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1 Free groups and their automorphisms

Definition 1.1. Let T be a set. A word from the alphabet T is a map [n] := {1, . . . , n} → T for some n ∈ N0.

We denote the empty word [0]→ T by ε. We call n the length of a word [n]→ T .

Example 1.2. For an alphabet T = {a, b, c}, words are ε, ab, aaa, abaca. The have the lengths 0, 2, 3, 5,

respectively.

Definition 1.3. Let S be a set. Let T = S×{−1, 1}, where by abuse of notation we identify S ∼= S×{1} ⊂ T
and write simply s for (s, 1) ∈ T . We also write s−1 for (s,−1) ∈ T . We call s−1 the inverse of s.

Define an equivalence relation on the set of words from the alphabet T by adding/removing a pair of

adjacent s and s−1.

The free group FS is the set of all equivalence classes of words from T . Group multiplication is given by

concatenation.

For S = {x1, . . . , xn} denote FS by Fn.

Exercise 1.4. Show that this describes a well defined group.

Theorem 1.5. Let G be a group. A set map S → G uniquely determines a group homomorphism FS → G

extending the set map via S ⊂ FS.

Proof. Exercise.

Definition 1.6. Let S be a subset of a group G. We say that S generates the smallest subgroup of G that

contains S.

Observe that S ⊂ G generates the group G if and only if the induced map FS → G is surjective. More

generally, the image of FS → G is the subgroup generated by S.

Definition 1.7. Let G be a group. An automorphism of G is a group homomorphism f : G → G, i.e.

f(gh) = f(g)f(h), that is bijective. The set of automorphisms of G is denoted by Aut(G) and it forms a

group.

Note that an element of f ∈ Aut(Fn) is determined by the images f(x1), . . . , f(xn).

Example 1.8. There is an inclusion of the symmetric group Sn into Aut(Fn) by sending σ ∈ Sn to the

automorphism defined by xi 7→ xσ(i).
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Inverting the ith generator is an automorphism:

invi : xj 7−→

x
−1
i j = i

xj j 6= i

Multiplying the ith generator to the jth (from the left or the right) is an automorphism:

leftmulij : xk 7−→

xixj k = j

xk k 6= j

rightmulij : xk 7−→

xjxi k = j

xk k 6= j

Theorem 1.9 (Nielsen, 1924). Aut(Fn) is generated by permutations, inv1, and leftmul12.

Definition 1.10. Let G be a group. For a, b ∈ G, the commutator is [a, b] = aba−1b−1. The commutator

subgroup G′ of G is generated by all commutators. More generally, let H be a subgroup of G, denote [G,H]

to be the subgroup generated by commutators [g, h] with g ∈ G and h ∈ H.

The lower central series of G is a series of subgroups γiG of G, defined recursively by γ1G = G and

γi+1G = [G, γiG].

We call Gab := G/G′ the abelianization of G.

Proposition 1.11. There is a surjective group homomorphism

Aut(Fn) −→ GLn(Z).

Proof. Note that F ab
n
∼= Zn (exercise). Because abelianizing is functorial (exercise), we get a group homomor-

phism

Aut(Fn) −→ Aut(Zn).

Observe that Aut(Zn) ∼= GLn(Z) is the group of invertible integral n × n matrices (exercise). GLn(Z) is

generated by


−1 0 . . . 0

0 1 . . . 0
...

...
. . .

...

0 0 . . . 1

 and all matrices with ones on the diagonal and one one off the diagonal

(exercise). All of these generators are in the image of the map Aut(Fn)→ GLn(Z). More precisely, they are

images of inv1 and leftmulij .

Definition 1.12. The Torelli subgroup of Aut(Fn) is the kernel

IAn := ker(Aut(Fn)→ GLn(Z)).

Exercises

1.) The free group: Let S be a set and S−1 the symbols of inverses of S. Adding and removing ss−1 or s−1s

for s ∈ S defines an equivalence relation on the set of words of S ∪ S−1. The free group FS is the set of

equivalence classes with concatenation as group multiplication.

2



(a) Prove that in every equivalence class there is exactly one fully canceled word, i.e. one word that

doesn’t contain an ss−1 or s−1s for s ∈ S.

(b) Prove that FS is a group.

(c) Prove the universal property of FS : Let G be a group. For every set map f : S → G, there is a

unique group homomorphism FS → G extending f .

2.) The generators of Aut(Fn): Let S = {x1, . . . , xn} and denote FS by Fn. A group homomorphism

f : Fn → Fn is given by the images f(x1), . . . , f(xn). Define the length |f | of f be the sum of the lengths

of (the completely canceled words) f(xi).

(a) Prove that |f | ≥ n if f ∈ Aut(Fn).

(b) Observe that every permutation σ ∈ Sn defines an automorphism xi 7→ xσ(i).

(c) Let invi be the automorphism of Fn defined by xj 7→ xj for j 6= i and xi 7→ x−1i . Prove that if

|f | = n and f ∈ Aut(Fn), then f is generated by permutations and inv1.

(d) Let leftmulij be the automorphism of Fn defined by xk 7→ xk for k 6= j and xj 7→ xixj . Let

rightmulij be the automorphism of Fn defined by xk 7→ xk for k 6= j and xj 7→ xjxi. Observe that

the permutations, inv1, and leftmul12 generate all leftmulij and rightmulij .

(e) Let f be an automorphism of Fn with |f | > n. Let wi, w
′
i be the reduced words defined by

f(xi), f
−1(xi), resp. By replacing the xi’s in w′j with wi, we get a word that cancels to xj . Observe

that if |w′j | > 1, one of the wi
±1 must be completely canceled only by its neighbors.

