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Abstract. We derive and study necessary and sufficient conditions for an
S1-bundle to admit an invariant metric of positive or nonnegative sectional
curvature. In case the total space has an invariant metric of nonnegative
curvature and the base space is odd dimensional, we prove that the total
space contains a flat totally geodesic immersed cylinder. We provide several
examples, including a connection metric of nonnegative curvature on the trivial
bundle S1 × S3 that is not a product metric.

1. Introduction

Let N denote the total space of a principal S1-bundle over a compact manifold
B. A metric on N will be called an invariant or a warped connection metric if
the principal S1-action is by isometries. If in addition all fibers have the same
length, then the metric is called a connection metric. If B admits a metric of
nonnegative sectional curvature, then it is not known except in special cases whether
N must admit an invariant metric or a connection metric of nonnegative sectional
curvature. In contrast, the following results are known. If B admits a metric
of almost nonnegative curvature, then N admits a connection metric of almost
nonnegative curvature [5]. If B has a metric of positive Ricci curvature and π1(N)
is finite, then N has an invariant metric with positive Ricci curvature for which the
projection N → B becomes a Riemannian submersion ([6], [8]). Only the trivial
principal S1-bundle over T2 admits an invariant metric of nonnegative sectional
curvature (this follows from [13]).

If B is simply-connected with nonnegative sectional curvature, it is possible that
all principal S1-bundles over B admit invariant metrics of nonnegative curvature.
If N admits an invariant metric with nonnegative sectional curvature, then so does
the associated R2-bundle (N ×R2)/S1, which relates the circle bundle question to
the rank 2 case of Cheeger and Gromoll’s converse Soul Theorem problem.

We now exhibit some of the known examples. All principal S1-bundles over
CPn#−CPn admit nonnegative curvature by [17]. In [1] Aloff and Wallach found
positively curved connection metrics on principal S1-bundles over the flag manifold
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SU(3)/T2. In [3] (see also [4]) Eschenburg found positively curved invariant metrics
on S1-bundles over the twisted flag manifold SU(3)//T2. It is not known whether
these Eschenburg spaces also admit connection metrics of positive (or even nonneg-
ative) curvature, so allowing the fiber-lengths to vary may help realize curvature
properties.

The goal of this paper is to derive and study necessary and sufficient conditions
under which N admits an invariant metric with nonnegative or positive sectional
curvature. We treat nonoriented circle bundles as well. Our conditions general-
ize Yang’s conditions in [17] for N to admit a connection metric of nonnegative
curvature.

It is a pleasure to thank J.-H. Eschenburg for illuminating discussions and Wolf-
gang Ziller for helpful comments. We also wish to thank Burt Totaro for bringing
the reference [9] to our attention and the referee for valuable remarks.

2. Preliminaries

In order to include nonoriented S1-bundles, we work in the following generality:

Definition 2.1. A connection metric on a circle bundle S1 ↪→ N
π→ B is a metric

on N for which π is a Riemannian submersion with totally geodesic fibers. A warped
connection metric is one obtained from a connection metric by rescaling the fiber
metric by a smooth function f : B → R+.

For oriented (equivalently, principal) S1-bundles, Definition 2.1 agrees with the
definition in the Introduction. To see this, first note that if π is a Riemannian
submersion with totally geodesic fibers, then the S1-action on N which rotates the
fibers at a common speed sends unit-length vertical (resp. horizontal) vectors to
unit-length vertical (resp. horizontal) vectors. The action is therefore by isometries,
and remains so after the fibers are rescaled by any smooth function f : B → R+.
Conversely, if the principal S1 action on N is by isometries, then there is an induced
metric on B = N/S1 for which π : N → B becomes a Riemannian submersion. If
the fibers of this submersion are rescalled to a common length, they become totally
geodesic.

The horizontal distribution of a warped connection metric is the kernel of a
principal connection form, θ, on the bundle. The curvature form Ω = dθ is the
pull-back Ω = π∗(ω) of a closed two-form ω on B. The cohomology class of ω
satisfies [ω] = 2πe, where e is the real Euler class of the bundle.

