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Introduction.
One of the first things we learn in abstract algebra is the notion of a

cyclic group. For every positive integer n, we have Zn, the group of integers
modulo n. When n is prime, a simple application of Lagrange’s theorem
yields that this is the only group of order n. We may ask ourselves: what
other positive integers have this property? In this spirit we call a positive
integer n a cyclic number if every group of order n is cyclic. We define
abelian and nilpotent numbers analogously. Recall that a group is nilpotent
if and only if it is the (internal) direct product of its Sylow subgroups; see
[7, p. 126].

This is not a new problem; the cyclic case is attributed to Burnside and
has appeared in numerous articles, [9], [4], [1], [2]. The abelian case appears
as a problem in an old edition of Robinson’s book in group theory; see also
[6] and the nilpotent case was also done quite some time ago (see [5], [8]).
In this article we give an arithmetic characterization of the cyclic, abelian,
and nilpotent numbers from a single perspective. Throughout this paper Zn

will denotes the cyclic group of order n.

Nilpotent numbers.
The smallest non–prime cyclic number is 15. This follows from [3, Propo-

sition 6.1, p. 98] where it is shown that for primes p and q, if p > q, then
pq is a cyclic number if and only if q - (p− 1). Motivated by this arithmetic
criterion we make the following definition.

Definition. A positive integer n = pa1
1 · · · p

at
t , pi distinct, is said to have

nilpotent factorization if and only if pk
i 6≡ 1 mod pj for all integers i, j and

k with 1 ≤ k ≤ ai.

Examples of numbers with nilpotent factorization are all powers of prime
numbers and pq where p > q are prime and q - (p − 1). For example, the
number 21 = 3 · 7 does not have nilpotent factorization since 7 ≡ 1 mod 3.
It turns out that this rather strange looking property characterizes nilpotent
numbers.

Theorem 1. A positive integer n is a nilpotent number if and only if it has
nilpotent factorization.
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Proof. Suppose n = pa1
1 · · · p

at
t is a positive integer without nilpotent fac-

torization. Then there exist i, j, and k with 1 ≤ k ≤ ai such that pk
i ≡ 1

mod pj . Note that pi and pj are necessarily distinct so after relabelling we
may assume pk

1 ≡ 1 mod p2 for some 1 ≤ k ≤ a1. Let E be the elemen-
tary abelian group consisting of the direct product of k copies of Zp1 i.e.,
E = Zk

p1
. E can also be viewed as a k-dimensional vector space over Fp1 , the

finite field with p1 elements (isomorphic to Zp1 as a group). Then the group
of vector space automorphisms of E is Aut(E) ∼= GLk(Fp1). The latter is
the group of k × k matrices with entries in Fp1 and non-zero determinant
modulo p1. The order of GLk(Fp1) is (pk

1 − 1)(pk
1 − p1) · · · (pk

1 − pk−1
1 ). By

assumption pk
1 ≡ 1 mod p2, so p2 | (pk

1−1) and hence p2 divides |GLk(Fp1)|.
Then Aut(E) has a subgroup isomorphic to Zp2 by Cauchy’s theorem and
we may form a non-trivial semi-direct product, E o Zp2 . Now consider the
group

G = (E o Zp2)× Za1−k
p1

× Za2−1
p2

× Za3
p3
× . . .× Zat

pt
.

By construction, G is a group of order n. In a nilpotent group, elements
in Sylow subgroups corresponding to distinct primes commute with each
other. The elements of E all have order p1 and they don’t commute with
the elements of Zp2 in the semi-direct product E o Zp2 , by construction.
Hence G is not nilpotent and consequently n is not a nilpotent number.

For the converse, we wish to show that if n has nilpotent factorization,
then it is a nilpotent number. Suppose this is not true. Let n be the smallest
positive integer with nilpotent factorization that is not a nilpotent number.
Then there exists a group G of order n that is not nilpotent. If H is any
proper subgroup of G, then |H| has nilpotent factorization also. H must be
nilpotent, since we assumed n to be the smallest non-nilpotent integer with
nilpotent factorization. So G is a non-nilpotent group with every proper
subgroup nilpotent. By a theorem of O. J. Schmidt [7, 9.1.9. p. 251], such
groups are rather special and we must have n = |G| = paqb, where p, q are
distinct primes and a, b ≥ 1.

