Two tales from equivariant commutative algebra

Andrew Snowden

April 28, 2020

University of Michigan

$\S1.$ Background

Suppose that a group G acts on a ring R.

Equivariant commutative algebra studies the commutative algebra of R taking into account the G action.

Motivation in representation stability:

- $G = \mathfrak{S}_{\infty}$ acting on $R = \mathbf{C}[x_i]_{i \geq 1}$.
- G = GL_∞ acting on Sym(V), where V is a polynomial representation (twisted commutative algberas).

There is a long list of important concepts in commutative algebra: noetherian ring, prime ideal, radical of an ideal, etc.

How to import concepts to the equivariant world

- 1. Write down the usual definition using ideals (no elements!).
- 2. Change "ideal" to "G-ideal" (=G-stable ideal).

Fact

An ideal \mathfrak{p} of R is prime if and only $\mathfrak{ab} \subset \mathfrak{p}$ implies $\mathfrak{a} \subset \mathfrak{p}$ or $\mathfrak{b} \subset \mathfrak{p}$, for ideals \mathfrak{a} and \mathfrak{b} .

Definition (*G*-prime)

A G-ideal \mathfrak{p} is G-prime if $\mathfrak{ab} \subset \mathfrak{p}$ implies $\mathfrak{a} \subset \mathfrak{p}$ or $\mathfrak{b} \subset \mathfrak{p}$, for G-ideals \mathfrak{a} and \mathfrak{b} .

Proposition (Elemental criterion for *G***-primality)**

Let \mathfrak{p} be a *G*-ideal. Then \mathfrak{p} is *G*-prime if and only if $f \cdot (\sigma g) \in \mathfrak{p}$ for all $\sigma \in G$ implies $f \in \mathfrak{p}$ or $g \in \mathfrak{p}$.

Prime ideals: example 1

Let $R = \mathbf{C}[x, y]$ and let $G = \mathfrak{S}_2$ act on R by transposing the variables.

Proposition

The ideal $\mathfrak{p} = (xy)$ is *G*-prime.

Proof

- Suppose $f \cdot (\sigma g) \in \mathfrak{p}$ for all σ , but $f \notin \mathfrak{p}$.
- Assume (WLOG) f is not identically zero on y = 0.
- Since f(x, y)g(x, y) and f(x, y)g(y, x) both vanish on y = 0, it follows that g(x, y) and g(y, x) both vanish on y = 0.
- Thus g vanishes on x = 0 and y = 0, and so $g \in \mathfrak{p}$.

Suppose for the moment that the group G is finite.

Proposition

- If p is a G-prime of R then p = ∩_{σ∈G} σq for some ordinary prime ideal q.
- Have bijection $\{G\text{-primes}\} \leftrightarrow \{G\text{-orbits of primes}\}$.

Corollary

Every G-prime is radical.

Prime ideals: example 2

Let $R = \mathbf{C}[x_i]_{i \ge 1}$ and let $G = \mathfrak{S}_{\infty}$ act by permuting variables.

Proposition

The ideal
$$\mathfrak{p} = (x_1^2, x_2^2, \ldots)$$
 is G-prime.

Proof

- Suppose $f \cdot (\sigma g) \in \mathfrak{p}$ for all σ .
- Pick σ so that f and σg have no variable in common.
- Every monomial in f · (σg) has a square. Since f and σg have no common variable, the same must be true for either f or g.
- Thus $f \in \mathfrak{p}$ or $g \in \mathfrak{p}$.

Fact

Let \mathfrak{a} be an ideal of R. The radical of \mathfrak{a} is the sum of all ideals \mathfrak{c} such that $\mathfrak{c}^n \subset \mathfrak{a}$ for some n.

Definition (*G*-radical)

Let \mathfrak{a} be a *G*-ideal. The *G*-radical of \mathfrak{a} , denoted $\operatorname{rad}_{G}(\mathfrak{a})$, is the sum of all *G*-ideals \mathfrak{c} such that $\mathfrak{c}^{n} \subset \mathfrak{a}$ for some *n*.

Proposition (Elemental formulation of *G***-radical)**

Let a be a G-ideal. Then $x \in \operatorname{rad}_{G}(\mathfrak{a})$ if and only if there exists $n \geq 1$ such that $(\sigma_{1}x) \cdots (\sigma_{n}x) \in \mathfrak{a}$ for all $\sigma_{1}, \ldots, \sigma_{n} \in G$.

