Bracelet bases are theta bases

Travis Mandel (based joint work with Fan Qin)

$$\mathbf{\mathbf{b}} = \mathbf{\mathbf{b}} + \mathbf{\mathbf{b}} + \mathbf{\mathbf{b}} + \mathbf{\mathbf{b}} + \mathbf{\mathbf{b}}$$

A skein algebra of a marked surface Σ is an algebra Sk(Σ) of arcs and loops in Σ .

- A skein algebra of a marked surface Σ is an algebra $Sk(\Sigma)$ of arcs and loops in Σ .
- Sk(Σ) is part of the ring of functions on Fock-Goncharov's moduli of decorated twisted SL₂-local systems on Σ.

- A skein algebra of a marked surface Σ is an algebra $Sk(\Sigma)$ of arcs and loops in Σ .
- Sk(Σ) is part of the ring of functions on Fock-Goncharov's moduli of decorated twisted SL₂-local systems on Σ.
- Sk(Σ) has a cluster algebra structure [Fock-Goncharov, Fomin-Shapiro-Thurston, Musiker-Williams].

- A skein algebra of a marked surface Σ is an algebra $Sk(\Sigma)$ of arcs and loops in Σ .
- Sk(Σ) is part of the ring of functions on Fock-Goncharov's moduli of decorated twisted SL₂-local systems on Σ.
- Sk(Σ) has a cluster algebra structure [Fock-Goncharov, Fomin-Shapiro-Thurston, Musiker-Williams].
- Sk(Σ) has a canonical basis called the "bracelet basis" [Musiker-Schiffler-Williams, Fock-Goncharov].

- A skein algebra of a marked surface Σ is an algebra $Sk(\Sigma)$ of arcs and loops in Σ .
- Sk(Σ) is part of the ring of functions on Fock-Goncharov's moduli of decorated twisted SL₂-local systems on Σ.
- Sk(Σ) has a cluster algebra structure [Fock-Goncharov, Fomin-Shapiro-Thurston, Musiker-Williams].
- Sk(Σ) has a canonical basis called the "bracelet basis" [Musiker-Schiffler-Williams, Fock-Goncharov].
- Cluster algebras have canonical "theta bases" [Gross-Hacking-Keel-Kontsevich].

- A skein algebra of a marked surface Σ is an algebra Sk(Σ) of arcs and loops in Σ .
- Sk(Σ) is part of the ring of functions on Fock-Goncharov's moduli of decorated twisted SL₂-local systems on Σ.
- Sk(Σ) has a cluster algebra structure [Fock-Goncharov, Fomin-Shapiro-Thurston, Musiker-Williams].
- Sk(Σ) has a canonical basis called the "bracelet basis" [Musiker-Schiffler-Williams, Fock-Goncharov].
- Cluster algebras have canonical "theta bases" [Gross-Hacking-Keel-Kontsevich].
- **Theorem** [M-Qin]: The bracelet basis equals the theta basis.

 Quantum skein algebras have quantum cluster structures [G. Muller] with quantum bracelet bases [D. Thurston].

- Quantum skein algebras have quantum cluster structures [G. Muller] with quantum bracelet bases [D. Thurston].
- Quantum cluster algebras have quantum theta bases [Davison-M].

- Quantum skein algebras have quantum cluster structures [G. Muller] with quantum bracelet bases [D. Thurston].
- Quantum cluster algebras have quantum theta bases [Davison-M].
 - I'll assume some familiarity with these since Ben just talked about this.

- Quantum skein algebras have quantum cluster structures [G. Muller] with quantum bracelet bases [D. Thurston].
- Quantum cluster algebras have quantum theta bases [Davison-M].
 - I'll assume some familiarity with these since Ben just talked about this.
- ► **Theorem** [M-Qin]: Quantum bracelet bases are quantum theta bases.

Overview: cluster Poisson algebra

Fock-Goncharov: functions on the moduli of framed PGL₂-local systems form a cluster Poisson algebra, equipped with canonical coordinates.

Overview: cluster Poisson algebra

- Fock-Goncharov: functions on the moduli of framed PGL₂-local systems form a cluster Poisson algebra, equipped with canonical coordinates.
- Allegretti-Kim use Bonahon-Wong's quantum trace map to define quantum canonical coordinates for the corresponding quantum cluster Poisson algebra.

