
RANK TWO FUNDAMENTAL GROUPS
OF POSITIVELY CURVED MANIFOLDS

KARSTEN GROVE∗ AND KRISHNAN SHANKAR

Abstract. This paper deals with the construction of previously un-
known fundamental groups for positively curved manifolds.

Introduction

It is well known that any finite group is the fundamental group of some
non-negatively curved manifold. The only proposed obstruction in positive
curvature goes back to S. S. Chern (cf. [Ch, p. 167]): is every abelian sub-
group of the fundamental group cyclic? This was recently answered in the
negative in [Sh] by observing that there are positively curved manifolds that
admit a free, isometric SO(3) action. In particular, Z2 ⊕ Z2 ⊂ SO(3) is
the fundamental group of some positively curved manifold. However, the
approach of [Sh] fails for Zp⊕Zp where p is an odd prime. Nevertheless, we
will show that the obstruction proposed by Chern is false for groups of odd
order as well, by establishing

Main Theorem. The Aloff-Wallach space Nk,l = SU(3)/S1
k,l admits a free,

isometric Z3 ⊕ Z3 action if and only if H4(Nk,l,Z) ∼= Z/(k2 + l2 + kl) has
3-torsion.

It is a pleasure to thank Stephan Stolz for leading us to [Bo] in our search
for non-toral elementary abelian p-groups.

1. Torus actions on manifolds of positive curvature

Let Mn be a manifold of positive sectional curvature. If M is even dimen-
sional then π1(M) is 0 or Z2 according as M is orientable or not (Synge’s
theorem). So we only concern ourselves with quotients of odd dimensional
manifolds.

To fix notation, recall that if a group G acts on a manifold M then the
isotropy group of a point x ∈ M is Gx := {g ∈ G : g · x = x} ⊂ G. If
Gx = G, then x is said to be a fixed point of G. If Gx = {1} for all x, then
G is said to act freely. The following lemma is due to Berger (cf. [Be]).
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Lemma 1.1. Any circle acting isometrically on an even dimensional man-
ifold of positive curvature has a fixed point.

The analogous statement in odd dimensions can be found in [Su] (cf. [Ro]).

Lemma 1.2. If a torus T2 = S1 × S1 acts isometrically on a manifold
M2n+1 of positive curvature, then there exists x ∈M for which T2

x contains
a circle.

The lemmas imply, in particular, that a connected Lie group G act-
ing freely and isometrically on a manifold of positive curvature must have
rank(G) ≤ 1. However, we are concerned with free actions of Zp ⊕ Zp or
more generally rank 2 groups i.e. finite groups for which the maximal rank
of any elementary abelian p-subgroup is 2, where p is any prime. The fol-
lowing proposition cuts down our search considerably. Let I(M) denote the
isometry group of the Riemannian manifold M .

Proposition 1.3. Let M be a manifold of positive curvature. If Zp ⊕Zp is
contained in a torus of I(M), then it cannot act freely on M .

Proof: Without loss of generality, we may assume that Zp ⊕ Zp lies in some
2-torus T. We also assume that M is odd dimensional because of Synge’s
theorem. By the previous lemma, there exists x ∈M such that Tx contains
a circle and the orbit T(x) must be a circle or a fixed point. Then Zp ⊕ Zp
acts freely on the orbit T(x) which is a contradiction. 2

Note that the considerations above show the following: if a compact group
G ⊂ I(M) acts freely on a positively curved manifoldM , then its intersection
with any torus of I(M) must be a cyclic group or a circle.

2. Free actions of elementary abelian 3-groups

Our search for free actions of Zp⊕Zp now narrows down to subgroups of
the isometry group that do not lie in tori. Let G be a compact, connected
Lie group. The following theorem was proved in [Bo].

Theorem 2.1 (Borel). Let p be a prime number. Then every subgroup of
G isomorphic to Zp ⊕ Zp is contained in a torus if and only if π1(G) does
not have p-torsion.

The Aloff-Wallach spaces are the homogeneous spaces Nk,l := SU(3)/S1
k,l,

where S1
k,l = {diag(zk, zl, z̄k+l) : z ∈ U(1), gcd(k, l) = 1} ⊂ SU(3) (cf.

[AW]). If kl(k + l) 6= 0, then the quotient space admits a homogeneous
metric of positive curvature. The space N1,1 is the only one that admits a
normal homogeneous metric of positive curvature (cf. [Wi]). However, the
action of SU(3) is not always effective. Let ω be a primitive third root of
unity. Then the matrix diag(ω, ω, ω), which generates the center of SU(3),
lies in S1

k,l precisely when 3 - kl(k + l). This can be seen as follows: let
zk = zl = z̄k+l = ω. Since gcd(k, l) = 1, there exist integers a and b such
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that ak+bl = 1. Then, z = zak+bl = ωa+b and z is 1, ω or ω2. If 3 | kl(k+ l),
then zk = zl = z̄k+l = 1 which is a contradiction. If 3 - kl(k + l), then k, l
and −k − l are all congruent to ε mod (3), where ε is 1 or 2; take z = ωε to
see that Z = Z(SU(3)) ⊂ S1

k,l. We have proved

Proposition 2.2. SU(3) acts ineffectively on the Aloff-Wallach space Nk,l

if and only if 3 - kl(k + l).