In fact, a warped connection metric, (N, gN ), on an oriented circle bundle S1 ↪→
N

π→ B is determined by choosing (i) a metric gB on B, (ii) a principal connection
θ on the bundle, and (iii) a smooth function f : B → R+. Then there is a unique
metric gN on N such that π : (N, gN ) → (B, gB) is a Riemannian submersion whose
horizontal space equals the kernel of θ, such that the circumference of each fiber
π−1(p) equals 2π · f(p), and the principal S1 action on (N, gN ) is by isometries. In
this way we define the warped connection metric determined by {gB, θ, f}. When
f is a constant function, gN is a connection metric.

The warped connection metric determined by {gB, θ, f} makes sense for non-
orientable bundles as well, as long as θ is interpreted as a connection in the asso-
ciated R2 bundle compatible with a fixed Euclidean structure. Then θ induces a
distribution, H, on N , thought of as the bundle of unit-length vectors. Further-
more, there is a unique metric, gN , on N such that π : (N, gN ) → (B, gB) is a
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Riemannian submersion with horizontal distribution H, such that the circumfer-
ence of each fiber π−1(p) equals 2π · f(p), and the locally well-defined S1 action
which rotates the fibers acts by isometries. The 2-form ω on B is only well defined
up to sign and is realized as ω(X, Y ) = 〈Rθ(X, Y )W, V 〉, where Rθ is the curvature
tensor of θ, and {W, V } is an orthonormal basis of the fiber. However, |ω| is well
defined, and is all that appears in, for example, Theorem 3.1 of the next section.

3. Conditions for positive and nonnegative curvature

Now we establish necessary and sufficient conditions for an S1-bundle to admit
a metric of positive/nonnegative sectional curvature.

Theorem 3.1.

(1) If the warped connection metric on the circle bundle S1 ↪→ N
π→ B deter-

mined by the data {gB, θ, f} has nonnegative (respectively positive) sectional
curvature, then the following inequality is satisfied (respectively strictly sat-
isfied) for all p ∈ B and X, Y ∈ TpB with X ∧ Y �= 0:

((DXω)(X, Y ))2 ≤ (|iXω|2 + hessφ(X, X)) · kB(X, Y ),

where φ = 2f−2, kB(X, Y ) = 〈R(X, Y )Y, X〉gB denotes the unnormalized
sectional curvature of (B, gB), and iXω denotes the 1-form on B defined
by (iXω)(Y ) = ω(X, Y ).

(2) Conversely, if there exist structures {gB, θ, φ} such that the inequality is
strictly satisfied for all p ∈ B and X, Y ∈ TpB with X ∧ Y �= 0, then N
admits a warped connection metric with positive curvature.

Part (2) of the theorem was proven in [11] by constructing a metric on the
associated vector bundle in such a way that derivative considerations force the
boundary of a small metric tube about the zero-section to have positive curvature.
For the positively curved metric guaranteed by part (2) of the theorem, note that
the function φ : B → R is not the fiber-length function.

One should not expect that structures {gB, θ, f} satisfying the inequality non-
strictly can necessarily induce a warped connection metric of nonnegative curvature.
For example, in the connection metric case (f constant) our inequality is slightly
weaker than the necessary and sufficient condition in [17].

It remains to prove part (1), for which we require the following preliminary
conditions for nonnegative/positive curvature:

Lemma 3.2. The warped connection metric on the oriented circle bundle S1 ↪→
N

π→ B prescribed by the data {gB, θ, f} has nonnegative (respectively positive)
curvature if and only if the following inequalities are satisfied (respectively strictly
satisfied) for all p ∈ B and all X, Y ∈ TpB with X ∧ Y �= 0:

(1) KB(X, Y ) ≥ 3
4f2ω(X, Y )2 ≥ 0,

(2) f2|iXω|2 − 4X(X(f))
f ≥ 0,

(3)
(

3X(f)ω(X, Y ) + f(DXω)(X, Y )
)2

≤
(
f2|iXω|2 − 4X(X(f))

f

)
·
(
KB(X, Y ) − 3f2

4 ω(X, Y )2
)
.
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Proof. The proof is essentially a generalization of Lemma 1 of [17]. Endow N with
the warped connection metric gN prescribed by the data {gB, θ, f}. Note that the
three inequalities are satisfied for all X, Y with X ∧ Y �= 0 if and only if they are
satisfied for all orthonormal X, Y .