Proposition

Let a be a G-ideal of R. Then $rad_G(a)$ is the intersection of all G-primes containing a.

Proof

The usual proof applies with minimal changes.

Definition

The *G*-spectrum of *R*, denoted $\text{Spec}_G(R)$, is the set of all *G*-primes of *R*, equipped with the usual Zariski topology.

Remark

The closed subsets of $\text{Spec}_G(R)$ are in 1–1 correspondence with the *G*-radical ideals of *R*, by the previous slide.

The main problem

Describe $\text{Spec}_G(R)$ in cases of interest.

\S **2. Symmetric ideals**

Let
$$R = \mathbf{C}[x_i]_{i \geq 1}$$
 and $G = \mathfrak{S}_{\infty}$.

Goal of this section

Classify the *G*-primes of *R*.

Everything in this part is joint work with Rohit Nagpal. The papers should appear in the near future.

It is not hard to see that if \mathfrak{p} is *G*-prime then $rad(\mathfrak{p})$ is also a *G*-prime. Note that here we are taking the ordinary radical.

We can therefore consider the map

$$\{G\text{-primes}\} \xrightarrow{\mathsf{rad}} \{\mathsf{radical}\ G\text{-primes}\}.$$

The general strategy

First classify the radical *G*-primes. Then analyze the fibers of the above map.

Let $\mathfrak{X} = \operatorname{Spec}(R)$, which we identify with \mathbb{C}^{∞} , the set of all sequences (a_1, a_2, \ldots) of complex numbers.

The construction $\mathfrak{a} \mapsto V(\mathfrak{a})$ provides a bijection between ideals of R and closed subsets of \mathfrak{X} .

Observation

This induces a bijection between radical *G*-primes of *R* and *G*-irreducible closed subsets of \mathfrak{X} .

(Note: *G*-irreducible means the set cannot be written as a union of two proper closed *G*-stable subsets.)

It therefore suffices to study G-irreducible closed subsets of \mathfrak{X} .

There are three things one can do to build G-stable closed loci:

- Bound the number of distinct values in the sequence (a_i) .
- Bound the multiplicities of these values.
- Impose algebraic relations between the values.

We'll look at examples to illustrate what these points mean, and then state a precise theorem.

- Let Z ⊂ X be the set of all sequences (a_i) that assume at most two distinct values, i.e., such that {a_i | i ≥ 1} ⊂ C has cardinality at most two.
- An element of Z looks something like (a, b, b, a, a, b, ...) with a, b ∈ C.
- The set Z is Zariski closed: it is the common vanishing locus of the discriminants Δ_{i,j,k} = (x_i - x_j)(x_i - x_k)(x_j - x_k).

- Let Z' ⊂ Z consist of those two-valued sequences where one value occurs at most one time.
- An element of Z' looks something like (a, b, a, a, a, a, ...), where there is one b and the remaining entries are a.
- The set Z' is Zariski closed: it is cut out (inside of Z) by the equations $(x_i x_j)(x_k x_\ell) = 0$ (all indices distinct).

- Fix some polynomial $f \in \mathbf{C}[x, y]$.
- Let Z'' ⊂ Z' consist of those sequences (a_i) such that f(a, b) = 0, where a is the value occurring infinitely often and b is the value occurring at most once.
- The set Z'' is Zariski closed: it is cut out (inside of Z') by the equations (x_i x_j)(x_i x_k)f(x_j, x_i) = 0 (all indices distinct).

The general construction

- Let λ = (λ₁,..., λ_r) be a non-increasing sequence with 1 ≤ λ_i ≤ ∞ and λ₁ = ∞ (a "partition of infinity").
- Define X_λ to be the set of sequences that have exactly r values with multiplicities given by λ (i.e., the 3rd most common value occurs exactly λ₃ times).
- Let H ⊂ 𝔅_r be the stabilizer of λ. We have a well-defined map 𝔅_λ → C^r/H taking a sequence to the tuple of its values ordered by multiplicity.
- Given an irreducible closed subset W of C^r/H, let X_λ(W) be its inverse image in X_λ.

Theorem (Nagpal-Snowden)

We have a bijection

 $\{\text{pairs } (\lambda, W)\} \rightarrow \{\text{proper } G\text{-irreducible closed subsets of } \mathfrak{X}\}$ $(\lambda, W) \mapsto \text{closure of } \mathfrak{X}_{\lambda}(W).$ The previous theorem gives a complete description of the target of the map

$$\{G\operatorname{-primes}\} \xrightarrow{\operatorname{rad}} \{\operatorname{radical} G\operatorname{-primes}\}.$$

We must now understand the fibers of this map.