When 3 - kl(k + l), the effective group that acts is P SU(3) = SU(3)/Z.
In this case, the effective representation of the homogeneous space Nk,l is
P SU(3)/(S1

k,l/Z). To apply Theorem 2.1., we need to find the largest con-
nected effective group that acts on Nk,l, namely I0(Nk,l), the identity com-
ponent of the isometry group of Nk,l. Note, however, that the following
proposition and Theorem 2.1. together imply that π1(I0(Nk,l)) has 3-torsion.

Proposition 2.3. If 3 - kl(k + l), the group Γ0
∼= Z3 ⊕ Z3 ⊂ P SU(3) ⊂

I0(Nk,l) acts freely on Nk,l.

Proof: The construction of Γ0, explicitly given in [Bo], is as follows: Let
{e1, e2, e3} be the standard basis in C3. Let ω be a primitive third root of
unity. Consider the following transformations,

u · ei = ωi · ei v · ei = ei+1 mod (3)

The eigenvalues of u and v are {1, ω, ω2}, the third roots of unity. It is clear
that they lie in SU(3). As matrices they look like,

u =

ω 0 0
0 ω2 0
0 0 1

 v =

0 0 1
1 0 0
0 1 0


Let Γ =< u, v > be the group generated by u and v. Then Γ is a non-

abelian group of order 27 and the commutator [u, v] = uvu−1v−1 generates
the center of SU(3). Then Γ/[Γ,Γ] = Γ/Z(SU(3)) = Γ0 ⊂ P SU(3).

Since Γ0 is a quotient of Γ by its center, it acts freely on Nk,l if and
only if any γ ∈ Γ conjugate to some h ∈ S1

k,l must lie in the center. Note
that every non-central element of Γ has the same set of eigenvalues, namely
{1, ω, ω2}. So if γ is a non-central element that is conjugate to some h =
diag(zk, zl, z̄k+l) ∈ S1

k,l, then h and γ have the same eigenvalues. Without
loss of generality let zk = 1 and zl = ω. Since gcd(k, l) = 1, there exist
integers a and b such that ak+ bl = 1. Then we have z = zak+bl = zbl = ωb.
So z is 1, ω or ω2; if z = 1, then h = γ = id is central. Otherwise zk = 1
implies 3 | k which contradicts our assumption that 3 - kl(k + l). Hence
Γ0
∼= Z3 ⊕ Z3 acts freely on Nk,l. 2

When 3 | kl(k + l), I0(Nk,l) = SU(3) ×∆Z S
1 = U(3) (cf. [On, p. 146-

147], [Sh2]), where S1 = N(S1
k,l)/S

1
k,l and the group of components, I/I0, is

isomorphic to Z2 (cf. [Sh2], see also [WZ, p. 240-241, Theorem 3.1]). Hence,
any subgroup of I(Nk,l) isomorphic to Z3 ⊕ Z3 must lie in I0(Nk,l). By
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Theorem 2.1. it must lie in a torus and by Proposition 1.3. it cannot act
freely.

Finally, we note that H4(Nk,l,Z) is a finite cyclic group of order k2+l2+kl
(cf. [AW]). For relatively prime k and l, 3 - kl(k + l) is equivalent to
3 | (k2 + l2 + kl), which completes the proof of the main theorem.

3. Remarks

1. The SU(5) action on the Berger space SU(5)/(Sp(2) × S1) is also
ineffective. However, the resulting Z5 ⊕ Z5 action is not free.

2. The normal homogeneous Aloff-Wallach space N1,1 also admits a free,
isometric SO(3) action (cf. [Sh]) that commutes with the action of Γ. It is
easy to see that for any subgroup Λ ⊂ SO(3) without elements of order 3,
the group Γ0 × Λ acts freely on N1,1. In particular we have free, isometric
actions of Z6 ⊕ Z6q, 6 - q and Z3 ⊕ Z3r, 3 - r, on N1,1.

3. In [GZ], it is shown that the Eschenburg spaces (cf. [Es]) Mp :=
{diag(z, z, zp)}\SU(3)/{diag(1, 1, z̄p+2)} admit free, isometric actions by
Z2 ⊕ Z2q whenever p and q are odd and gcd(p + 1, q) = 1. Note that
M1 = N1,1.

4. Note that from the calculation of the isometry group of Nk,l (cf. [Sh2]),
Theorem 2.1. and Proposition 1.3., it follows that Zp⊕Zp cannot act freely
on Nk,l for odd primes p > 3. This supports a stable version of Chern’s
conjecture for a given dimension (cf. [Ro]).
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