Let V be the unit vertical vector field on N such that f ·Ω(V ) = 1. For any point
p ∈ B and any 2-plane σ in TpB, let X , Y be an orthonormal basis of σ, and let
X̄, Ȳ be their horizontal lifts to Tp̄N , where p̄ ∈ π−1(p). Then for any real number
ϕ, the vectors {X̄, (sin ϕ)Ȳ + (cosϕ)V } are orthonormal and span a 2-plane σ̄ in
Tp̄N . It is easy to see that every 2-plane in Tp̄N is spanned by orthonormal vectors
of this form. The sectional curvature of σ̄ is given by

K(σ̄) = (cos2 ϕ)K(X̄, V ) + (sin2 ϕ)K(X̄, Ȳ ) + 2(sinϕ cos ϕ)R(X̄, Ȳ , X̄, V )
= Q((cosϕ, sin ϕ), (cos ϕ, sin ϕ)),

where Q is the quadratic form with matrix

Q =
(

K(X̄, V ) R(X̄, Ȳ , X̄, V )
R(X̄, Ȳ , X̄, V ) K(X̄, Ȳ )

)
.

By the Gray–O’Neill submersion formulas, we have

K(X̄, Ȳ ) = K(σ) − 3
4
‖[X̄, Ȳ ]v‖2 = K(σ) − 3

4
f2ω(σ)2

since [X̄, Ȳ ] = −fω(σ)V . The bracket is computed by extending X and Y to locally
commuting vector fields in a neighborhood of p in B, and X̄, Ȳ are the horizontal
lifts in a neighborhood of p̄.

For the T -tensor of π we have TV V = − gradf
f , where gradf denotes the horizontal

lift of the gradient of f . Straightforward computations now yield

K(X̄, V ) = 〈(DX̄T )V V, X̄〉 − ‖TV X̄‖2 + ‖AX̄V ‖2

=
(

X(f)
f

)2

− X(X(f))
f

−
(

X(f)
f

)2

+
f2

4
‖iXω‖2

=
f2

4
‖iXω‖2 − X(X(f))

f
,

Rf (X̄, Ȳ , X̄, V ) = −3
2
X(f)ω(σ) − 1

2
f · (DXω)(σ).

The quadratic form Q is nonnegative definite (respectively positive definite) if and
only if its determinant is nonnegative (respectively positive) and its two diagonal
entries are nonnegative (respectively positive). This completes the proof. �

Proof of part (1) of Theorem 3.1. Since the argument is local, we can assume that
the bundle is orientable. Suppose first that the warped connection metric g on
N prescribed by the data {gB, θ, f} has nonnegative curvature. We use Cheeger’s
trick of rescaling (N, g) along the action field of the principal S1-action [2]. More
precisely, consider the diagonal isometric S1 action on (N, g)× S1(r), where S1(r)
denotes the circle with circumference 2πr. The quotient, [(N, g) × S1(r)]/S1 =
(N, g) ×S1 S1(r), is diffeomorphic to N , but inherits a submersion metric different
from g. Write

(N, gr) = (N, g) ×S1 S1(r).
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Then gr will also be a metric of nonnegative curvature. In fact, gr is the warped
connection metric prescribed by the data {gB, θ, f · (1 + (f/r)2)−1/2}. Therefore,
the third inequality of Lemma 3.2 remains true if f is replaced by

fr = f · (1 + (f/r)2)−1/2

for any r > 0. Making this substitution, then dividing both sides of the inequality
by r2 and taking the limit as r → 0 produces the required inequality.

Next suppose that the warped connection metric g on N prescribed by the data
{gB, θ, f} has positive curvature. For r > 0, (N, gr) has positive curvature because
there are no horizontal zero-curvature planes in N × S1(r). Therefore inequality
(3) of Lemma 3.2 remains strictly satisfied if we replaced f by fr. However, as r
goes to zero, some calculations are needed to control the difference between the left
and right sides of this inequality.

Let X and Y be vector fields on B. At the point p ∈ B, let γ(t) be a geodesic
with γ(0) = p, γ′(0) = X(p). Now we compute that

X(fr) =
X(f)r3

(f2 + r2)
3
2
,

X(X(fr)) =
r2X(X(f))
(f2 + r2)

3
2
− 3fr3X(f)2

(f2 + r2)
3
2

.