(f) If a wi
±1 is canceled completely by its neighbors where one neighbor cancels more letters than the

other, use leftmulij or rightmulij to reduce the length of f .

(g) If all wi
±1 that are canceled completely by its neighbors are canceled exactly in the middle, let wi

±1

be one of these with minimal length and let wi
±1 = ab with |a| = |b|, use leftmulij or rightmulij to

replace b−1’s in the beginning and b’s in the end of a wj by a’s and a−1 respectively. Prove that

this can only be done finitely many times before the length of f can be reduced using (f).

(h) Conclude that there is a four element generator set of Aut(Fn).

3.) Prove that abelianizing is functorial. That means it is a functor from the category of groups to the category

of abelian groups. Most importantly, for group homomorphisms G → H, there exist homomorphisms

between the abelianizations that behave well under composition.

4.) Prove the universal property of the abelianization: Let G be a group and A be an abelian group. Every

group homomorphism G→ A factors uniquely through the abelianization of G.

5.) Show that the abelianization of Fn is Zn.

6.) Observe that the group of group automorphisms of Zn is precisely GLn(Z).

2 VIC–modules

Definition 2.1. Let C be a category whose isomorphism classes of objects from a set. A C–module is

a functor from C to the category of abelian groups Ab. The category C−mod of C–modules has natural

transformations as morphisms.
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Example 2.2. Let G be a group and C be the one-object category whose morphisms are given by G. Then

C–modules is the same as ZG–modules (which we will also call G–representations). Let F : C → Ab be a

functor and let ∗ denote the single object of C. Then F (∗) is an abelian group and for every g ∈ G, we get an

endomorphism of F (∗) given by F (g).

Example 2.3. Let C be a groupoid, i.e. all morphisms are isomorphisms. Let F be a C–module. If objects

C1 and C2 are isomorphic, so are F (C1) and F (C2). Thus, the category of C–modules is equivalent to the

product category of ZAut(C)–modules for all C in a set of representatives of the isomorphism classes of

objects of C. That is the same as a collection of ZAut(C)–modules.

For example, let R be a commutative ring and let C be the groupoid of all finitely generated free abelian

groupsR–modules and isomorphisms. Then C−mod is equivalent to the category of sequences (Mn)n∈N0

where Mn is a ZGLn(R)–modiule.

Definition 2.4. Let R be a commutative ring. Define VIC(R) to be the category whose objects are finitely

generated free R–modules and whose morphisms are

HomVIC(R)(V,W ) := {(f, C) | f : V ↪−→W,C is free, im f ⊕ C = W}.

For (f, C) ∈ HomVIC(R)(V,W ) and (g,D) ∈ HomVIC(R)(U, V ), the composition is given by

(f, C) ◦ (g,D) := (f ◦ g, C ⊕ f(D)) ∈ HomVIC(R)(U,W ).

We want to make some easy observations:

· VIC(R) is equivalent to the induced subcategory on only the objects Rn for n ∈ N0.

· The endomorphisms HomVIC(R)(R
n, Rn) are all isomorphisms and AutVIC(R)(R

n) ∼= GLn(R).

· Let M be a VIC(R)–module, then it gives rise to a sequence (Mn)n∈N0
of ZGLn(R)–modules.

· The standard decomposition Rn ⊕R→ Rn+1 induces a GLn(R)–equivariant map φn : Mn →Mn+1.

Proposition 2.5. A sequence (Mn)n∈N0
of ZGLn(R)–modules together with GLn(R)–equivariant maps

φn : Mn → Mn+1 comes from a VIC(R)–module if and only if GLm(R) acts trivially on the image of

φn+m−1 ◦ · · · ◦ φn : Mn →Mn+m. Such a VIC(R)–module is then uniquely determined.

Definition 2.6. Let M(m) denote the representable functor ZHomVIC(R)(R
m,−). We call a direct sum of

representable functors free.

More about free VIC(R)–modules in the exercises.

Exercises

1.) Prove that EndVIC(R)(R
n) = AutVIC(R)(R

n) ∼= GLn(R).

2.) Show that HomVIC(R)(R
m, Rn) ∼= GLn(R)/GLn−m(R) as a GLn(R)-set.

3.) Let F : VIC(R)→ Ab be a functor.

(a) Show that Mn := F (Rn) is a GLn(R)–representation.
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(b) Show that (f, C) ∈ HomVIC(R)(R
n, Rn+1) given by f(ei) = ei for 1 ≤ i ≤ n and C = span(en+1)

induces a GLn(R)–equivariant map φn : Mn →Mn+1.

(c) Show that GLm(R) included into GLn+m(R) by the block inclusion

A 7→

(
1 0

0 A

)

acts trivially on the image of the composition

Mn
φn−→Mn+1

φn+1−→ · · · φn+m−1−→ Mn+m.

(d) Conversely, let (Mn)n∈N0 be a sequence of GLn(R)–representations and let there be GLn(R)–

equivariant maps φn : Mn → Mn+1. If GLm(R) acts trivially on the image of the composition

Mn → Mn+m, there is a VIC(R)–module F : VIC(R) → Ab such that F (Rn) = Mn and (f, C) ∈
HomVIC(R)(R

n, Rn+1) given by f(ei) = ei for 1 ≤ i ≤ n and C = span(en+1) induces φn : Mn →
Mn+1.

4.) Let M(m) := ZHomVIC(R)(R
m,−) define a free VIC(R)–module.

(a) Show that M(m) is generated by one element.

(b) Show that HomVIC(R)−mod(M(m),M) ∼= Mm.

(c) Show that if M is generated in degrees ≤ d, there is a set I, numbers mi ≤ d for i ∈ I and a

surjection
⊕

i∈IM(mi)→M .