Overview: cluster Poisson algebra

- Fock-Goncharov: functions on the moduli of framed PGL₂-local systems form a cluster Poisson algebra, equipped with canonical coordinates.
- Allegretti-Kim use Bonahon-Wong's quantum trace map to define quantum canonical coordinates for the corresponding quantum cluster Poisson algebra.
- Theorem [M-Qin]: These (quantum) canonical coordinates are (quantum) theta bases.

- Let $\Sigma = (\mathbf{S}, \mathbf{M})$ be a marked surface, i.e.:
 - a closed surface **S** with boundary ∂ **S**, and
 - a finite collection of marked points M such that every component of ∂S is marked. Marked points in S \ ∂S are called punctures.

- Let $\Sigma = (S, M)$ be a marked surface, i.e.:
 - a closed surface **S** with boundary ∂ **S**, and
 - ► a finite collection of marked points M such that every component of ∂S is marked. Marked points in S \ ∂S are called punctures.
- ► Sk(Σ): spanned by isotopy classes of immersions $i : C \rightarrow S$ such that
 - C is a closed one-manifold (i.e., a disjoint union of circles and closed intervals)
 - ► $i(\partial C) \subset \mathbf{M}$

modulo certain relations (next slide).

- Let $\Sigma = (S, M)$ be a marked surface, i.e.:
 - a closed surface **S** with boundary ∂ **S**, and
 - ► a finite collection of marked points M such that every component of ∂S is marked. Marked points in S \ ∂S are called punctures.
- Sk(Σ): spanned by isotopy classes of immersions $i : C \rightarrow S$ such that
 - C is a closed one-manifold (i.e., a disjoint union of circles and closed intervals)
 - ► $i(\partial C) \subset M$

modulo certain relations (next slide).

The product of two elements of Sk(Σ) is the union of the corresponding immersions of curves.

The skein relations

Contractible arcs are equivalent to 0:

► Contractible loops are equivalent to -2:

A loop around a puncture (called a peripheral loop) is equivalent to 2;

= -2

The skein relation:

- Theorem [Fock-Goncharov, Fomin-Shapiro-Thurston, Musiker-Williams]: This skein algebra Sk(Σ) has a cluster structure such that:
 - (tagged) triangulations corresponding to clusters;
 - (tagged) arcs correspond to cluster variables;

- Theorem [Fock-Goncharov, Fomin-Shapiro-Thurston, Musiker-Williams]: This skein algebra Sk(Σ) has a cluster structure such that:
 - (tagged) triangulations corresponding to clusters;
 - (tagged) arcs correspond to cluster variables;
 - Given a triangulation of Σ, the exchange pairing between arcs *i* and *j* is a signed count of the triangles containing *i* and *j*.

- Theorem [Fock-Goncharov, Fomin-Shapiro-Thurston, Musiker-Williams]: This skein algebra Sk(Σ) has a cluster structure such that:
 - (tagged) triangulations corresponding to clusters;
 - (tagged) arcs correspond to cluster variables;
 - Given a triangulation of Σ, the exchange pairing between arcs *i* and *j* is a signed count of the triangles containing *i* and *j*.
 - Boundary arcs correspond to frozen variables.

- Theorem [Fock-Goncharov, Fomin-Shapiro-Thurston, Musiker-Williams]: This skein algebra Sk(Σ) has a cluster structure such that:
 - (tagged) triangulations corresponding to clusters;
 - (tagged) arcs correspond to cluster variables;
 - Given a triangulation of Σ, the exchange pairing between arcs *i* and *j* is a signed count of the triangles containing *i* and *j*.
 - Boundary arcs correspond to frozen variables.
- Mutation corresponds to flipping the diagonal of a quadrilateral:

Tagged arcs

An arc inside a self-folded triangle cannot be flipped:

[Fomin-Shapiro-Thurston] deals with this by introducing "tagged arcs" whose ends are tagged either plain or notched, subject to certain compatibility conditions:

Tagged arcs

An arc inside a self-folded triangle cannot be flipped:

[Fomin-Shapiro-Thurston] deals with this by introducing "tagged arcs" whose ends are tagged either plain or notched, subject to certain compatibility conditions:

• Enlarge $Sk(\Sigma)$ to include tagged arcs.