Let q be the ideal of R generated by $x_i - x_j$ for $i, j \ge 1$, which is a radical G-prime.

Via a localization argument, we reduce the problem of analyzing the general fibers to analyzing the fiber above q.

Let q_n be the ideal of R generated by $(x_i - x_j)^n$ for $i, j \ge 1$. Clearly, $rad(q_n) = q$ for all n.

Theorem (Nagpal–Snowden)

- The ideal q_n is G-prime if and only if n is odd.
- Any G-prime with radical q has the form q_n with n odd.

The key result

We now state an elementary result that is a key piece in our proof of the previous theorem.

Let
$$A = \mathbf{C}[x_1, \dots, x_N]$$
 and $\mathfrak{a} = \langle (x_i - x_j)^{2n-1} \rangle_{1 \le i,j \le N}$.

Let
$$B = A[t]$$
 and $\mathfrak{b} = \langle (x_i - t)^n \rangle_{1 \le i \le N}$.

Proposition

The contraction of \mathfrak{b} to A is \mathfrak{a} .

The containment $\mathfrak{a} \subset \mathfrak{b}^c$ is clear: indeed,

$$(x_i - x_j)^{2n-1} = ((x_i - t) - (x_j - t))^{2n-1} = \sum_{k=0}^{2n-1} \binom{2n-1}{k} (x_i - t)^k (x_j - t)^{2n-1-k}$$

and every term on the right has a *n*th power in it. Showing that $a = b^c$ is rather involved.

- Rohit and I have many additional results, such as:
 - description of $\text{Spec}_G(R)$ as a topological space
 - primary decomposition for G-ideals
 - results on the structure of *G*-equivariant modules.
- Some of these results work in positive characteristic and some do not.
- It would be interesting to generalize these results to the ring
 C[x_{i,j}]_{1≤i≤r,1≤j} with r sets of infinite variables. In joint work
 with Rohit and Vignesh Jagathese we have described the
 radical G-primes.

$\S{\textbf{3}}{\textbf{.}}$ Twisted commutative algebras

Work over **C**. A *polynomial representation* of $G = \mathbf{GL}_{\infty}$ is one that decomposes as a sum of Schur functors.

A *twisted commutative algebra* (tca) is a C-algebra equipped with an action of G under which it forms a polynomial representation.

Goal of this section

Understand G-primes in tca's.

Example 1

Let
$$A = \text{Sym}(\mathbf{C}^r \otimes \mathbf{C}^\infty) = \mathbf{C}[x_{i,j}]_{1 \le i \le r, 1 \le j}$$
.

Proposition (Sam–Snowden)

The G-primes of A are exactly the G-stable prime ideals of A.

Proof

See [SS, §9.3].

Remark

Every tca generated in degree 1 is a quotient of A (for some r), and so the proposition holds for these tca's too. More generally, it holds for bounded tca's.

Example 2

Let $A = \bigoplus_{n \ge 0} \bigwedge^{2n} (\mathbf{C}^{\infty})$. Every positive degree element of A is nilpotent. Thus Spec(A) is a single point. However:

Proposition

The ideal (0) is G-prime, that is, A is a G-domain.

Proof

- Each graded piece of A is an irreducible representation.
- Thus the non-zero *G*-ideals of *A* are those of the form $\mathfrak{a}_r = \bigoplus_{n \ge r} \bigwedge^{2n} (\mathbf{C}^{\infty}).$
- Since $a_r a_s = a_{r+s}$, the result follows.

We thus see that $\operatorname{Spec}_G(A) = \{(0), \mathfrak{a}_1\}.$

Let $A = \text{Sym}(\text{Sym}^2(\mathbf{C}^\infty)) = \mathbf{C}[x_{i,j}]_{1 \le i \le j \le \infty}$.

We have the well-known decomposition $A = \bigoplus_{\lambda \text{ even}} S_{\lambda}(C^{\infty})$, where "even" means all parts are even.

Let $p_{r,s}$ be the ideal generated by the $(2s + 2) \times (r + 1)$ rectangle. It turns out that these are exactly the non-zero *G*-primes of *A*, and that $p_{r,s}$ is radical if and only if s = 0.