5.) The following functors from VIC(R)–modules can be considered forgetful functors. Find their left adjoints.

(a) Fix m ∈ N0. Let VIC(R)−mod→ Set be the functor sending M to the underlying set of Mm.

(b) Let VIC(R)−mod→ SetN0 be the functor sending M to the sequence of underlying sets of (Mm)m∈N0 .

(c) Fix m ∈ N0. Let VIC(R)−mod → GLm(R) − Set be the functor sending M to the underlying

GLm(R)–set of Mm.

(d) Let VIC(R)−mod→
∏
m∈N0

GLm(R)−−Set be the functor sending M to the sequence of underlying

GLm(R)–sets of (Mm)m∈N0 .

(e) Fix m ∈ N0. Let VIC(R)−mod → Ab be the functor sending M to the underlying abelian group

Mm.

(f) Let VIC(R)−mod→ AbN0 be the functor sending M to the sequence of underlying abelian groups

(Mm)m∈N0 .

(g) Fix m ∈ N0. Let VIC(R)−mod → GLm(R)−mod be the functor sending M to the GLm(R)–

representation Mm.

(h) Let VIC(R)−mod→
∏
m∈N0

GLm(R)−mod be the functor sending M to the sequence of GLm(R)–

modules (Mm)m∈N0 .
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3 The homology of IAn

We first recall how group homology is constructed. Let G be a group and M be a ZG–module. Let E∗G

be a projective ZG–resolution of the trivial representation. This is unique up to chain homotopy (exercise).

Group homology Hi(G;M) is the homology of the chain complex

E∗G⊗GM.

Group homology is functorial in the following sense. Let G and H be two groups and φ : G→ H be group

homomorphism. Let M be a ZG–module and N a ZH–module. Through φ the module N can be considered

as a ZG–module that is denoted by φ∗N . Let ψ : M → φ∗N be a G–equivariant map. Let ξ : E∗G→ φ∗E∗H
be a G-equivariant map that induces the identity map on the trivial representation. Such a map exists and is

unique up to chain homotopy because E∗G is a projective resolution. Then

E∗G⊗GM
ξ⊗ψ−→ E∗H ⊗H N

is a map of chain complexes and induces a homomorphism

H∗(G;M) −→ H∗(H;N).

Let

1→ K → G→ Q→ 1

be a short exact sequence of groups. Fix g ∈ G and let cg ∈ Aut(K) be the conjugation cg(k) = gkg−1. Let

M be a ZG–module. Then ψ(m) = gm gives an K–equivariant map ψ : ResGKM → ResGK φ
∗M . Similarly,

ξ(x) = xg−1 gives an K–equivariant map ξ : ResGK E∗G→ ResGK φ
∗E∗G. Therefore,

ResGK E∗G⊗K ResGKM
ξ⊗ψ−→ ResGK E∗G⊗K ResGKM

gives rise to an automorphism of H∗(K;M). Because K acts trivially by this action, H∗(K;M) is in fact a

ZQ–module.

Now consider the sequence of short exact sequences

1→ IAn → Aut(Fn)→ GLn(Z)→ 1.

Then (H∗(IAn;Z))n∈N0
is a sequence of ZGLn(Z)–modules. The inclusion IAn ⊂ IAn+1 induces a GLn(Z)–

equivariant map

φn : H∗(IAn;Z) −→ H∗(IAn+1;Z).

This data comes in fact from a VIC(Z)–module, that we will denote by Hi(IA) (exercise).

Let us concentrate now on H1(IA).

Theorem 3.1 (Andreadakis 1965 (for n ≤ 3), Bachmuth 1966).

H1(IAn) ∼= Hom(Zn,
∧2

Zn) ∼= (Zn)∗ ⊗
∧2

Z2

Proposition 3.2. There is a VIC(Z)–module M given by Mn = (Zn)∗ ⊗
∧2 Z2 and

φn : (Zn)∗ ⊗
∧2

Zn+1 −→ (Zn+1)∗ ⊗
∧2

Zn+1

e∗i ⊗ (ej ∧ ek) 7−→ e∗i ⊗ (ej ∧ ek),

where e1, . . . , em denotes the standard basis of Zm and e∗1, . . . , e
∗
m its dual basis of (Zm)∗.

Corollary 3.3. The VIC(Z)–module H1(IA) is isomorphic to M from the previous proposition.
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Exercises

1.) Let G be a group and let M and N be ZG–modules. Let P∗ →M → 0 and Q∗ → N → 0 be projective

G–resolutions. Given a G–equivariant map M → N , show that up to chain homotopy there exists a

unique G–equivariant map of chain complexes P∗ → Q∗ inducing the given map.

2.) Let G be a group. Show H1(G;Z) ∼= Gab.

3.) Let H be a subgroup of G. Show that a projective resolution E∗G → Z → 0 of ZG–modules is also a

projective resolution of ZH–modules.

4.) Let

1→ K → G→ Q→ 1

be a short exact sequence of groups. This exercise proves that Q acts on the homology of K.

(a) G acts on K by conjugation. Let E∗G→ Z→ 0 be a projective (right) G–resolution of the trivial

representation. Check that multiplication by g−1 induces a map of chain complexes E∗G⊗K Z→
E∗G⊗K Z. Thus induces an action of G on the homology of K.

(b) Check that K acts trivially through this action and deduce that Q acts.

5.) We want to show that there is a VIC(Z)–module structure on the sequence (Hi(IAn))n∈N0
for every fixed

i ∈ N0. The GLn(Z)–action on Hi(IAn) follows from the previous exercise.

(a) The inclusion IAn ⊂ IAn+1 induces a map on homology. Check that this map is GLn(Z)–equivariant.