Let

H(r) =
1
r2

[(
f2

r |iXω|2 − 4X(X(fr))
fr

)
·
(

KB(X, Y ) − 3f2
r

4
ω(X, Y )2

)

−
(

3X(fr)ω(X, Y ) + fr(DXω)(X, Y )
)2 ]

.

Then we can simplify H(r) to be

H(r) =
α1

f2 + r2
+

α2

(f2 + r2)2
+

α3

(f2 + r2)3
− β1

f2 + r2
− β2

(f2 + r2)2
− β3

(f2 + r2)3
,

where

α1 =
(

f2|iXω|2 − 4X(X(f))
f

)
·
(

KB(X, Y ) − 3f2

4
ω(X, Y )2

)
,

α2 = 12X(f)2
(

KB(X, Y ) − 3f2

4
ω(X, Y )2

)

+
3f4

4
ω(X, Y )2

(
f2|iXω|2 − 4X(X(f))

f

)
,

α3 = 9f4X(f)2ω(X, Y )2,

β1 = (3X(f)ω(X, Y ) + f(DXω)(X, Y ))2,

β2 = 6f2X(f)ω(X, Y )
√

β1,

β3 = α3.
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Thus H(r) = α1−β1
f2+r2 + α2−β2

(f2+r2)2 as a function of r. Note that by Lemma 3.2 we have
α1 − β1 > 0. Now consider

0 ≤
(

2
√

3

√
KB(X, Y ) − 3f2

4
ω(X, Y )2 −

√
3

2
f2ω(X, Y )

√
f2|iXω|2 − 4X(X(f))

f

)
2

= α2 − 6X(f)f2ω(X, Y )

√
KB(X, Y ) − 3f2

4
ω(X, Y )2 ·

√
f2|iXω|2 − 4X(X(f))

f

<α2 − β2,

i.e., α2 − β2 > 0. Hence, H(r) is positive valued for all r. The derivative of the
function H(r) is H ′(r) = −2r

(
α1−β1
f2+r2 − 2(α2−β2)

(f2+r2)2

)
, which by the above remarks is

always negative for all positive values of r. Hence, H(r) is a decreasing function.
Therefore lim

r→0+
H(r) is positive. This yields the required inequality. �

We now explore some consequences of our results.
(i) Suppose that the circle bundle S1 ↪→ N

π→ B has a connection metric such
that all 2-planes at some point p̄ ∈ N have positive curvature. Then |iXω| > 0
for all X ∈ TpB, where p = π(p̄). Hence ω is nondegenerate at p, so B is even-
dimensional and N odd-dimensional.

(ii) Suppose that the circle bundle S1 ↪→ N
π→ B has a warped connection

metric with positive curvature. Then at a local minimum p ∈ B of the fiber-length
function f , we have that |iXω| > 0 for all X ∈ TpB. Hence ω is nondegenerate at p,
so B is even-dimensional and N odd-dimensional. This also follows from Berger’s
result on the vanishing of Killing fields on even-dimensional manifolds of positive
curvature.

Along these lines we present an interesting question. Recall that a manifold
is said to be almost positively curved if every 2-plane at almost every point has
positive curvature. Recently B. Wilking produced many interesting examples of
almost positively curved manifolds in [16], including examples that violate Synge’s
theorem for positively curved manifolds. It is natural to ask whether Berger’s
result extends to this intermediate class between positive curvature and nonnegative
curvature.

Question 3.3. Does every Killing field on an even-dimensional, almost positively
curved manifold vanish somewhere?

4. Rigidity in even dimensions

If B is odd-dimensional, it is possible for a circle bundle over B to admit an
invariant metric with nonnegative (but not positive) curvature. The principal fi-
bration S1 ↪→ SU(3) → Np,q which yields the homogeneous Aloff–Wallach spaces
(see section 7) is an example. However, we have the following rigidity result. We
present two proofs, as the techniques used in either proof may be of independent
interest.