In **unpunctured** cases, Muller describes a quantization $Sk_t(\Sigma)$ of $Sk(\Sigma)$:

• $\operatorname{Sk}_t(\Sigma)$ is an algebra over $\Bbbk[t^{\pm 1}]$ rather than over \Bbbk . Denote $q = t^2$.

In **unpunctured** cases, Muller describes a quantization $Sk_t(\Sigma)$ of $Sk(\Sigma)$:

- $\mathsf{Sk}_t(\Sigma)$ is an algebra over $\Bbbk[t^{\pm 1}]$ rather than over \Bbbk . Denote $q = t^2$.
- ► The curves are now links: when strands cross, we identify which strand is on top.

In **unpunctured** cases, Muller describes a quantization $Sk_t(\Sigma)$ of $Sk(\Sigma)$:

- $\mathsf{Sk}_t(\Sigma)$ is an algebra over $\Bbbk[t^{\pm 1}]$ rather than over \Bbbk . Denote $q = t^2$.
- ► The curves are now links: when strands cross, we identify which strand is on top.
- The product * is the superposition product L₁ * L₂ is obtained by placing L₁ on top of L₂ (i.e., strands of L₁ always cross over strands of L₂).

In **unpunctured** cases, Muller describes a quantization $Sk_t(\Sigma)$ of $Sk(\Sigma)$:

- $\mathsf{Sk}_t(\Sigma)$ is an algebra over $\Bbbk[t^{\pm 1}]$ rather than over \Bbbk . Denote $q = t^2$.
- ► The curves are now links: when strands cross, we identify which strand is on top.
- ► The product * is the superposition product L₁ * L₂ is obtained by placing L₁ on top of L₂ (i.e., strands of L₁ always cross over strands of L₂). Multiplying arcs which share endpoints results in additional powers of t.

In **unpunctured** cases, Muller describes a quantization $Sk_t(\Sigma)$ of $Sk(\Sigma)$:

- $\mathsf{Sk}_t(\Sigma)$ is an algebra over $\Bbbk[t^{\pm 1}]$ rather than over \Bbbk . Denote $q = t^2$.
- ► The curves are now links: when strands cross, we identify which strand is on top.
- ► The product * is the superposition product L₁ * L₂ is obtained by placing L₁ on top of L₂ (i.e., strands of L₁ always cross over strands of L₂). Multiplying arcs which share endpoints results in additional powers of t.
- One makes the following modifications to the skein relations:
 - Contractible loops are equivalent to $-(q^2 + q^{-2})$;

$$\bigcirc = -(q^2+q^{-2})$$

The Kaufmann skein relation:

$$= q + q^{-1}$$

The resulting algebra $Sk_t(\Sigma)$ is a quantum cluster algebra.

Musiker-Schiffler-Williams construct "bangle" and "bracelet" bases for Sk(Σ).

- Musiker-Schiffler-Williams construct "bangle" and "bracelet" bases for $Sk(\Sigma)$.
- ► Both represented by unions of pairwise-disjoint and non-isotopic Z_{≥1}-weighted (tagged) arcs and non-peripheral loops:

- Musiker-Schiffler-Williams construct "bangle" and "bracelet" bases for Sk(Σ).
- ▶ Both represented by unions of pairwise-disjoint and non-isotopic Z≥1-weighted (tagged) arcs and non-peripheral loops:
 - Bangles: weight-k arc or loop κ→ k-th power of the arc or loop in Sk(Σ):

$$\langle kL \rangle_{\text{Bangles}} = \langle L \rangle_{\text{Bangles}}^k$$

- Musiker-Schiffler-Williams construct "bangle" and "bracelet" bases for Sk(Σ).
- ▶ Both represented by unions of pairwise-disjoint and non-isotopic Z≥1-weighted (tagged) arcs and non-peripheral loops:
 - Bangles: weight-k arc or loop κ→ k-th power of the arc or loop in Sk(Σ):

$$\langle kL \rangle_{\text{Bangles}} = \langle L \rangle_{\text{Bangles}}^k$$

Bracelets: same for arcs, but a weight-*k* loop is given as in the figure:

Figure: A weight-5 loop viewed as a bangle (left) and a bracelet (right).