(b) Show that GLm(Z) acts trivially on the image of Hi(IAn)→ Hi(IAn+m).

6.) We want to prove Corollary 3.3: Recall that the Johnson homomorphism sends f ∈ IAn to x · F ′n 7→
f(x)x−1 · [Fn, F ′n] which is a map in Hom(Zn,

∧2Zn). Show that this gives a morphism of VIC(Z)–modules.

7.) We want to prove that H1(IAn) ∼= Hom(Zn,
∧2 Zn). Recall that γ2Fn = [Fn, Fn] and γ3Fn = [Fn, [Fn, Fn]].

Let x1, . . . , xn denote the basis of Fn and ei = xi · γ2Fn the basis of Zn ∼= Fn/γ2Fn.

(a) Prove that
∧2 Zn → γ2Fn/γ3Fn defined by ei ∧ ej 7→ [xi, xj ] · γ3Fn is an isomorphism.

(b) Let f ∈ IAn and c ∈ γ2Fn. Show that f(c) ∈ γ3Fn.

(c) Prove that IAn → Hom(Fn/γ2Fn, γ2Fn/γ3Fn) given by sending f to w · γ2Fn 7→ f(w)w−1γ3Fn.

(d) Prove that the map is surjective.

(e) Show that IAn can be generated by 1
2n

2(n − 1) elements implies that Z 1
2n

2(n−1) surjects onto

H1(IAn).

(f) Finish the proof.

4 Central stability homology

Central stability homology is supposed to detect in which degrees syzygies of VIC(Z)–modules are generated.

Let us first construct it:
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Definition 4.1. Let M be a VIC(Z)–module. For later notation, let e1, . . . , en denote the standard basis of

Zn. Define

CSp(M)n :=
⊕

(f,C)∈HomVIC(Z)(Zp,Zn)

MC .

Let di : CSp(M)n → CSp−1(M)n map the summand MC corresponding to (f, C) to the summand MC⊕span(ei)

corresponding to

(f, C) ◦ (inci, span(ei)) = (f ◦ inci, C ⊕ span(ei)),

where inci : Zp−1 → Zp with

inci(ej) =

ej j < i

ej+1 j ≥ i.

Define ∂ :=
∑p
i=1(−1)idi : CSp(M)n → CSp−1(M)n.

We call CS∗(M) the central stability chain complex of M and its homology HS∗(M) := H∗(CS∗(M)) the

central stability homology of M .

Theorem 4.2 (Maazen 1979, Randal-Williams–Wahl 2017). HSi(M(0))n ∼= 0 for all n > 2i.

This theorem can be reinterpreted to a connectivity statement. There is a semi-simplicial set (δ–

complex) W (n) whose p-simplicies Wp(n) = HomVIC(Z)(Zp+1,Zn). Face maps are given by precomposition

of (inci, span(ei)) ∈ HomVIC(Z)(Zp,Zp+1). The reduced homology of W (n) is can be computed using its

simplicial chain complex

C̃p(W (n)) = ZWp(n) = ZHomVIC(Z)(Zp+1,Zn).

It is easy to observe that

C̃∗(W (n)) ∼= CS∗+1(M(0))n.

Theorem 4.3 (P.). Let M be a VIC(Z)–module, N ∈ N0, and d0, . . . , dN ∈ N0 with di+1 − di ≥ 2. Then the

following two statements are equivalent.

1. There is a partial resolution

PN → · · · → P0 →M → 0

of free VIC(Z)–modules Pi generated in degrees ≤ di.

2. HSi(M)n ∼= 0 for all n > di.

Proof. Exercise.

Exercises

1.) Show that CS∗(M)n together with ∂ is a chain complex.

2.) A semi-simplicial set is a sequence of sets (Xp)p∈N0
together with maps di : Xp → Xp−1 for i = 0, . . . , p

such that di ◦ dj = dj−1 ◦ di for all pairs i < j.

(a) Show that every semi-simplicial set is isomorphic to a set of the form, where Xp ⊂ Xp+1
0 and

di : Xp → Xp−1 will drop the (i− 1)th entry from the sequence.

(b) Check that Wp(n) = HomVIC(Z)(Zp+1,Zn) gives a semi-simplicial set.
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(c) The simplicial chain complex of a semi-simplicial set X is given by Cp(X) = ZXp and ∂ =
∑

(−1)idi.

Check that C∗(W (n)) ∼= CS∗−1(M(0))n.

3.) This exercise shall show that central stability homology gives bounds on the generation degree of syzygies.

You may use that HSi(M(0))n = 0 for all n > 2i.

(a) Observe that a VIC(Z)–module M is generated in degrees ≤ d if and only if HS0(M)n = 0 for all

n > d.

(b) Show HSi(M(m))n = 0 for all n > 2i+m.

(c) Let d0, . . . , dN ∈ N0 with di+1 − di ≥ 2 and

PN → · · · → P0 →M → 0

be a resolution of free VIC(Z)–modules Pi generated in degrees ≤ di. Show that HSi(M)n = 0 for

all n > di.

(d) Let di be as above and HSi(M)n ∼= 0 for all n > di. Show that there exists a partial resolution

PN → · · · → P0 →M → 0

of free VIC(Z)–modules Pi generated in degrees ≤ di.

5 Highly connected simplicial complexes

Definition 5.1. An (abstract) simplicial complex X on a vertex set V is a set of nonempty subsets of V

that is closed under subsets and contains all singletons. We call a subset in X a simplex of X. If a simplex

has (p+ 1) elements it is called an p-simplex or p-dimensional. A proper subset of a simplex is called a face.

