The geometric average size of Selmer groups

Aaron Landesman

Stanford University

AMS Special Session on Stability in Topology, Arithmetic, and Representation Theory The Ether

Theorem (Mordell-Weil)

Let E be an elliptic curve over a global field K (such as \mathbb{Q} or $\mathbb{F}_q(t)$). Then the group of K-rational points E(K) is a finitely generated abelian group.

For *E* an elliptic curve over *K*, write $E(K) \simeq \mathbb{Z}^r \oplus T$ for *T* a finite group. Then, *r* is the **rank** of *E*.

Question

What is the average rank of an elliptic curve?

Conjecture (Minimalist Conjecture)

The average rank of elliptic curves is 1/2. Moreover,

- 50% of curves have rank 0,
- 50% have rank 1,
- 0% have rank more than 1.

Goal

Explain why this holds, in an appropriate large q limit.

Let $K = \mathbb{F}_q(t)$, let E an elliptic curve over K, let \mathscr{E}^0 be the identity component of the Néron model for E over $\mathbb{P}^1_{\mathbb{F}_q}$ and let $\mathscr{E}^0[n]$ denote the *n*-torsion of \mathscr{E} .

Definition (non-standard)

The n-Selmer group of E is

$$\mathsf{Sel}_n(E) := H^1(\mathbb{P}^1_{\mathbb{F}_n}, \mathscr{E}^0[n])$$

Selmer group and rank

Lemma

The \mathbb{Z}/n rank of $Sel_n(E) = H^1(\mathbb{P}^1_{\mathbb{F}_q}, \mathscr{E}^0[n])$ is an upper bound for the rank of E.

Proof.

From the definition of Néron model, the rank of $H^0(\mathbb{P}^1, \mathscr{E}^0)$ as an abelian group agrees with the rank of E.

Average size of Selmer groups

Say $E/\mathbb{F}_q(t)$ is in minimal Weierstrass form given by

$$y^{2}z = x^{3} + A(s, t)xz^{2} + B(s, t)z^{3}$$

(so char $\mathbb{F}_q > 3$,) where there exists d so that A(s, t) and B(s, t) are homogeneous polynomials in $\mathbb{F}_q[s, t]$ of degrees 4d and 6d. The **height** of E is

$$h(E):=d.$$

Definition

The average size of the n-Selmer group of height up to d is

$$\mathsf{Average}^{\leq d}(\#\operatorname{Sel}_n/\mathbb{F}_q(t)) := \frac{\sum_{E/\mathbb{F}_q(t), h(E) \leq d} \#\operatorname{Sel}_n(E)}{\#\{E/\mathbb{F}_q(t) \colon h(E) \leq d\}},$$

where the sum runs over isomorphism classes of elliptic curves $E/\mathbb{F}_q(t)$, having $h(E) \leq d$.

Conjecture (Bhargava–Shankar and Poonen–Rains)

When all elliptic curves are ordered by height,

$$\lim_{q \to \infty} \lim_{d \to \infty} \operatorname{Average}^{\leq d}(\#\operatorname{Sel}_n/\mathbb{F}_q(t)) = \sum_{s|n} s.$$

Remark

- An analogous statement over Q (without a limit in q) was shown for n = 2, 3, 4, 5 by Bhargava and Shankar.
- The upper bound was shown for n = 3 over $\mathbb{F}_q(t)$ by de Jong.
- This was shown for *n* = 2 more generally over function fields by Ho, Le Hung, and Ngo.

Main result

(

We can try to approach the conjecture by reversing the limits.

Conjecture:
$$\lim_{q \to \infty} \lim_{d \to \infty} \frac{\sum_{E/\mathbb{F}_q, h(E) \le d} \# \operatorname{Sel}_n(E)}{\# \{E : h(E) \le d\}} = \sum_{s|n} s.$$

Limits reversed:

$$\frac{\sum_{E/\mathbb{F}_q,h(E)\leq d} \#\operatorname{Sel}_n(E)}{\#\{E:h(E)\leq d\}} = \sum_{s|n} s.$$

Theorem (L.)

For $n \ge 1$ and $d \ge 2$,

$$\lim_{\substack{q\to\infty\\\gcd(q,2n)=1}}\operatorname{Average}^{\leq d}(\#\operatorname{Sel}_n/\mathbb{F}_q(t))=\sum_{s\mid n}s.$$

The Distribution of Selmer groups

Theorem (L.)