Proposition 4.1. For a nonnegatively curved warped connection metric gN on a
circle bundle S1 ↪→ N

π→ B2n+1, any locally minimal length fiber is contained in
a flat, totally geodesic, immersed cylinder. In particular, the local minima of the
fiber-length function cannot be isolated.
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First proof of Proposition 4.1. Let p ∈ B be a minimum for the fiber-length func-
tion f . The fiber π−1(p) is totally geodesic. Let ρt parametrize the S1 action along
this fiber (even if the bundle is nonorientable, N admits an isometric S1-action
over a neighborhood of p in B). Let τt be the parallel transport map along this
(geodesic) fiber. Note that π∗ = π∗ ◦ (ρt)∗.

Let p̄ ∈ π−1(p). Now consider the maps, gt := τ−1
t ◦ (ρt)∗ : Tp̄N → Tp̄N , defined

for all t. We claim that this generates a one-parameter subgroup in the orthogonal
group of isometries of Tp̄N . To show that {gt} is a one-parameter subgroup, we
need to show that gt ◦ gs = gs ◦ gt. Let H denote the horizontal distribution along
the fiber. Then we may view gt as a map from H to itself, since gt is an isometry
that preserves vectors along the fiber. Now the commutativity of the gt is clear since
we require that on H we have (ρt)∗ ◦ τ−1

s = (ρs)∗ ◦ τ−1
t which is turn follows from

the general fact that isometries preserve parallel vector fields. Hence, gt = exp(tX)
for some skew symmetric endomorphism X .

X is a skew symmetric endomorphism on an odd-dimensional space (the com-
plement to the fiber direction at p̄). Since its eigenvalues come in purely imaginary
pairs, it must have a zero eigenvalue. Then exp(tX) has eigenvalue 1 for all t,
and a fixed vector corresponding to this eigenvalue, say v. This implies that for
all t, the parallel transport of v agrees with the circle action. So, the image of v
under (ρt)∗ in H is an invariant parallel field, and we may look at its exponential
image which is a cylinder. The image of the fiber π−1(p) along v is also a fiber,
since (ρt)∗(v) was constructed to be an invariant parallel field. By Rauch’s second
comparison theorem, it follows that these nearby fibers must have the same length
and are therefore also geodesics. From the equality discussion of Rauch’s theorem,
the resulting cylinder is flat and totally geodesic. �

Second proof of Proposition 4.1. Let p ∈ B be a local minimum of the fiber-length
function f : B → R+. Since B is odd-dimensional, there exists a vector X ∈ TpB
such that |iXω| = 0. Let X̄ denote the horizontal lift of X to a point p̄ ∈ F =
π−1(p). Let α(t) be the geodesic on B with α′(0) = X , and let ᾱ(t) denote its lift
to a horizontal geodesic in N with ᾱ(0) = p̄.

Let J(t) be a holonomy Jacobi field along ᾱ, i.e., J(t) is the variational field for
the family of horizontal lifts of α to all points of the fiber F . Choose J(0) to be
the vertical vector whose norm equals f(p) = the length of the fiber F . In general
for holonomy Jacobi fields

J ′(0) = Aᾱ′(0)J(0) + TJ(0)ᾱ
′(0).

In this case, the T -tensor term vanishes because any minimal-length fiber is
totally geodesic and the A-tensor term vanishes because iXω = 0. So J ′(0) = 0.

Using the terminology of [14], J(t) is a “strong F -Jacobi field”, meaning that
it is the variational field for a family of geodesics which begin at points of F and
are all orthogonal to F , and that J ′(0) is tangent to F . We can therefore apply
Rauch’s comparison Theorem for submanifolds. Thus there exists t0 > 0 such that
for t ∈ [0, t0], |J(t)| ≤ |J̃(t)| = |J(0)| (the comparison field J̃(t) is in flat space and
has J̃ ′(0) = 0, so it has constant norm).

But by construction, |J(t)| = f(α(t)), and since F was assumed to be a locally
minimal-length fiber, |J(t)| must be constant for t ∈ [0, t0]. By the equality dis-
cussion of Rauch’s theorem, span{J(t), α′(t)} is a zero-curvature two-plane for all
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t ∈ [0, t0], so |Iα′(t)ω| = 0. It follows that the cylinder π−1(α([0, t0])) is flat and
totally geodesic.