- Musiker-Schiffler-Williams construct "bangle" and "bracelet" bases for Sk(Σ).
- ▶ Both represented by unions of pairwise-disjoint and non-isotopic Z≥1-weighted (tagged) arcs and non-peripheral loops:
 - Bangles: weight-k arc or loop κ→ k-th power of the arc or loop in Sk(Σ):

$$\langle kL \rangle_{\text{Bangles}} = \langle L \rangle_{\text{Bangles}}^k$$

Bracelets: same for arcs, but a weight-*k* loop is given as in the figure:

Figure: A weight-5 loop viewed as a bangle (left) and a bracelet (right).

▶ Let *T_k* denote the *k*-th Chebyshev polynomial (of the first kind), characterized by

$$T_k(\lambda + \lambda^{-1}) = \lambda^k + \lambda^{-k}.$$

Then $\langle kL \rangle_{\text{Bracelets}} = T_k \langle L \rangle_{\text{Bracelets}}$.

- Musiker-Schiffler-Williams construct "bangle" and "bracelet" bases for Sk(Σ).
- ▶ Both represented by unions of pairwise-disjoint and non-isotopic Z≥1-weighted (tagged) arcs and non-peripheral loops:
 - Bangles: weight-k arc or loop κ→ k-th power of the arc or loop in Sk(Σ):

$$\langle kL \rangle_{\text{Bangles}} = \langle L \rangle_{\text{Bangles}}^k$$

Bracelets: same for arcs, but a weight-*k* loop is given as in the figure:

Figure: A weight-5 loop viewed as a bangle (left) and a bracelet (right).

Let T_k denote the k-th Chebyshev polynomial (of the first kind), characterized by

$$T_k(\lambda + \lambda^{-1}) = \lambda^k + \lambda^{-k}.$$

Then $\langle kL \rangle_{\text{Bracelets}} = T_k \langle L \rangle_{\text{Bracelets}}$.

Bracelets agree with Fock-Goncharov canonical coordinates:
Weight-k loop ~ Trace of SL₂-holonomy around the loop k times.

Travis Mandel

Quantum bracelet bases

D. Thurston constructs quantum bracelet bases for unpunctured surfaces:
Quantum bracelet bases

- D. Thurston constructs quantum bracelet bases for unpunctured surfaces:
- Again given by disjoint unions of weighted arcs and loops;

Quantum bracelet bases

- D. Thurston constructs quantum bracelet bases for unpunctured surfaces:
- Again given by disjoint unions of weighted arcs and loops;
- $\blacktriangleright \langle kL \rangle_{\text{Bracelets}} := T_k \langle L \rangle_{\text{Bracelets}}.$

► Recall that f ∈ Sk(Σ) has a Laurent expansion in the cluster variables (i.e., arcs) of each cluster (triangluation).

- ► Recall that f ∈ Sk(Σ) has a Laurent expansion in the cluster variables (i.e., arcs) of each cluster (triangluation).
- Nonzero f is universally positive if the coefficients of these Laurent expansions are always non-negative integers.

nac

- ► Recall that f ∈ Sk(Σ) has a Laurent expansion in the cluster variables (i.e., arcs) of each cluster (triangluation).
- Nonzero f is universally positive if the coefficients of these Laurent expansions are always non-negative integers.
- Universally positive f is atomic if it cannot be decomposed as a sum of two other universally positive elements.

- ► Recall that f ∈ Sk(Σ) has a Laurent expansion in the cluster variables (i.e., arcs) of each cluster (triangluation).
- Nonzero f is universally positive if the coefficients of these Laurent expansions are always non-negative integers.
- Universally positive f is atomic if it cannot be decomposed as a sum of two other universally positive elements.
- ► A basis is strongly positive if any product of basis elements is a Z_{≥0}-linear combination of basis elements.

- ► Recall that f ∈ Sk(Σ) has a Laurent expansion in the cluster variables (i.e., arcs) of each cluster (triangluation).
- Nonzero f is universally positive if the coefficients of these Laurent expansions are always non-negative integers.
- Universally positive f is atomic if it cannot be decomposed as a sum of two other universally positive elements.
- ► A basis is strongly positive if any product of basis elements is a Z_{≥0}-linear combination of basis elements.
- Analogous definitions apply in the quantum setting using $\mathbb{Z}_{\geq 0}[t^{\pm 1}]$ in place of $\mathbb{Z}_{\geq 0}$.