A (topological) p-simplex is the topological space given by the convex hull of the standard basis vectors in

Rp+1. The simplex spanned by a proper subset of standard basis vectors is called a face. The (topological)

realization |X| of an abstract simplicial complex X is the space of topological simplicies for each simplex in

X glued along their faces.

Definition 5.2. An (abstract) ∆-complex X (or semisimpicial set) is a sequence of sets (Xp)p∈N0 together

with face maps di : Xp+1 → Xp for each i ∈ {0, . . . , p+ 1} and p ≥ 1, such that

di ◦ dj = dj−1 ◦ di for i < j.

The (topological) realization |X| of an abstract ∆-complex X is the space of topological p-simplicies for

each element in Xp for all p ≥ 1 glued together along the face maps.

Exercise 5.3. Given an abstract simplicial complex, find an abstract ∆-complex with the same realization.

Definition 5.4. The simplicial chain complex C∗(X) of a ∆-complex X is given by Cp(X) = ZXp and the

boundary map ∂ =
∑

(−1)idi. Denote the homology of this chain complex by H∗(X). (It is isomorphic to

the (singular) homology of the realization.)

Definition 5.5. A simplicial map X → Y between simplicial complexes is a map between the vertex sets

such that the image of a simplex of X is a simplex of Y .
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For a simplicial complex X, let [Sp, X] be the set of equivalence classes of all simplicial maps Y → X

for all simplicial complexes Y whose realization is homeomorphic to the p-sphere Sp under the following

equivalence relation.1 f1 : Y1 → X and f2 : Y2 → X are (freely homotopy) equivalent if there is a simplicial

complex Z whose realization is homeomorphic to Sp× [0, 1] and whose two boundaries are Y1 and Y2 together

with a simplicial map Z → X that restricts to f1 and f2 on the boundary. ([Sp, X] is in bijection to the set

of free homotopy classes of continuous maps Sp → |X|.)
A simplicial complex X is called n-connected if [Sp, X] contains only the trivial class for all p ≤ n.

Theorem 5.6 (Hurewicz). If a simplicial complex is n-connected than H̃i(X) ∼= 0 for all i ≤ n.

Definition 5.7. Let X be a simplicial complex. The link of a simplex σ in X is the union of all simplicies

that are disjoint from σ and whose union with σ is also a simplex in X. It is denoted by LkX(σ).

A simplicial simplex X is called weakly Cohen-Macaulay of dimension n if X is (n− 1)-connected and

LkX(σ) is (n− p− 2)-connected for every p-simplex σ of X.

Definition 5.8. Let PBn be the partial basis complex of Zn, i.e. a set of nonzero vectors in Zn form a

simplex if they can be completed to a basis of Zn.

Theorem 5.9 (Maazen 1979). PBn is (n− 2)–connected.

Proof. Exercise.

Definition 5.10. Let us define the simplicial complex PBCn. Its vertex set contains all pairs (v,H), where

v ∈ Zn is nonzero and H ⊂ Zn is a summand such that span(v)⊕H = Zn. The subset {(v0, H0), . . . , (vp, Hp)}
is a simplex if {v0, . . . , vp} is a partial basis of Zn and vi ∈ Hj for all i 6= j.

Definition 5.11. A join complex over a simplicial complex X is a simplicial complex Y together with a

simplicial map π : Y → X, satisfying the following properties:

1. π is surjective.

2. π is simplexwise injective.

3. A collection of vertices y0, . . . , yp spans a simplex of Y whenever there exists simplices θ0, . . . , θp such

that for all i, yi is a vertex of θi and the simplex π(θi) has vertices π(y0), . . . , π(yp).

θ

θ0

θ1

π

Y X

y0

y1

y2

y3

π(y0) = π(y2)

π(y1) = π(y3)

Figure 1: The map π does not exhibit Y as a join complex over X unless θ is a simplex of Y .

Theorem 5.12 (Hatcher–Wahl 2010). Let Y be a join complex over X via π : Y → X. Assume X is weakly

Cohen–Macaulay of dimension n. Further assume that for all p-simplices τ of Y , the image of the link

π(LkY (τ)) is weakly Cohen–Macaulay of dimension (n− p− 2). Then Y is n−2
2 –connected.

1You may assume that the link (defined below) of a q-simplex is homeomorphic to Sq−p−1.
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Theorem 5.13 (Randal-Williams–Wahl 2017). PBCn is n−3
2 –connected.

Proof. In the exercises, it is shown that PBCn is a join complex over PBn. The other conditions for the

previous theorem are also shown.

Definition 5.14. Let X be a simplicial complex. Define Xord = (Xord
p )p∈N0 to be the ∆-complex whose

p-simplices are

Xord
p = {(x0, . . . , xp) ∈ Xp+1

0 | {x0, . . . , xp} is a p-simplex in X}.

Proposition 5.15 (Randal-Williams–Wahl 2017). Let X be a simplicial complex that is weakly Cohen–

Macaulay of dimension n then Xord is (n− 1)–connected.

Proof. Exercise.

Corollary 5.16. HSi(M(0))n ∼= 0 for all n > 2i.

Proof. Exercise.

Exercises

1.) Given an abstract simplicial complex, find an abstract ∆-complex with the same realization.

2.) In this exercise, we want to show that PBn is weakly Cohen–Macaulay of dimension n− 1, following a

proof by Church–Putman 2017.

(a) Let V be a summand of Zn and v0, . . . , vp a basis of V . Observe that LkPBn({v0, . . . , vp}) is

independent of the choice of basis of V . Denote this link by LkPBn(V ).

(b) Let PBmn = LkPBn+m(Zm). Show that LkPBm
n

(σ) ∼= PBm+p
n−p for every (p− 1)-simplex σ of PBmn .

