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Introduction

Overview: skein algebras

I A skein algebra of a marked surface Σ is an algebra Sk(Σ) of arcs and loops in Σ.

I Sk(Σ) is part of the ring of functions on Fock-Goncharov’s moduli of decorated
twisted SL2-local systems on Σ.

I Sk(Σ) has a cluster algebra structure [Fock-Goncharov, Fomin-Shapiro-Thurston,
Musiker-Williams].

I Sk(Σ) has a canonical basis called the “bracelet basis” [Musiker-Schiffler-Williams,
Fock-Goncharov].

I Cluster algebras have canonical “theta bases” [Gross-Hacking-Keel-Kontsevich].

I Theorem [M-Qin]: The bracelet basis equals the theta basis.
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Introduction

Overview: quantum skein algebras

I Quantum skein algebras have quantum cluster structures [G. Muller] with quantum
bracelet bases [D. Thurston].

I Quantum cluster algebras have quantum theta bases [Davison-M].
I I’ll assume some familiarity with these since Ben just talked about this.

I Theorem [M-Qin]: Quantum bracelet bases are quantum theta bases.
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Introduction

Overview: cluster Poisson algebra

I Fock-Goncharov: functions on the moduli of framed PGL2-local systems form a
cluster Poisson algebra, equipped with canonical coordinates.

I Allegretti-Kim use Bonahon-Wong’s quantum trace map to define quantum
canonical coordinates for the corresponding quantum cluster Poisson algebra.

I Theorem [M-Qin]: These (quantum) canonical coordinates are (quantum) theta
bases.
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Skein algebras

Skein algebras

I Let Σ = (S,M) be a marked surface, i.e.:
I a closed surface S with boundary ∂S, and
I a finite collection of marked points M such that every component of ∂S is marked.

Marked points in S \ ∂S are called punctures.

I Sk(Σ): spanned by isotopy classes of immersions i : C → S such that
I C is a closed one-manifold (i.e., a disjoint union of circles and closed intervals)
I i(∂C) ⊂ M

modulo certain relations (next slide).

I The product of two elements of Sk(Σ) is the union of the corresponding
immersions of curves.
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Skein algebras

The skein relations

I Contractible arcs are equivalent to 0:

= 0 = 0

I Contractible loops are equivalent to −2:

= −2

I A loop around a puncture (called a peripheral loop) is equivalent to 2;

= 2

I The skein relation:

= +
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Skein algebras

Cluster structure of the skein algebra

I Theorem [Fock-Goncharov, Fomin-Shapiro-Thurston, Musiker-Williams]: This
skein algebra Sk(Σ) has a cluster structure such that:
I (tagged) triangulations corresponding to clusters;
I (tagged) arcs correspond to cluster variables;

I Given a triangulation of Σ, the exchange pairing between arcs i and j is a signed count
of the triangles containing i and j .

I Boundary arcs correspond to frozen variables.

I Mutation corresponds to flipping the diagonal of a quadrilateral:

γ
γ′
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Skein algebras

Tagged arcs

I An arc inside a self-folded triangle cannot be flipped:

I [Fomin-Shapiro-Thurston] deals with this by introducing “tagged arcs” whose ends
are tagged either plain or notched, subject to certain compatibility conditions:

m m

pp
α

ι(α)

I Enlarge Sk(Σ) to include tagged arcs.
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Skein algebras

Quantum skein algebra

In unpunctured cases, Muller describes a quantization Skt (Σ) of Sk(Σ):

I Skt (Σ) is an algebra over k[t±1] rather than over k. Denote q = t2.

I The curves are now links: when strands cross, we identify which strand is on top.

I The product ∗ is the superposition product — L1 ∗ L2 is obtained by placing L1 on
top of L2 (i.e., strands of L1 always cross over strands of L2). Multiplying arcs
which share endpoints results in additional powers of t .

I One makes the following modifications to the skein relations:
I Contractible loops are equivalent to −(q2 + q−2);

= −(q2 + q−2)

I The Kaufmann skein relation:

= q +q−1

The resulting algebra Skt (Σ) is a quantum cluster algebra.
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Skein algebras

Bangles and bracelets

I Musiker-Schiffler-Williams construct “bangle” and “bracelet” bases for Sk(Σ).

I Both represented by unions of pairwise-disjoint and non-isotopic Z≥1-weighted
(tagged) arcs and non-peripheral loops:
I Bangles: weight-k arc or loop! k -th power of the arc or loop in Sk(Σ):

〈kL〉Bangles = 〈L〉kBangles.

I Bracelets: same for arcs, but a weight-k loop is given as in the figure:

Figure: A weight-5 loop viewed as a bangle (left) and a bracelet (right).

I Let Tk denote the k -th Chebyshev polynomial (of the first kind), characterized by

Tk (λ+ λ−1) = λk + λ−k .

Then 〈kL〉Bracelets = Tk 〈L〉Bracelets.

I Bracelets agree with Fock-Goncharov canonical coordinates:
Weight-k loop Trace of SL2-holonomy around the loop k times.
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Skein algebras

Quantum bracelet bases

I D. Thurston constructs quantum bracelet bases for unpunctured surfaces:

I Again given by disjoint unions of weighted arcs and loops;

I 〈kL〉Bracelets := Tk 〈L〉Bracelets.
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Skein algebras

Positivity definitions

I Recall that f ∈ Sk(Σ) has a Laurent expansion in the cluster variables (i.e., arcs)
of each cluster (triangluation).