Some past results and conjectures on positivity

► Atomic ⇒ Strongly positive ⇒ Universally positive

590

- ► Atomic ⇒ Strongly positive ⇒ Universally positive
- (Quantum) theta functions are atomic for the scattering atlas [Davison-M].

- ► Atomic ⇒ Strongly positive ⇒ Universally positive
- (Quantum) theta functions are atomic for the scattering atlas [Davison-M].
- Yurikusa: For cluster algebras from surfaces, the cluster complex is dense (except for once-punctured closed Σ) so the cluster atlas and scattering atlas agree.

- ► Atomic ⇒ Strongly positive ⇒ Universally positive
- (Quantum) theta functions are atomic for the scattering atlas [Davison-M].
- Yurikusa: For cluster algebras from surfaces, the cluster complex is dense (except for once-punctured closed Σ) so the cluster atlas and scattering atlas agree.
- D. Thurston: Classical bracelets are strongly positive (also cf. Fock-Goncharov). Conjectured strong positivity for quantum bracelets.

- ► Atomic ⇒ Strongly positive ⇒ Universally positive
- (Quantum) theta functions are atomic for the scattering atlas [Davison-M].
- Yurikusa: For cluster algebras from surfaces, the cluster complex is dense (except for once-punctured closed Σ) so the cluster atlas and scattering atlas agree.
- D. Thurston: Classical bracelets are strongly positive (also cf. Fock-Goncharov). Conjectured strong positivity for quantum bracelets.
- Fock-Goncharov: Conjectured their canonical coordinates were part of an atomic basis.

- ► Atomic ⇒ Strongly positive ⇒ Universally positive
- (Quantum) theta functions are atomic for the scattering atlas [Davison-M].
- Yurikusa: For cluster algebras from surfaces, the cluster complex is dense (except for once-punctured closed Σ) so the cluster atlas and scattering atlas agree.
- D. Thurston: Classical bracelets are strongly positive (also cf. Fock-Goncharov). Conjectured strong positivity for quantum bracelets.
- Fock-Goncharov: Conjectured their canonical coordinates were part of an atomic basis.
- Note: these positivity properties are known for (quantum) theta bases, so these conjectures would follow immediately from proving that the (quantum) bracelet and theta bases agree.

Bracelets = Thetas

Theorem (Qin-M)

The (quantum) bracelet bases agree with the (quantum) theta bases.

Bracelets = Thetas

Theorem (Qin-M)

The (quantum) bracelet bases agree with the (quantum) theta bases.*

*Minor exception for the once-punctured torus: A bracelet equals 4^k times a theta function where k is the sum of the weights of the notched arcs.

Gluing Lemma: If a bracelet β in Σ equals a theta function, then if we identify two boundary arcs of Σ to get Σ', β will still be a theta function.

- Gluing Lemma: If a bracelet β in Σ equals a theta function, then if we identify two boundary arcs of Σ to get Σ', β will still be a theta function.
- Proof for unpunctured Σ', classical setting:
 - Classical setting: β ∈ Sk(Σ') is universally positive [Thurston], hence a *positive* linear combination of theta functions.

- Gluing Lemma: If a bracelet β in Σ equals a theta function, then if we identify two boundary arcs of Σ to get Σ', β will still be a theta function.
- Proof for unpunctured Σ', classical setting:
 - Classical setting: β ∈ Sk(Σ') is universally positive [Thurston], hence a *positive* linear combination of theta functions.
 - β has the same Laurent expansion for Σ and Σ' .

- Gluing Lemma: If a bracelet β in Σ equals a theta function, then if we identify two boundary arcs of Σ to get Σ', β will still be a theta function.
- Proof for unpunctured Σ', classical setting:
 - Classical setting: β ∈ Sk(Σ') is universally positive [Thurston], hence a *positive* linear combination of theta functions.
 - β has the same Laurent expansion for Σ and Σ' .
 - Gluing boundary arcs adds a wall which can only result in more broken lines, hence possibly more positive terms or higher coefficients in each theta function.