(c) Fix an F : Zm+n → Z and N > 0. For a subcomplex X of PBmn , define X<N to be the full

subcomplex of X spanned by the vertices v with |F (v)| < N . Let σ be a simplex of PBmn that has a

vertex v with F (v) = N . Show that LkPBm
n

(σ) can be retracted to LkPBm
n

(σ)<N .

(d) We will prove that PBmn is (n− 2)–connected by induction over n. For n = 0 there is nothing to

show. For n = 1, prove that PBm1 is non-empty for m ≥ 0.

(e) For the induction step, fix a map φ : Sp → PBmn with 0 ≤ p ≤ n− 2. (We may assume that there is

a triangulation of Sp such φ is simplicial.) We want to nullhomtope φ. Let F : Zm+n → Z be the

map that returns the last coordinate and let

R(φ) = max(F (v) | v a vertex of PBmn in the image of φ).

Show that the sphere can be coned off if R(φ) = 0.

(f) If R = R(φ) > 0 then there is a simplex σ of Sp of maximal dimension (with respect to the following

condition) such that F (φ(x)) = R for all x ∈ σ. Check that φ maps LkSp(σ) into LkPBm
n

(φ(σ))<R.

(g) Assume that σ is k–dimensional. You may use that LkSp(σ) homeomorphic to Sp−k−1. Assume

that φ(σ) is `–dimensional. (Note that k ≥ `.) Prove that LkPBm
n

(φ(σ))<R is (n− `− 3)–connected.

(h) Homotope φ to replace φ(σ) by a subcomplex in LkPBm
n

(σ)<N .

(i) Observe that we can get reduce R(φ) this way. And finish the proof.
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3.) Show that the link of a simplex in PBCn is isomorphic to a PBCm for some m ≤ n.

4.) Show that PBCn is a join complex over PBn by the map π that forgets the complement.

5.) Let τ be a p–simplex of PBCn. Show that LkPBn(φ(τ)) is weakly Cohen–Macaulay of dimension n−p−3.

6.) Use Proposition 5.15 and the previous exercise to show that HSi(M(0))n ∼= 0 for n > 2i.

6 Quillen’s spectral sequence argument for homological stability

In this lecture, we want to revisit Quillen’s argument for homological stability with twisted coefficients and

look at a similar argument for representation stability.

Theorem 6.1. Let M be a VIC(Z)–module. The map φn : Mn → Mn+1 induces a stabilization map on

homology

H∗(GLn−1(Z);Mn−1) −→ H∗(GLn(Z);Mn).

Assume that HSi(M) ∼= 0 for all n > ki+ a for some k ≥ 2. Then the stabilization map is an isomorphism

for all n > k(i+ 1) + a+ 1 and surjective for all n > k(i+ 1) + a.

Proof. Consider the double complex

E∗GLn(Z)⊗GLn(Z) CS∗(M)n.

There are two spectral sequences coming from this double complex, which both converge to the homology of

the total complex of the double complex. The first spectral sequence takes central stability homology first:

E1
pq
∼= Ep GLn(Z)⊗GLn(Z) HSq(M)n

Since HSi(M)n ∼= 0 for all n > ki + a, we get in particular E1
pq
∼= 0 for n > k(p + q) + a. The spectral

sequence therefore converges to zero in that range.

The second spectral sequence takes group homology first:

E1
pq
∼= Hq(GLn(Z);CSp(M)n) ∼= Hq(GLn(Z); Ind

GLn(Z)
GLn−p(Z)Mn−p) ∼= Hq(GLn−p(Z);Mn−p)

This spectral sequence converges to zero in the same range. It turns out that d1 : E1
pq → E1

p−1,q is the stability

map H∗(GLn−p(Z);Mn−p) −→ H∗(GLn−p+1(Z);Mn−p+1) if p is odd and zero if p is even.

We prove the theorem by induction over i. The statement is trivial for i < 0. Let us assume that the

statement is true for q < i. Observe that E2
pq
∼= 0 for q < i and n > kq + p + a + 1. This implies that

E2
0,i
∼= E∞0,i

∼= 0 for n > k(i+ 1) + a and thus the stability map is surjective in that range. Likewise, it implies

that E2
1,i
∼= E∞pq

∼= 0 for n > k(i+ 1) + a+ 1 and thus the stability map is injective in that range.

For representation stability, let us consider the spectral sequence

E∗Aut(Fn)⊗IAn
C̃∗−1(Y (n)),

where Y (n) is a semi-simplicial set similar toW (n) but for Aut(Fn). In particular, C̃p−1(Y (n)) ∼= IndAutFn

AutFn−p
Z

and the following connectivity result is true.

Theorem 6.2 (Hatcher-Vogtmann 1998, Randal-Williams–Wahl 2017). H̃i−1(Y (n)) ∼= 0 for n > 2i.
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Thus both spectral sequences associated to this double complex converge to zero for n > 2(p+ q). The

spectral sequence taking group homology first turns out to be

E2
pq
∼= HSp(Hq(IA))n,

where Hq(IA) is the VIC(Z)–module introduced in Lecture 4. Clearly, H0(IA) ∼= M(0) and therefore E2
p,0
∼= 0

for n > 2p. This implies that E2
0,1
∼= HS0(H1(IA))n ∼= 0 for n > 4 and E2

1,1
∼= HS1(H1(IA))n ∼= 0 for n > 6.

This means that H1(IA) is generated in degrees ≤ 4 and related in degrees ≤ 6.

We know the first homology of IAn exactly already, though. And it will turn out that these bounds

are not sharp. Together with bounds on when E2
p,1
∼= HSp(H1(IA))n vanishes for p ∈ {2, 3}, we can make

statements about H2(IA). These will likely also not be sharp, but very little is known about the second

homology of IAn.

