Euler class in power subgroup

Lei Chen @ Caltech

MCGISZ can be generated by clements that's supported on smallest possible subsurfaces.

Connect with Tuler class $\mapsto 7 \rightarrow G \xrightarrow{\pi} G \rightarrow 1$ $en(\pi) \in H^{2}(\overline{G}; \mathbb{Z})$ $H_2(\bar{G}; \bar{Z}) \longrightarrow \mathbb{Z}$ a, b, -- agbg lifts to G $f: \pi(S_q) \to G$ $I = [a, b] \cdots [ag bg]$ en(f)= [a,,b]····Tag,bg] a; bi E Ĝ

 C_{or} : $en(\pi) = o \implies \pi$ has a section.

MCG	one marked point
$ \rightarrow \mathcal{N} \xrightarrow{\langle Tc \rangle} MCG($	$S_{g}^{1} MCG(S_{n}) 1$
Fact: g≥2, this cen a en	$tral extension is not produced \neq 0$
$\Rightarrow T_{c}^{k} = [a_{1} b_{1}] - $	- [anbn] a; EM(G-152)
	write ai as product of Intwists of nonseparating comes.
Thas a natural	
Ta e McG(Sgn) This is not a see	$\rightarrow T_2 \in MCG(S')$
Some relation Tai Tak =1	m> Tai - Tak = Tc

Fix No, we ask $T_{a_1}^{N_0} - T_{a_n}^{N_0} = T_c^K$ possible for a nonzero K? 1) Equivalently, this is the same as whether en EH (P(Nb);Z) is trivial or not! The natural section is an actual section. Dahmani's Thm MGG(Sg) MGG(Sg,) D P(N) I an No s.+ Nany multiple of No P(N) only has two kinds ve have of relations.

① Commutating relation $i(\partial \beta) = 0$ =) T2. Tp counte 2 conjugation relation This is very not the for MCGIS). This theorem provides us with the section S that we want. The "natural section" is an actual sector. en (PIN) is trivial.