- Gluing Lemma: If a bracelet β in Σ equals a theta function, then if we identify two boundary arcs of Σ to get Σ', β will still be a theta function.
- Proof for unpunctured Σ', classical setting:
 - Classical setting: β ∈ Sk(Σ') is universally positive [Thurston], hence a *positive* linear combination of theta functions.
 - β has the same Laurent expansion for Σ and Σ' .
 - Gluing boundary arcs adds a wall which can only result in more broken lines, hence possibly more positive terms or higher coefficients in each theta function.
 - Since β has no new terms, positivity implies it must still be only a single theta function, and the theta function gained no new terms.

- Gluing Lemma: If a bracelet β in Σ equals a theta function, then if we identify two boundary arcs of Σ to get Σ', β will still be a theta function.
- Proof for unpunctured Σ', classical setting:
 - Classical setting: β ∈ Sk(Σ') is universally positive [Thurston], hence a *positive* linear combination of theta functions.
 - β has the same Laurent expansion for Σ and Σ' .
 - Gluing boundary arcs adds a wall which can only result in more broken lines, hence possibly more positive terms or higher coefficients in each theta function.
 - Since β has no new terms, positivity implies it must still be only a single theta function, and the theta function gained no new terms.
- Quantum setting:
 - Gluing resulted in no new broken lines for the classical theta function, hence no new broken lines for the quantum theta function.

- Gluing Lemma: If a bracelet β in Σ equals a theta function, then if we identify two boundary arcs of Σ to get Σ', β will still be a theta function.
- Proof for unpunctured Σ', classical setting:
 - Classical setting: β ∈ Sk(Σ') is universally positive [Thurston], hence a *positive* linear combination of theta functions.
 - β has the same Laurent expansion for Σ and Σ' .
 - Gluing boundary arcs adds a wall which can only result in more broken lines, hence possibly more positive terms or higher coefficients in each theta function.
 - Since β has no new terms, positivity implies it must still be only a single theta function, and the theta function gained no new terms.
- Quantum setting:
 - Gluing resulted in no new broken lines for the classical theta function, hence no new broken lines for the quantum theta function.
 - The quantum Laurent expansion for β is also unchanged.

Reducing to annuli and once-marked cases

- By the Gluing Lemma, to show that weighted loops are theta functions, it suffices to consider:
 - the twice-marked annulus

and the once-marked surfaces with boundary

Annulus case

The case of the twice-marked annulus corresponds to the Kronecker-quiver (plus frozen vertices) and is understood explicitly.

Figure: $\alpha_0 \cdot L = q\alpha_{-1} + q^{-1}\alpha_1$.

Annulus case continued

Previous slide: $\alpha_0 \cdot L = q\alpha_{-1} + q^{-1}\alpha_1$.

Now check that the same holds for theta functions:

Annulus case continued

Previous slide: $\alpha_0 \cdot L = q\alpha_{-1} + q^{-1}\alpha_1$.

Now check that the same holds for theta functions:

Weighted loops for the annulus case

Up to any finite order, for Q sufficiently close to p = (1, -1), compute

$$\vartheta_{kp,\mathcal{Q}} = z^{kp} + z^{-kp}.$$

The Chebyshev relation follows.

Surfaces with a single boundary marking

The following shows that the boundary loop L times an arc γ equals a sum of three theta functions:

Combining several properties of theta functions and bracelets (positivity, pointed-ness, bar-invariance, etc.) we use this to deduce L is a theta function.

Surfaces with a single boundary marking

The following shows that the boundary loop L times an arc γ equals a sum of three theta functions:

Combining several properties of theta functions and bracelets (positivity, pointed-ness, bar-invariance, etc.) we use this to deduce L is a theta function.

• With quite a bit more work we show that each $\langle kL \rangle_{Bracelets}$ is a theta function as well.

Surfaces with a single boundary marking

The following shows that the boundary loop L times an arc γ equals a sum of three theta functions:

Combining several properties of theta functions and bracelets (positivity, pointed-ness, bar-invariance, etc.) we use this to deduce *L* is a theta function.

• With quite a bit more work we show that each $\langle kL \rangle_{\text{Bracelets}}$ is a theta function as well.

• Lemma:
$$L^k = \sum_{b \in \mathbb{Z}_{>0}} c_b \vartheta_{bg(L)}$$
.

