Euler class in power subgroup

$$
\operatorname{MCG}\left(s_{g}\right)=\pi_{0}\left(H_{\text {moo }}\left(S_{g}\right)\right)
$$

one phenomenon $M L C A\left(\xi_{y}\right)$ is generated by Dem twist!

MCGISZ, can be generated by elements that's supported on smallest possible subsurfaces.

What about finite moles subgp of $M\left(G / K_{g}\right)$?
Is it generated by elamarts with small support? What about by powers of Dehn twists?

Fulmar: $N_{0}!$ The subge $P(n)$

$$
P(n)=\left\{T_{d}^{n} \mid \forall d\right\} \leqslant \mu L G\left(S_{g}\right)
$$

has mfinite index.
Moregueradly, what about genus g-1 subburpeces?
QI:

$$
\begin{aligned}
& s_{1} \subseteq S \\
& 0-1 \Gamma
\end{aligned}>M\left(\Gamma \cap M C G\left(s_{g}\right)\right)
$$

Is N finite moles in Γ ?

Last year, I tried to study a dynaries problm called Nrelsen realisation for fonite indem subgp of MCE.

Statemant: T_{C} or a poner of T_{L}
is a product of Dehntuists on nonsejaating annes.
For fruite indese subgp of $M C G\left(S_{g}^{2}\right)$, is T_{c}^{K} a produet of Dehturts on nonseparaty curres?
Q 2: Is T_{c}^{k} a product of desses supported on $9-1$ subsariffaces?

Connect with Euler class

$$
\begin{aligned}
& 1 \rightarrow \mathbb{Z} \rightarrow G \xrightarrow{\boldsymbol{\pi}} \bar{G} \rightarrow 1 \\
& e n(\pi) \in H^{2}(\bar{G} ; 7) \\
& H_{2}\left(\bar{G} ; \mathbb{Z}_{2}\right) \longrightarrow \mathbb{Z} \\
& f: \pi_{1}\left(s_{g}\right) \rightarrow \bar{G} \\
& 1=\left[a, b_{1}\right] \cdots\left[a g p_{g}\right] \cdots \\
& \tilde{a}_{1} \tilde{b}_{1}-\tilde{a}_{y} \tilde{b}_{y} \\
& \text { lifts to } G \\
& a_{i} b_{i} \in \bar{G} \\
& e_{u}(f)=\left[\tilde{a}, \tilde{b}_{1}\right] \cdots\left[\tilde{a}_{g} \tilde{b_{g}}\right]
\end{aligned}
$$

Cor: $\operatorname{en}(\pi)=0 \Leftrightarrow \pi$ has a section.
$M C G$
are marked pant

$$
1 \rightarrow \mathbb{Z}_{L} \xrightarrow{\left\langle T_{C}\right\rangle} \operatorname{MCG}\left(S_{g}^{1}\right) \xrightarrow{\pi} \operatorname{MCG(S_{g_{1\prime }})\rightarrow 1}
$$

Fact: $g \geqslant 2$, this central extension is not a produce
en $\neq 0$

$$
\Rightarrow T_{c}^{k}=\left[a_{1} b_{1}\right] \cdots\left[a_{n} b_{n}\right] \quad a_{i} \in M C G \left\lvert\,\left(\frac{1}{y}\right)\right.
$$

we can write a_{i} as product of Dehutwits of romseparating cares.
π has a natural "sectru"

$$
T_{\alpha} \in M \in G\left(S_{g_{11}}\right) \longmapsto T_{2} \in M \in G\left(S_{0}^{\prime}\right)
$$

This is not a section.
Some relation

$$
T_{\alpha_{1}} \cdots T_{\alpha_{k}}=1
$$

$$
m>T_{2_{1}}-T_{2_{k}}=T_{c}^{k}
$$

Fix No, he ask

$$
T_{a_{1}}^{N_{0}} \ldots T_{a_{n}}^{N_{0}}=T_{c}^{k} \quad \begin{aligned}
& \text { possible for } \\
& \prod_{j}
\end{aligned} \quad \text { a nonzero } k ?
$$

Equivalently, this is the same as whether en $\in H^{2}\left(P\left(N_{0}\right) ; Z\right)$ is trivial or not?

The natural "section" is an actual section.
Dahmani's Thy

$$
M C G\left(S_{g}\right) \quad M C G\left(S_{g^{\prime \prime}}\right) \nabla P(N)
$$

\exists an N_{0} s.t $N_{\text {any }}$ multiple of N_{0} we have $P(N)$ only has two keels of relations.
(1) Commutating relation $i(\alpha \beta)=0$
$\Rightarrow T_{2}^{N}, T_{\beta}^{N}$ comte
(2) conjugation relation

$$
T_{2}^{N} T_{\beta}^{N} T_{2}^{N}=T_{T_{2}^{N}(\beta)}^{N}
$$

This is very not the for M(GT\&).
This theorem provioles us with the section S that we want.

The "natural section" is an actual section.
I.
$\operatorname{en}(P(N))$ is trivial.

