The geometric average size of Selmer groups

Aaron Landesman

Stanford University

AMS Special Session on Stability in Topology, Arithmetic, and Representation Theory

The Ether

Ranks of elliptic curves

Theorem (Mordell-Weil)

Let E be an elliptic curve over a global field K (such as \mathbb{Q} or $\left.\mathbb{F}_{q}(t)\right)$. Then the group of K-rational points $E(K)$ is a finitely generated abelian group.

For E an elliptic curve over K, write $E(K) \simeq \mathbb{Z}^{r} \oplus T$ for T a finite group. Then, r is the rank of E.

Question

What is the average rank of an elliptic curve?

Motivation

Conjecture (Minimalist Conjecture)

The average rank of elliptic curves is $1 / 2$. Moreover,

- 50% of curves have rank 0 ,
- 50% have rank 1 ,
- 0\% have rank more than 1 .

Goal

Explain why this holds, in an appropriate large q limit.

Definition of Selmer group

Let $K=\mathbb{F}_{q}(t)$, let E an elliptic curve over K, let \mathscr{E}^{0} be the identity component of the Néron model for E over $\mathbb{P}_{\mathbb{F}_{q}}^{1}$ and let $\mathscr{E} 0[n]$ denote the n-torsion of \mathscr{E}.

Definition (non-standard)

The n-Selmer group of E is

$$
\operatorname{Sel}_{n}(E):=H^{1}\left(\mathbb{P}_{\mathbb{F}_{q}}^{1}, \mathscr{E}^{0}[n]\right)
$$

Selmer group and rank

Lemma

The \mathbb{Z} / n rank of $\operatorname{Sel}_{n}(E)=H^{1}\left(\mathbb{P}_{\mathbb{F}_{q}}^{1}, \mathscr{E}^{0}[n]\right)$ is an upper bound for the rank of E.

Proof.

From the definition of Néron model, the rank of $H^{0}\left(\mathbb{P}^{1}, \mathscr{E}^{0}\right)$ as an abelian group agrees with the rank of E.

Average size of Selmer groups

Say $E / \mathbb{F}_{q}(t)$ is in minimal Weierstrass form given by

$$
y^{2} z=x^{3}+A(s, t) x z^{2}+B(s, t) z^{3}
$$

(so char $\mathbb{F}_{q}>3$,) where there exists d so that $A(s, t)$ and $B(s, t)$ are homogeneous polynomials in $\mathbb{F}_{q}[s, t]$ of degrees $4 d$ and $6 d$. The height of E is

$$
h(E):=d
$$

Definition

The average size of the n-Selmer group of height up to d is

$$
\text { Average }^{\leq d}\left(\# \operatorname{Sel}_{n} / \mathbb{F}_{q}(t)\right):=\frac{\sum_{E / \mathbb{F}_{q}(t), h(E) \leq d} \# \operatorname{Sel}_{n}(E)}{\#\left\{E / \mathbb{F}_{q}(t): h(E) \leq d\right\}}
$$

where the sum runs over isomorphism classes of elliptic curves $E / \mathbb{F}_{q}(t)$, having $h(E) \leq d$.

Conjecture on the average size of Selmer groups

Conjecture (Bhargava-Shankar and Poonen-Rains)

When all elliptic curves are ordered by height,

$$
\lim _{q \rightarrow \infty} \lim _{d \rightarrow \infty} \text { Average }^{\leq d}\left(\# \operatorname{Sel}_{n} / \mathbb{F}_{q}(t)\right)=\sum_{s \mid n} s
$$

Remark

- An analogous statement over \mathbb{Q} (without a limit in q) was shown for $n=2,3,4,5$ by Bhargava and Shankar.
- The upper bound was shown for $n=3$ over $\mathbb{F}_{q}(t)$ by de Jong.
- This was shown for $n=2$ more generally over function fields by Ho, Le Hung, and Ngo.

Main result

We can try to approach the conjecture by reversing the limits.
Conjecture:

$$
\lim _{q \rightarrow \infty} \lim _{d \rightarrow \infty} \frac{\sum_{E / \mathbb{F}_{q}, h(E) \leq d} \# \operatorname{Sel}_{n}(E)}{\#\{E: h(E) \leq d\}}=\sum_{s \mid n} s
$$

Limits reversed:

$$
\frac{\sum_{E / \mathbb{F}_{q}, h(E) \leq d} \# \operatorname{Sel}_{n}(E)}{\#\{E: h(E) \leq d\}}=\sum_{s \mid n} s
$$

Theorem (L.)

For $n \geq 1$ and $d \geq 2$,

$$
\lim _{\substack{q \rightarrow \infty \\ d(q, 2 n)=1}} \text { Average }^{\leq d}\left(\# \operatorname{Sel}_{n} / \mathbb{F}_{q}(t)\right)=\sum_{s \mid n} s .
$$

The Distribution of Selmer groups

Theorem (L.)

For $n \geq 1$ and $d \geq 2$,

$$
\lim _{\substack{q \rightarrow \infty \\ \operatorname{cd}(q, 2 n)=1}} \text { Average }^{\leq d}\left(\# \operatorname{Sel}_{n} / \mathbb{F}_{q}(t)\right)=\sum_{s \mid n} s .
$$

Remark

More generally, Bhargava, Kane, Lenstra, Poonen, and Rains have conjectures predicting the full distribution. With Tony Feng and Eric Rains, we have proven their predictions in the large q limit as above.

In particular, we recover the minimalist conjecture (that the average rank of elliptic curves is $1 / 2$) in the large q limit.