For $n \ge 1$ and $d \ge 2$,

$$\lim_{\substack{q\to\infty\\\gcd(q,2n)=1}}\operatorname{Average}^{\leq d}(\#\operatorname{Sel}_n/\mathbb{F}_q(t))=\sum_{s\mid n}s.$$

Remark

More generally, Bhargava, Kane, Lenstra, Poonen, and Rains have conjectures predicting the full distribution. With Tony Feng and Eric Rains, we have proven their predictions in the large q limit as above.

In particular, we recover the minimalist conjecture (that the average rank of elliptic curves is 1/2) in the large q limit.

Proof overview

Theorem (L)

For $n \geq 1$ and $d \geq 2$,

$$\lim_{\substack{q\to\infty\\ \gcd(q,2n)=1}}\operatorname{Average}^{\leq d}(\#\operatorname{Sel}_n/\mathbb{F}_q(t))=\sum_{s\mid n}s.$$

Proof overview:

- (1) Construct a space $\operatorname{Sel}_{n,k}^d$ parameterizing *n*-Selmer elements of elliptic curves of height *d* over *k*.
- (2) By Lang-Weil, the average size of the *n*-Selmer group is the number of components of $\operatorname{Sel}_{n,k}^d$
- (3) Compute the number of components of $\operatorname{Sel}_{n,k}^d$ by viewing it as a finite cover of the moduli of height *d* elliptic curves, and computing the monodromy.

Proof sketch

For k a finite field, construct a space $\operatorname{Sel}_{n,k}^d$ parameterizing pairs (E, X), where E is an elliptic curve over k(t) and X is an *n*-Selmer element of E. Let \mathscr{W}_k^d denote a parameter space for Weierstrass equations of elliptic curves E/k(t) of height d.

The total number of Selmer elements over varying elliptic curves over k(t) is $\operatorname{Sel}_{n,k}^{d}(k)$, so we are reduced to computing

$$\frac{\#\operatorname{Sel}_{n,k}^{d}(k')}{\#\mathscr{W}_{k}^{d}(k')}$$

for large finite extensions k' of k.

We want to compute

 $\frac{\#\operatorname{Sel}_{n,k}^d(k')}{\#\mathscr{W}_{k}^d(k')}.$

Theorem (Lang-Weil)

For X a finite type space over \mathbb{F}_p with r geometrically irreducible components, $\lim_{q\to\infty} X(\mathbb{F}_q) = rq^{\dim X} + O(q^{\dim X-1/2})$.

So,

$$\frac{\#\operatorname{Sel}_{n,k}^{d}(k')}{\#\mathscr{W}_{k}^{d}(k')} = \frac{\#\operatorname{components of Sel}_{n,k}^{d}}{\#\operatorname{components of }\mathscr{W}_{k}^{d}} \\ = \frac{\#\operatorname{components of Sel}_{n,k}^{d}}{1} \\ = \#\operatorname{components of Sel}_{n,k}^{d}.$$

To complete the proof, we want to show

$$\#$$
components of $\operatorname{Sel}^d_{n,k} = \sum_{s|n} s.$

Let $\mathscr{W}_k^{\circ d} \subset \mathscr{W}_k^d$ be the dense open parameterizing smooth Weierstrass models. Set up the fiber square

The resulting map π° is finite étale. Hence, we obtain a monodromy representation

$$\rho_k^d(n): \pi_1^{\text{\'et}}(\mathscr{W}^{\circ d}_k) \to \mathsf{GL}(V_{n,k}^d).$$

Recall we are trying to compute #components of Sel^{od}_{n,k}, which is a finite étale cover of $\mathscr{W}_{k}^{\circ d}$ with monodromy representation

$$\rho_k^d(n): \pi_1^{\text{\'et}}(\mathscr{W}_k^{\circ d}) \to \mathsf{GL}(V_{n,k}^d).$$

Therefore, the number of components is the number of orbits of im $\rho_k^d(n)$.

Recall we are trying to compute #components of Sel^{od}_{n,k}, which is a finite étale cover of $\mathscr{W}^{\circ d}_{k}$ with monodromy representation

$$\rho_k^d(\mathbf{n}): \pi_1^{\text{\'et}}(\mathscr{W}^{\circ d}_k) \to \mathsf{GL}(V^d_{\mathbf{n},k}).$$

Therefore, the number of components is the number of orbits of im $\rho_k^d(n)$.

Theorem

For n prime, there is a quadratic form q_n^d on $V_{n,k}^d$ so that, up to index 2, im $\rho_k^d(n) = O(q_n^d)$.

For *n* is prime, there are n + 1 orbits of $O(q_n^d)$, corresponding to the *n* level sets of q_n^d , along with the 0 vector. We find that for *n* prime,

#components of Sel^{od}_{n,k} = #orbits of
$$O(q_n^d) = n + 1 = \sum_{s|n} s$$
.