Since t0 depends only on an upper curvature bound for N , we can repeatedly
re-apply this argument to extend the interval [0, t0] to [0,∞). By replacing X with
−X we can extend this interval to (−∞,∞). �

Remark 4.2. One can prove further rigidity in the case that the totally geodesic
flat cylinder π−1(α(−∞,∞)) has self-intersections. Suppose the geodesic α in B
has a self-intersection point p, so that α(t1) = α(t2). Then |iXω| = 0 for all
X ∈ span{α′(t1), α′(t2)}. Since the null-space of ω at p is always odd-dimensional,
we in fact have a three-dimensional space W ⊂ TpB so that any geodesic in B
tangent to a vector in W lifts to a totally geodesic flat cylinder in N .

5. Trivial circle bundles

In this section, we explore the rigidity of nonnegatively curved warped connec-
tion metrics on trivial circle bundles. We begin by mentioning that the following
theorem, which follows from a result in [12], can also be proven easily using our
inequality:

Proposition 5.1. Any connection metric with nonnegative curvature on the trivial
bundle S1 ↪→ S2 × S1 → S2 is a product metric.

Proof. Define f : S2 → R so that ω = f ·dvol. Then
∫

S2 fdvol = 0 (the Euler class
of the bundle). So there exists a point p ∈ S2 with f(p) = 0. Along any geodesic,
γ(t), in S2 with γ(0) = p, the inequality of Theorem 3.1 reads:

f ′(t)2 ≤ k(t) · f(t)2,

where f(t) = f(γ(t)) and k(t) is the Gauss curvature at γ(t). Since f(0) = 0, it
follows that f(t) = 0 for all t, so ω ≡ 0. �

The above proof does not work if S2 is replaced with a higher-dimensional man-
ifold. In fact, we have the following proposition.

Proposition 5.2. There exists a nonnegatively curved connection metric on the
trivial bundle S1 ↪→ S1 × S3 → S3 which is not a product metric.

Proof. Let g denote the unit-round metric on S3, and let R act isometrically on
(S3, g) by flow along the Hopf vector field X . Consider the natural diagonal action
by isometries of R on (S3, g) × R. We have

(S3, g) × R → [(S3, g) × R]/Z π→ [(S3, g) × R]/R.

The second map, π, is a Riemannian submersion from [(S3, g) × R]/Z, which is
diffeomorphic to S3×S1, to [(S3, g)×R]/R, which is diffeomorphic to S3. Because
X has constant length, it is straightforward to verify that the fibers of π all have the
same circumference, and so are totally geodesic. However, it can also be checked
that the metric is not a product metric. The calculations here are analogous to
Claims 3.1 and 3.2 of [7]. �

In the above construction, {(S3, g), X} could be replaced by a Killing field on
any nonnegatively curved compact Riemannian manifold B. The result is a warped
connection metric of nonnegative curvature on the trivial S1 bundle over B, which
is a connection metric if and only if the Killing field has constant length. All
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known examples of nonnegatively curved warped connection metrics on trivial circle
bundles come from this construction; see [7].

6. An example: The Aloff–Wallach spaces

Since the Aloff–Wallach spaces and the Eschenburg spaces which fibre over the
twisted flag are the only known examples of positively curved warped connection
metrics on circle bundles, it is perhaps worth understanding explicitly the inequality
of Theorem 3.1 for these spaces. In this section, we summarize the result one gets
for the Aloff–Wallach spaces. We begin with a brief review of the construction of
these spaces. Consider the following nested subgroups of SU(3):

S1
p,q ⊂ T2 ⊂ U(2) ⊂ SU(3)

with Lie algebras
s1
p,q ⊂ t2 ⊂ u(2) ⊂ g,

where S1
p,q = {diag(zp, zq, z−(p+q))| z ∈ U(1)}, the integers p and q are relatively

prime, T2 is the maximal torus of SU(3) containing S1
p,q, and U(2) ⊂ SU(3) is the

embedding
{(

A 0
0 (detA)−1

)∣∣A ∈ U(2)
}
.

The Aloff–Wallach space, Np,q, is defined as the quotient SU(3)/S1
p,q. According

to [1], Np,q admits a one-parameter family of homogeneous metrics of positive
curvature as long as 0 /∈ {p, q, p + q}.