Proof idea: The mapping class group Γ acts trivially on L^k and equivariantly on theta functions. All other g-vectors have infinite orbits under Γ (ignoring the frozen variable).

Finally, we must show that if β₁,..., β_s are disjoint bracelets corresponding to theta functions ϑ_{g1},..., ϑ_{gs}, then

$$\vartheta_{g_1}\cdots\vartheta_{g_s}=\vartheta_{g_1+\ldots+g_s}.$$

Finally, we must show that if β₁,..., β_s are disjoint bracelets corresponding to theta functions ϑ_{g1},..., ϑ_{gs}, then

$$\vartheta_{g_1}\cdots\vartheta_{g_s}=\vartheta_{g_1+\ldots+g_s}.$$

- Useful tool:
 - **b** By Yurikusa, Dehn twists by L shear the g-vectors of arcs by a multiple of g(L).

Finally, we must show that if β₁,..., β_s are disjoint bracelets corresponding to theta functions ϑ_{g1},..., ϑ_{gs}, then

$$\vartheta_{g_1}\cdots\vartheta_{g_s}=\vartheta_{g_1+\ldots+g_s}.$$

Useful tool:

- **b** By Yurikusa, Dehn twists by L shear the g-vectors of arcs by a multiple of g(L).
- Use this to find a chamber of the cluster complex arbitrarily close to $\text{Span}(g_1, \ldots, g_s)$.

Finally, we must show that if β₁,..., β_s are disjoint bracelets corresponding to theta functions ϑ_{g1},..., ϑ_{gs}, then

$$\vartheta_{g_1}\cdots\vartheta_{g_s}=\vartheta_{g_1+\ldots+g_s}.$$

Useful tool:

- **b** By Yurikusa, Dehn twists by *L* shear the *g*-vectors of arcs by a multiple of g(L).
- Use this to find a chamber of the cluster complex arbitrarily close to $\text{Span}(g_1, \ldots, g_s)$.
- Up to finite order, we can find such a chamber where each ϑ_{g_i} is either z^{g_i} or $z^{g_i} + z^{-g_i}$.

Punctured surfaces

- Use gluing and the previous arguments to prove bracelets without notches are theta functions.
- In most cases, notched arcs are cluster variables, so extending to include these is not hard.

Punctured surfaces

- Use gluing and the previous arguments to prove bracelets without notches are theta functions.
- In most cases, notched arcs are cluster variables, so extending to include these is not hard.
- Once-punctured surfaces: notched arcs are not cluster variables.
 - Fomin-Thurston: interpret (notched) arcs in terms of lambda lengths between (conjugate) horocycles.
Punctured surfaces

- Use gluing and the previous arguments to prove bracelets without notches are theta functions.
- In most cases, notched arcs are cluster variables, so extending to include these is not hard.
- Once-punctured surfaces: notched arcs are not cluster variables.
 - Fomin-Thurston: interpret (notched) arcs in terms of lambda lengths between (conjugate) horocycles.
 - We relate the once-punctured surfaces to covering spaces and use a generalized version of quiver folding.

Punctured surfaces

- Use gluing and the previous arguments to prove bracelets without notches are theta functions.
- In most cases, notched arcs are cluster variables, so extending to include these is not hard.
- Once-punctured surfaces: notched arcs are not cluster variables.
 - Fomin-Thurston: interpret (notched) arcs in terms of lambda lengths between (conjugate) horocycles.
 - We relate the once-punctured surfaces to covering spaces and use a generalized version of quiver folding.
 - Then using the digon relations we find that bracelets agree with theta functions except in genus 1.

Punctured surfaces

- Use gluing and the previous arguments to prove bracelets without notches are theta functions.
- In most cases, notched arcs are cluster variables, so extending to include these is not hard.
- Once-punctured surfaces: notched arcs are not cluster variables.
 - Fomin-Thurston: interpret (notched) arcs in terms of lambda lengths between (conjugate) horocycles.
 - We relate the once-punctured surfaces to covering spaces and use a generalized version of quiver folding.
 - Then using the digon relations we find that bracelets agree with theta functions except in genus 1.
 - For the once-puncture torus, comparison to Y. Zhou's description of theta functions shows that a notched arc is actually 4 times a theta function.