Proof overview

Theorem (L)

For $n \geq 1$ and $d \geq 2$,

$$
\lim _{\substack{(\rightarrow \infty \\ \operatorname{gcd}(q, 2 n)=1}} \operatorname{Average}^{\leq d}\left(\# \operatorname{Sel}_{n} / \mathbb{F}_{q}(t)\right)=\sum_{s \mid n} s .
$$

Proof overview:
(1) Construct a space $\operatorname{Sel}_{n, k}^{d}$ parameterizing n-Selmer elements of elliptic curves of height d over k.
(2) By Lang-Weil, the average size of the n-Selmer group is the number of components of $\mathrm{Sel}_{n, k}^{d}$
(3) Compute the number of components of $\mathrm{Sel}_{n, k}^{d}$ by viewing it as a finite cover of the moduli of height d elliptic curves, and computing the monodromy.

Proof sketch

For k a finite field, construct a space $\operatorname{Sel}_{n, k}^{d}$ parameterizing pairs (E, X), where E is an elliptic curve over $k(t)$ and X is an n-Selmer element of E. Let \mathscr{W}_{k}^{d} denote a parameter space for Weierstrass equations of elliptic curves $E / k(t)$ of height d.

The total number of Selmer elements over varying elliptic curves over $k(t)$ is $\mathrm{Sel}_{n, k}^{d}(k)$, so we are reduced to computing

$$
\frac{\# \operatorname{Sel}_{n, k}^{d}\left(k^{\prime}\right)}{\# \mathscr{W}_{k}^{d}\left(k^{\prime}\right)}
$$

for large finite extensions k^{\prime} of k.

Proof sketch, continued

We want to compute

$$
\frac{\# \operatorname{Sel}_{n, k}^{d}\left(k^{\prime}\right)}{\# \mathscr{W}_{k}^{d}\left(k^{\prime}\right)}
$$

Theorem (Lang-Weil)

For X a finite type space over \mathbb{F}_{p} with r geometrically irreducible components, $\lim _{q \rightarrow \infty} X\left(\mathbb{F}_{q}\right)=r q^{\operatorname{dim} X}+O\left(q^{\operatorname{dim} X-1 / 2}\right)$.

So,

$$
\begin{aligned}
\frac{\# \operatorname{Sel}_{n, k}^{d}\left(k^{\prime}\right)}{\# \mathscr{W}_{k}^{d}\left(k^{\prime}\right)} & =\frac{\# \text { components of } \operatorname{Sel}_{n, k}^{d}}{\# \text { components of } \mathscr{W}_{k}^{d}} \\
& =\frac{\# \text { components of } \operatorname{Sel}_{n, k}^{d}}{1} \\
& =\text { \#components of } \operatorname{Sel}_{n, k}^{d} .
\end{aligned}
$$

Proof sketch, continued

To complete the proof, we want to show

$$
\text { \#components of } \operatorname{Sel}_{n, k}^{d}=\sum_{s \mid n} s
$$

Let $\mathscr{W}_{k}^{\circ} \subset \mathscr{W}_{k}^{d}$ be the dense open parameterizing smooth Weierstrass models. Set up the fiber square

$$
\begin{aligned}
& \mathrm{Sel}^{\mathrm{od}, k} \\
& \stackrel{\|^{\circ}}{\pi^{\circ}} \mathrm{Sel}_{n, k}^{d} \\
& \underset{W_{k}^{d}}{\circ d} \downarrow_{k}^{\pi}
\end{aligned}
$$

The resulting map π° is finite étale. Hence, we obtain a monodromy representation

$$
\rho_{k}^{d}(n): \pi_{1}^{e \mathrm{e}}\left(\mathscr{W}_{k}^{\circ d}\right) \rightarrow \mathrm{GL}\left(V_{n, k}^{d}\right) .
$$

Proof sketch, continued

Recall we are trying to compute \#components of $\operatorname{Sel}^{\circ}{ }_{n, k}$, which is a finite étale cover of $\mathscr{W}_{k}^{\circ d}$ with monodromy representation

$$
\rho_{k}^{d}(n): \pi_{1}^{\text {et }}\left(\mathscr{W}_{k}^{\circ d}\right) \rightarrow \mathrm{GL}\left(V_{n, k}^{d}\right) .
$$

Therefore, the number of components is the number of orbits of $\operatorname{im} \rho_{k}^{d}(n)$.

Proof sketch, continued

Recall we are trying to compute \#components of Sel $_{n, k}^{\circ d}$, which is a finite étale cover of $\mathscr{W}_{k}^{\circ}{ }_{k}$ with monodromy representation

$$
\rho_{k}^{d}(n): \pi_{1}^{e ́ t}\left(\mathscr{W}_{k}^{\circ d}\right) \rightarrow \mathrm{GL}\left(V_{n, k}^{d}\right) .
$$

Therefore, the number of components is the number of orbits of $\operatorname{im} \rho_{k}^{d}(n)$.

Theorem

For n prime, there is a quadratic form q_{n}^{d} on $V_{n, k}^{d}$ so that, up to index 2, $\operatorname{im} \rho_{k}^{d}(n)=O\left(q_{n}^{d}\right)$.

For n is prime, there are $n+1$ orbits of $O\left(q_{n}^{d}\right)$, corresponding to the n level sets of q_{n}^{d}, along with the 0 vector. We find that for n prime,

$$
\text { \#components of } \operatorname{Sel}_{n, k}^{\circ d}=\# \text { orbits of } O\left(q_{n}^{d}\right)=n+1=\sum_{s \mid n} s
$$