In fact, if 0 /∈ {p, q, p + q}, then after possibly altering {p, q} so that the new
circle is conjugate to the original in SU(3), the following metric on Np,q will be
positively curved for properly chosen λ. Let g0 denote the bi-invariant metric on
SU(3) determined by the equation

〈X, Y 〉g0 = Re(trace(XY ∗)).

Let g denote the left-invariant AdU(2)-invariant metric on SU(3) obtained from g0

by rescaling in the direction of u(2) by some positive real number λ as follows:

〈X1 + X2, Y1 + Y2〉g = λ〈X1, Y1〉g0 + 〈X2, Y2〉g0 ,

where X1, Y1∈u(2) and X2, Y2⊥u(2). Choosing the quotient metrics on SU(3)/S1
p,q

and SU(3)/T2, we have the following chain of Riemannian submersions:

(SU(3), g)
f→ (Np,q = SU(3)/S1

p,q)
π→ (F 6 = SU(3)/T2) → (CP2 = SU(3)/U(2)).

Let p = π ◦ f . Choose

X, Y ∈ g � t2 = {v ∈ g|v ⊥ t2}
= (u(2) � t2) ⊕ (g � u(2))

=




 0 z0 0
−z̄0 0 0
0 0 0



∣∣∣∣∣z0 ∈ C


⊕




 0 0 z1

0 0 z2

−z̄1 −z̄2 0



∣∣∣∣∣z1, z2 ∈ C


 .

We may write

X =


 0 z0 z1

−z̄0 0 z2

−z̄1 −z̄2 0


 and Y =


 0 w0 w1

−w̄0 0 w2

−w̄1 −w̄2 0


 .

Slightly tedious calculations then yield the following proposition.
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Proposition 6.1.

ω(p∗X, p∗Y ) = −2 · Im((p + q)z̄0w0 + qz̄1w1 − pz̄2w2)
D(p∗X)ω(p∗X, p∗Y ) = Im[−((3 − 2λ)q + (3 − λ)p)z0z2w̄1

+ ((3 − 2λ)p + (3 − λ)q)z0z̄1w2 + λ(p − q)z̄1z2w0].

From the first formula we see that ω is nondegenerate if and only if 0 /∈ {p, q,
p+ q}, which is exactly the sufficient condition in [1] for Np,q to admit an invariant
metric of positive curvature. This fact is also mentioned in [18], along with a proof
that the excluded circle bundle N1,0 does not admit a connection whose curvature
form ω is nondegenerate. A connection in a circle bundle is called fat if ω is non-
degenerate. Fatness is equivalent to the positivity of the vertizontal curvatures.
Hence, N1,0 does not admit a connection metric of positive curvature.

Remark 6.2. Using the terminology of [10], we call a connection θ in a principal S1

bundle radially symmetric if for all p ∈ B and all X, Y ∈ TpB, (DXω)(X, Y ) = 0.
It follows from Lemma 3.2 or from the main result of [10] that if B admits a
metric of positive curvature, then any radially-symmetric connection in any circle
bundle over B induces a connection metric of nonnegative curvature. However, if
a connection in a circle bundle is radially symmetric, then it is in fact parallel, i.e.,
Dω = 0. To see this, note that since (DX+Zω)(X + Z, Y ) = 0, it follows that
(DXω)(Y, Z) = −(DY ω)(X, Z). Thus, (X, Y, Z) �→ (DXω)(Y, Z) is alternating.
Next use that fact that ω is closed, and that the exterior derivative of ω is the
skew-symmetrization of its covariant derivative:

0 = (dω)(X, Y, Z) = (DXω)(Y, Z)− (DY ω)(X, Z)+(DZω)(X, Y ) = 3(DXω)(Y, Z).

If B has positive curvature, then Theorem 3.1 implies that a radially-symmetric
connection θ induces a connection metric of positive curvature if and only if θ is fat,
i.e., if and only if ω is a Kähler form. Therefore, B is a Kähler manifold of positive
curvature. The only Kähler manifolds with positive curvature are the complex
projective spaces CPn (with N being the standard sphere or any lens space) [9].
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