Let np and nq denote the number of Sylow p-subgroups and Sylow q-
subgroups, respectively, of G. By Sylow’s theorem, np ≡ 1 mod p, but
it is also equal to the index of the normalizer, NG(Sp), of some Sylow p-
subgroup Sp in G. Now Sp ⊂ NG(Sp) ⊂ G. So the order of NG(Sp) is
paqk for some integer k, and has index qb−k = np ≡ 1 mod p in G. By
assumption |G| = paqb has nilpotent factorization, which forces b − k = 0.
This implies NG(Sp) = G and hence Sp is unique and normal in G. The
same argument applied to q shows that the Sylow q-subgroup, Sq, is also
unique and normal. Hence, G ∼= Sp × Sq, which contradicts our assumption
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that G was not nilpotent. So if n has good factorization, then it must be a
nilpotent number. �

We will see that this also characterizes cyclic and abelian numbers since
we have the containments

cyclic groups ⊂ abelian groups ⊂ nilpotent groups.

Recall that a positive integer n = pa1
1 · · · p

at
t is said to be cube–free if ai ≤ 2

for all i. It is said to be square–free if ai = 1 for all i.

Abelian numbers.

Given a prime p, there is always a non-abelian group of order p3. For
example,

Tp =


1 a b

0 1 c

0 0 1

 : a, b, c ∈ Zp

 ,

where addition and multiplication of entries is performed modulo p, is one
such group for every prime p. So an abelian number is necessarily cube–free.
We claim that n is an abelian number if and only if it is a cube–free number
with nilpotent factorization.

Suppose n is a cube–free nilpotent number and let G be a group of order
n. Then G is nilpotent and G ∼= Sp1 × · · · × Spt , i.e., G is isomorphic to
the product of its Sylow subgroups. Since n was assumed to be cube–free,
each Spi has order pi or p2

i and is hence, abelian. G is then abelian, being a
product of abelian groups, and n is an abelian number.

Conversely, if n is an abelian number, then it must be a nilpotent number
and hence it has nilpotent factorization. We noted that n is necessarily cube–
free; if not, then there exists a prime p such that p3 | n. Then Tp × Zn/p3 is
a non-abelian group of order n, contradicting the assumption that n is an
abelian number. This completes the argument and establishes our claim.

Cyclic numbers.

We now claim that n is a cyclic number if and only if it is a square–free
number with nilpotent factorization. The argument here is along the same
lines as for the abelian case once we note that Zp×Zp is a non-cyclic group
of order p2.

This characterization is equivalent to another well known characterization
of cyclic numbers. Let ϕ(n) be the Euler totient function of n. It counts the
number of positive integers less than or equal to n that are relatively prime
to n. For n = pa1

1 · · · p
at
t ,

ϕ(n) = (pa1−1
1 (p1 − 1)) · · · (pat−1

t (pt − 1))
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Note that if n is square–free, then ϕ(n) = (p1 − 1) · · · (pt − 1). Our claim
above says that n is a cyclic number if and only if it has nilpotent factoriza-
tion and it is square–free. This is equivalent to saying pi - (pj−1) for all i, j,
which is equivalent to saying gcd(n, ϕ(n)) = 1. This yields the elegant result:
A positive integer n is a cyclic number if and only if gcd(n, ϕ(n)) = 1.

Remark. The only even numbers with nilpotent factorization are powers
of 2. Let f(n) denote the number of groups of order n. If n = pa1

1 · · · p
at
t is

an abelian number, then f(n) = 2
P

(ai−1). The problem of determining f(n)
is quite hard in general and beyond reach even for the nilpotent numbers.
This is because estimating f(pk) for all primes p and all integers k, is too
difficult a problem at this time.

Remark. Using a deep result of J. Thompson’s on minimal simple groups
[10] which ultimately relies on the celebrated Feit–Thompson theorem, it is
possible to characterize the solvable numbers as well. We can show that a
positive integer n is a solvable number if and only if it is not a multiple of
any of the following numbers:

(a) 2p(22p − 1), p any prime.
(b) 3p(32p − 1)/2, p an odd prime.
(c) p(p2− 1)/2, p any prime greater than 3 such that p2 + 1 ≡ 0 mod 5.
(d) 24 · 33 · 13.
(e) 22p(22p + 1)(2p − 1), p an odd prime.

As a corollary we see that an integer not divisible by 4 must be a solvable
number. In particular, every odd number is a solvable number, as expected.
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