, = CSy(HS (P M)), =0
for ¢ < ¢ and n > max(d + ¢, p + 2q + r). This implies that
HS;(M), = E(%,l = Eg,i =~ Eoy

in the given range, which vanishes for n > 2i. O

Exercises

1.) Fill in the details about X,,, and Y,:

(a) Show that
Yy = CS,(CS, (M), = CS,(CS, (M)

(b) Those isomorphisms describe the differential in both p and ¢ direction. Show that Y, is a double
complex, i.e. that the two differentials commute.

(¢) Show that
Xpg = CSp(CS4(EP M)y = CSy(CSp(M(0)) @ M)y,

(d) Those isomorphisms describe the differential in both p and ¢ direction. Show that X, is a double
complex, i.e. that the two differentials commute.

2.) We want to show that d*: E\iq — E\é’q is always zero. Find an isomorphism 1: E%q — E&q“ that is a

chain homotopy from the map of chain complexes E?* — Eg’* to the zero map.
For the remainder of the exercises, fix r € Ny, d € Ny U {—o0}, and i € Ny. Assume that
HSy(N), =0 for all n > max(e + ¢,2q + s)

if N is a VIC(Z)-module with polynomial degree < s in ranks > e as long as s < r or ¢ < i. Let M be a
VIC(Z)-module with polynomial degree < r in ranks > d.

16



3. We want to prove that
1 1
Epg — Epq
is surjective for n > max(d+p+q—1,p+2g+r —1) and injective for n > max(d+p—+q,p+2q+7r+1).
(a) Prove that P M has polynomial degree < r in ranks > d — p.

(b) For p > 1, prove that ker(M — ¥PM),, 20 for all n > d and coker(M — X? M) has polynomial
degree r — 1 in ranks > d — 1. (Hint: Use Exercise 7.2a)

(c) Use this information to show that
HS,(M), — HS,(XPM),
is surjective for n > max(d + g — 1,2¢ +r — 1) and injective for n > max(d + ¢,2q +r + 1).
(d) Finish the proof.
4. Let us finish the proof of Theorem 7.5:

(a) Observe that Ej; = HS;(M),.
(b) Use the previous exercises to show that Ej; = E§; for n > max(d +,2i 4 r).

(c) Use the induction hypothesis to show that Ef; = Eg5 for n > max(d +i —1,2i 4+ ). [Hint:
Consider E;q forg<i,and p+q=i+ 1]

(d) Show that Epg =0 for n > 2(p + ¢) to finish the proof.
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