I Nonzero f is universally positive if the coefficients of these Laurent expansions
are always non-negative integers.

I Universally positive f is atomic if it cannot be decomposed as a sum of two other
universally positive elements.

I A basis is strongly positive if any product of basis elements is a Z≥0-linear
combination of basis elements.

I Analogous definitions apply in the quantum setting using Z≥0[t±1] in place of Z≥0.
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Skein algebras

Some past results and conjectures on positivity

I Atomic =⇒ Strongly positive =⇒ Universally positive

I (Quantum) theta functions are atomic for the scattering atlas [Davison-M].

I Yurikusa: For cluster algebras from surfaces, the cluster complex is dense (except
for once-punctured closed Σ) so the cluster atlas and scattering atlas agree.

I D. Thurston: Classical bracelets are strongly positive (also cf. Fock-Goncharov).
Conjectured strong positivity for quantum bracelets.

I Fock-Goncharov: Conjectured their canonical coordinates were part of an atomic
basis.

I Note: these positivity properties are known for (quantum) theta bases, so these
conjectures would follow immediately from proving that the (quantum) bracelet and
theta bases agree.
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Skein algebras

Bracelets = Thetas

Theorem (Qin-M)

The (quantum) bracelet bases agree with the (quantum) theta bases.

*

*Minor exception for the once-punctured torus: A bracelet equals 4k times a theta
function where k is the sum of the weights of the notched arcs.
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Skein algebras

Cutting/gluing

I Gluing Lemma: If a bracelet β in Σ equals a theta function, then if we identify two
boundary arcs of Σ to get Σ′, β will still be a theta function.

I Proof for unpunctured Σ′, classical setting:
I Classical setting: β ∈ Sk(Σ′) is universally positive [Thurston], hence a positive linear

combination of theta functions.
I β has the same Laurent expansion for Σ and Σ′.
I Gluing boundary arcs adds a wall which can only result in more broken lines, hence

possibly more positive terms or higher coefficients in each theta function.
I Since β has no new terms, positivity implies it must still be only a single theta function,

and the theta function gained no new terms.

I Quantum setting:
I Gluing resulted in no new broken lines for the classical theta function, hence no new

broken lines for the quantum theta function.
I The quantum Laurent expansion for β is also unchanged.
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Skein algebras

Reducing to annuli and once-marked cases

I By the Gluing Lemma, to show that weighted loops are theta functions, it suffices
to consider:
I the twice-marked annulus

= ∪

I and the once-marked surfaces with boundary
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Skein algebras

Annulus case

The case of the twice-marked annulus corresponds to the Kronecker-quiver (plus
frozen vertices) and is understood explicitly.

α1

α0

α−1

α0

L

α0

Figure: α0 · L = qα−1 + q−1α1.
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Skein algebras

Annulus case continued

Previous slide: α0 · L = qα−1 + q−1α1.
Now check that the same holds for theta functions:
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Skein algebras

Weighted loops for the annulus case

•
Q

Up to any finite order, for Q sufficiently close to p = (1,−1), compute

ϑkp,Q = zkp + z−kp.

The Chebyshev relation follows.
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Skein algebras

Surfaces with a single boundary marking

I The following shows that the boundary loop L times an arc γ equals a sum of three
theta functions:

= + +

Combining several properties of theta functions and bracelets (positivity,
pointed-ness, bar-invariance, etc.) we use this to deduce L is a theta function.

I With quite a bit more work we show that each 〈kL〉Bracelets is a theta function as well.
I Lemma: Lk =

∑
b∈Z≥0

cbϑbg(L).
I Proof idea: The mapping class group Γ acts trivially on Lk and equivariantly on theta

functions. All other g-vectors have infinite orbits under Γ (ignoring the frozen variable).
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Skein algebras

Disjoint unions of bracelets

I Finally, we must show that if β1, . . . , βs are disjoint bracelets corresponding to
theta functions ϑg1 , . . . , ϑgs , then

ϑg1 · · ·ϑgs = ϑg1+...+gs .

I Useful tool:
I By Yurikusa, Dehn twists by L shear the g-vectors of arcs by a multiple of g(L).
I Use this to find a chamber of the cluster complex arbitrarily close to Span〈g1, . . . , gs〉.
I Up to finite order, we can find such a chamber where each ϑgi is either zgi or zgi + z−gi .
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Skein algebras

Punctured surfaces

I Use gluing and the previous arguments to prove bracelets without notches are
theta functions.

I In most cases, notched arcs are cluster variables, so extending to include these is
not hard.

I Once-punctured surfaces: notched arcs are not cluster variables.
I Fomin-Thurston: interpret (notched) arcs in terms of lambda lengths between

(conjugate) horocycles.
I We relate the once-punctured surfaces to covering spaces and use a generalized

version of quiver folding.
I Then using the digon relations we find that bracelets agree with theta functions except

in genus 1.
I For the once-puncture torus, comparison to Y. Zhou’s description of theta functions

shows that a notched arc is actually 4 times a theta function.
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