Exercises

1.) Let us fill in the details of the proof of Theorem 6.1:

(a) Check that

CSp(M)n =
⊕

(f,C)∈HomVIC(Z)(Zp,Zn)

MC
∼= IndGn

Gn−p
Mn−p ∼= ZGLn(Z)⊗GLn−p(Z) Mn−p.

(b) Prove Shapiro’s Lemma: Let H be a subgroup of a group G and let M be a ZH–module. Then

H∗(G; IndGHM) ∼= H∗(H;M).

(c) Show that every face map di : CSp(M)n → CSp−1(M)n induces the stability map

E1
pq
∼= Hq(GLn−p(Z);Mn−p) ∼= Hq(E∗GLn(Z)⊗GLn(Z) CSp(M)n

−→ E1
p−1,q

∼= Hq(GLn−p+1(Z);Mn−p+1) ∼= Hq(E∗GLn(Z)⊗GLn(Z) CSp−1(M)n.

As a consequence d1 : E1
pq → E1

p−1,q is the stability map if p is odd and zero if p is even.

2.) For the spectral sequence given by the double complex

E∗Aut(Fn)⊗IAn C̃∗−1(Y (n)),

we want to prove that

E2
pq
∼= HSp(Hq(IA))n.

(a) Show that

E∗Aut(Fn)⊗IAn−p
Z

is a ZGLn−p(Z)–module.

(b) Find the isomorphism

E0
pq
∼= Eq Aut(Fn)⊗IAn

Ind
Aut(Fn)
Aut(Fn−q)

Z ∼= Ind
GLn(Z)
GLn−p(Z)E∗Aut(Fn)⊗IAn−p

Z.

(c) Prove that face maps of Y (n) precisely induce the face maps of CS∗(H∗(IA))n.

(d) Finish the proof.
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7 Polynomial functors

Polynomial functors have a long history and come in various forms. The prototypical polynomial functor

Ab→ Ab sends an abelian group A to its kth tensor power A⊗k. These and similar play an important role in

algebraic geometry and representation theory of group schemes. In 1950, Eilenberg–Maclane defined them

in terms of “cross effects” to compute the homology of Eilenberg–Maclane spaces K(π, n). In homological

stability, polynomial functors were introduced by Dwyer in 1980 to compute algebraic K-theory groups. We

will use a variant of Dwyer’s definition that seems to be most general.

Definition 7.1. Let M be a VIC(Z)–module. Define ΣM to be the VIC(Z)–module that is M precomposed

with the functor Z⊕− : VIC(Z)→ VIC(Z) that sends (f, C) ∈ HomVIC(Z)(A,B) to (idZ⊕f, C) ∈ HomVIC(Z)(Z⊕
A,Z⊕B).

There is a canonical VIC(Z)–homomorphism M → ΣM given by the maps MA → MZ⊕A induced by

(A ⊂ Z⊕A,Z) ∈ HomVIC(Z)(A,Z⊕A).

Let us denote

(co)ker(M) := (co)ker(M → ΣM).

Let d ∈ N0 ∪ {−∞}. We say M has polynomial degree −∞ in ranks > d if Mn
∼= 0 for all n > d.

We say M has polynomial degree ≤ 0 in ranks > d if (kerM)n ∼= (cokerM)n+1
∼= 0 for all n > d.

Let r ≥ 1. We say M has polynomial degree ≤ r in ranks > d if (kerM)n ∼= 0 for all n > d and cokerM has

polynomial degree ≤ r − 1 in ranks > d− 1.

(For simplicity, we will define 0− 1 = −∞.)

Proposition 7.2. If a VIC(Z)–module M has polynomial degree ≤ r in ranks > d, then there is a polynomial

p ∈ Q[X] of degree ≤ r such that rkMn = p(n) for all n > d.

Theorem 7.3 (Dwyer 1980). If M has finite polynomial degree then

Hi(GLn−1(Z);Mn−1) −→ Hi(GLn(Z);Mn)

is an isomorphism for n� i.

Exercise 7.4. Check that H1(IA) has polynomial degree ≤ 3 in ranks > −∞.

Theorem 7.5 (Miller-P.-Petersen). Let M be a VIC(Z)–module that has polynomial degree ≤ r in ranks > d.

Then

HSi(M)n ∼= 0 for n > max(d+ i, 2i+ r).

Corollary 7.6 (Miller-P.-Wilson, Miller-P.-Petersen). H2(IA) is presented in degrees ≤ 9.

Exercises

1.) We want to compare different definitions of polynomial functors.

(a) Show that there is a VIC(Z)–module that sends a finitely generated free Z–module to its underlying

abelian group that has polynomial degree ≤ 1 in ranks > −∞.

(b) Show that there is a VIC(Z)–module that sends a finitely generated free Z–module to the dual of its

underlying abelian group that has polynomial degree ≤ 1 in ranks > −∞. (Here GLn(Z) acts via

its transpose.)
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(c) Let F : Ab→ Ab be a functor. Show that there is a functor cr1(F ) : Ab→ Ab called the first cross

effects of F such that F (A) = F (0)⊕ cr1(F )(A) for all abelian groups A.

(d) Let F : Ab→ Ab be a functor. Show that there is a functor cr2(F ) : Ab×Ab→ Ab called the second

cross effects of F such that F (A⊕B) = F (0)⊕ cr1(F )(A)⊕ cr1(F )(B)⊕ cr2(F )(A,B) for all pairs

of abelian groups A,B.

(e) Let VIC(Z) → Ab the functor that forgets about the complement. Let F : Ab → Ab be a functor

whose second cross effects vanish. Consider F as a VIC(Z)–module. Show that it has polynomial

degree ≤ 1 in ranks > −∞.