We find $\text{Spec}_G(A) = \mathbb{N}^2 \cup \{\infty\}$ with the order topology.

Before moving on to the general case, we should try to understand Example 3 more conceptually. This is best done geometrically.

 $\operatorname{Spec}(A)$ is the space of symmetric bilinear forms on \mathbf{C}^{∞} .

The ideals $\mathfrak{p}_{r,0}$ are well-known classical objects, called determinantal ideals. $V(\mathfrak{p}_{r,0})$ is the locus of forms of rank $\leq r$.

Key insight (Sam–Snowden)

This picture suggests that $p_{r,s}$ should be related to ranks of super bilinear forms.

Interlude: super mathematics

- A super vector space is a Z/2Z-graded vector space:
 V = V₀ ⊕ V₁[1]. The [1] indicates that V₁ is in odd degree.
- Notation: $\mathbf{C}^{p|q} = \mathbf{C}^{p} \oplus \mathbf{C}^{q}[1].$
- Tensor products are formed as usual.
- Sign rule: the symmetry isomorphism V ⊗ W → W ⊗ V is given by x ⊗ y ↦ (±1) ⋅ y ⊗ x, where we use −1 if both x and y have odd degree, and +1 otherwise.
- The sign rule is entirely responsible for the interesting aspects of the theory.
- Much of algebra can be generalized to superalgebra: for example, there are supergroups, superschemes, and so on.

Interlude: super mathematics (continued)

- A symmetric bilinear form on a super vector space V is a map ω: Sym²(V) → C.
- We have

$$\operatorname{Sym}^{2}(V) = \operatorname{Sym}^{2}(V_{0}) \oplus \operatorname{Sym}^{2}(V_{1}[1]) \oplus (V_{0} \otimes V_{1})[1]$$

- $(V_0 \otimes V_1)[1]$ must map to 0 (degree reasons).
- Sign rule: $\text{Sym}^2(V_1[1]) = \bigwedge^2(V_1)$.
- Thus ω corresponds to a pair (ω_0, ω_1) where
 - ω_0 is a symmetric bilinear form on V_0
 - ω_1 is an alternating bilinear form on V_1 .

The super scheme Spec($A(\mathbf{C}^{\infty|\infty})$) is the space of symmetric bilinear forms on $\mathbf{C}^{\infty|\infty}$.

Note: the reduced subscheme is the ordinary scheme $Spec(A) \times Spec(B)$ where $B = Sym(\bigwedge^2(\mathbb{C}^{\infty}))$.

 $V(\mathfrak{p}_{r,s}(\mathbf{C}^{\infty|\infty}))$ is exactly the locus of forms ω where ω_0 has rank $\leq r$ and ω_1 has rank $\leq 2s$.

Thus the geometry of the super scheme can "see" the non-radical *G*-primes!

The main theorem

Theorem (Snowden, [Sn])

Let A be a tca and let \mathfrak{a} and \mathfrak{b} be G-ideals.

- $\operatorname{rad}_G(\mathfrak{a}) = \operatorname{rad}_G(\mathfrak{b}) \iff V(\mathfrak{a}(\mathbf{C}^{\infty|\infty})) = V(\mathfrak{b}(\mathbf{C}^{\infty|\infty})).$
- $\operatorname{rad}_{G}(\mathfrak{a})$ is G-prime $\iff V(\mathfrak{a}(\mathbf{C}^{\infty|\infty}))$ is irreducible.

Remark

Compare the theorem with the statements:

•
$$rad(\mathfrak{a}) = rad(\mathfrak{b}) \iff V(\mathfrak{a}) = V(\mathfrak{b}).$$

• $rad(\mathfrak{a})$ is prime $\iff V(\mathfrak{a})$ is irreducible.

Upshot: Spec($A(\mathbf{C}^{\infty|\infty})$) is rich enough to "see" Spec_{*G*}(*A*).

- Consequence of main theorem + Draisma's theorem: if A is a finitely generated tca then Spec_G(A) is a noetherian topological space.
- The main theorem is reminiscent of a theorem of Deligne, which asserts that, under certain natural conditions, a tensor category admits a fiber functor to super vector spaces.
- All of this breaks in positive characteristic. It would be very interesting to extend the results there!

- [Sn] A. Snowden. The spectrum of a twisted commutative algebra. arXiv:2002.01152
- [SS] S. Sam, A. Snowden. Introduction to twisted commutative algebras. arXiv:1209.5122