(f) Prove that if a VIC(Z)–module has polynomial degree ≤ r in ranks > d then there is a polynomial

p ∈ Q[X] such that rkMn = p(n) for all n > d.

2.) We want to show that H1(IA) has polynomial degree ≤ 3 in ranks > −∞.

(a) Let M,M ′,M ′′ be VIC(Z)–modules and M ′ →M →M ′′ morphisms such that

0→M ′n →Mn →M ′′n → 0

is a short exact sequence for n > d. Prove that if N ′ has polynomial degree ≤ r in ranks > d and

N ′′ has polynomial degree ≤ r in ranks > d− 1, then N has polynomial degree ≤ r in ranks > d.

(b) Let M and N be VIC(Z)–modules and assume that M has polynomial degree ≤ r in ranks > d and

N has polynomial degree ≤ s in ranks > e. Prove that M ⊗N has polynomial degree ≤ r + s in

ranks > max(d, e).

(c) Show that there is a VIC(Z)–module M with Mn
∼= HomAb(Zn,

∧2Zn) that has polynomial degree

≤ 3 in ranks > −∞.

(d) Show that M coincides with the VIC(Z)–module H1(IA).

8 Central stability homology for polynomial VIC(Z)–modules

Proof of Theorem 7.5. We prove the theorem by a double induction over r and i. If r = −∞ or i < 0 the

theorem is true. We thus may assume that if M has polynomial degree ≤ s in ranks > d,

HSq(M)n ∼= 0 for n > max(d+ q, 2q + s)

as long as s < r or q < i.

Consider two double complexes:

Xpq =
⊕

(f,C)∈HomVIC(Z)(Zp,Zn)

⊕
(g,D)∈HomVIC(Z)(Zq,C)

Mim f⊕D

∼= CSp(CSq(Σ
pM))n

∼= CSq(CSp(M(0))⊗M)n

and

Ypq =
⊕

(f,C)∈HomVIC(Z)(Zp,Zn)

⊕
(g,D)∈HomVIC(Z)(Zq,C)

MD

∼= CSp(CSq(M))n

∼= CSq(CSp(M))n.
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Let

E1
pq = CSp(HSq(Σ

pM))n

denote the spectral sequence associated to X. It converges to zero in the range n > 2(p+ q).

Let us denote the spectral sequence associated to Y by Êrpq. It turns out that d1 : Ê1
1,q → Ê1

0,q is always

the zero map.

The map of double complexes

Ypq −→ Xpq

induces maps

Ê1
pq −→ E1

pq

that are surjective for n > max(d+p+ q−1, p+ 2q+ r−1) and injective for n > max(d+p+ q, p+ 2q+ r+ 1).

This uses the induction hypothesis.

Therefore

E2
0,i(M)n = E1

0,i
∼= HSi(M)n for n > max(d+ i, 2i+ r).

The theorem follows because by induction

E1
pq
∼= CSp(HSq(Σ

pM))n ∼= 0

for q < i and n > max(d+ q, p+ 2q + r). This implies that

HSi(M)n ∼= E1
0,1
∼= E2

0,i
∼= E∞0,i

in the given range, which vanishes for n > 2i.

Exercises

1.) Fill in the details about Xpq and Ypq:

(a) Show that

Ypq ∼= CSp(CSq(M))n ∼= CSq(CSp(M))n.

(b) Those isomorphisms describe the differential in both p and q direction. Show that Ypq is a double

complex, i.e. that the two differentials commute.

(c) Show that

Xpq
∼= CSp(CSq(Σ

pM))n ∼= CSq(CSp(M(0))⊗M)n.

(d) Those isomorphisms describe the differential in both p and q direction. Show that Xpq is a double

complex, i.e. that the two differentials commute.

2.) We want to show that d1 : Ê1
1,q → Ê1

0,q is always zero. Find an isomorphism ψ : Ê0
1,q → Ê0

0,q+1 that is a

chain homotopy from the map of chain complexes Ê0
1,∗ → Ê0

0,∗ to the zero map.

For the remainder of the exercises, fix r ∈ N0, d ∈ N0 ∪ {−∞}, and i ∈ N0. Assume that

HSq(N)n ∼= 0 for all n > max(e+ q, 2q + s)

if N is a VIC(Z)–module with polynomial degree ≤ s in ranks > e as long as s < r or q < i. Let M be a

VIC(Z)–module with polynomial degree ≤ r in ranks > d.
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3. We want to prove that

Ê1
pq −→ E1

pq

is surjective for n > max(d+p+ q− 1, p+ 2q+ r− 1) and injective for n > max(d+p+ q, p+ 2q+ r+ 1).

(a) Prove that ΣpM has polynomial degree ≤ r in ranks > d− p.

(b) For p ≥ 1, prove that ker(M → ΣpM)n ∼= 0 for all n > d and coker(M → ΣpM) has polynomial

degree r − 1 in ranks > d− 1. (Hint: Use Exercise 7.2a)

(c) Use this information to show that

HSq(M)n −→ HSq(Σ
pM)n

is surjective for n > max(d+ q − 1, 2q + r − 1) and injective for n > max(d+ q, 2q + r + 1).

(d) Finish the proof.

4. Let us finish the proof of Theorem 7.5:

(a) Observe that E1
0,i
∼= HSi(M)n.

(b) Use the previous exercises to show that E1
0,i = E2

0,i for n > max(d+ i, 2i+ r).

(c) Use the induction hypothesis to show that E2
0,i = E∞0,i for n > max(d + i − 1, 2i + r). [Hint:

Consider E1
pq for q < i, and p+ q = i+ 1.]

(d) Show that E∞pq
∼= 0 for n > 2(p+ q) to finish the proof.
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