Mirror symmetry and canonical bases for quantum cluster algebras

Travis Mandel

Mirror symmetry in physics

- Different models of string theory should be equivalent.
- The A-model for one space $X \cong$ The B-model for a "mirror" space Y.

Mirror symmetry in physics

- Different models of string theory should be equivalent.
- The A-model for one space $X \cong$ The B-model for a "mirror" space Y.
- A-model captures structure from symplectic geometry.
- ► *B*-model captures structure from algebraic geometry.

1991: Candelas-de la Ossa-Green-Parkes counted degree d curves in certain spaces by computing integrals on the mirror.

- 1991: Candelas-de la Ossa-Green-Parkes counted degree d curves in certain spaces by computing integrals on the mirror.
- 1994: Kontsevich's ICM address Conjectured Homological Mirror Symmetry.

- 1991: Candelas-de la Ossa-Green-Parkes counted degree d curves in certain spaces by computing integrals on the mirror.
- 1994: Kontsevich's ICM address Conjectured Homological Mirror Symmetry.
- 1996: Strominger-Yau-Zaslow (SYZ) Conjecture More direct geometric relationship between mirrors.

- 1991: Candelas-de la Ossa-Green-Parkes counted degree d curves in certain spaces by computing integrals on the mirror.
- 1994: Kontsevich's ICM address Conjectured Homological Mirror Symmetry.
- 1996: Strominger-Yau-Zaslow (SYZ) Conjecture More direct geometric relationship between mirrors.
- 2002: Gross-Siebert Program Interpret SYZ using tropical and log geometry to give an explicit systematic construction of mirrors.

SYZ Conjecture

Mirrors should have dual torus fibrations:

• dim_{$$\mathbb{R}$$}(B) = $\frac{1}{2}$ dim _{\mathbb{R}} (X) = $\frac{1}{2}$ dim _{\mathbb{R}} (Y),

- generic fibers of μ_X are tori, and
- generic fibers of μ_Y are the dual tori.

SYZ Conjecture

Mirrors should have dual torus fibrations:

• dim_{$$\mathbb{R}$$}(B) = $\frac{1}{2}$ dim _{\mathbb{R}} (X) = $\frac{1}{2}$ dim _{\mathbb{R}} (Y),

- generic fibers of μ_X are tori, and
- generic fibers of μ_Y are the dual tori.

Example:

- Let $\mathbb{C}^* := \mathbb{C} \setminus \{0\}.$
- Let $X = (\mathbb{C}^*)^n$ (the "algebraic torus").
- Then $Y = \text{Hom}((\mathbb{C}^*)^n, \mathbb{C}^*) \cong (\mathbb{C}^*)^n$.

$$\mu: (\mathbb{C}^*)^n \to \mathbb{R}^n, \qquad \mu(a_1, \ldots, a_n) := (\log |a_1|, \ldots, \log |a_n|)$$

SYZ map

• Example: $\mu : S^2 \rightarrow [0, 1]$.

590

Local coordinate on B

Let $\gamma_1, \ldots, \gamma_n$ be a basis for $\pi_1(S_1^n) = \pi_1(\mu_X^{-1}(Q))$.

 $\{y_j | j = 1, ..., n\}$ form local coordinates on *B*.

Local coordinates for Y

- ► The y_j's form local coordinates on B.
- Let $x_j := dy_j$. This determines lattices $T^*_{\mathbb{Z}}B \subset T^*B$ and $T_{\mathbb{Z}}B \subset TB$.
- Locally,

$$X = T^*B/T_{\mathbb{Z}}^*B$$
 and $Y = TB/T_{\mathbb{Z}}B$.

Local coordinates for Y

- ► The y_j's form local coordinates on B.
- ▶ Let $x_j := dy_j$. This determines lattices $T_{\mathbb{Z}}^*B \subset T^*B$ and $T_{\mathbb{Z}}B \subset TB$.
- Locally,

$$X = T^*B/T^*_{\mathbb{Z}}B$$
 and $Y = TB/T_{\mathbb{Z}}B$.

- $w_j := x_j + iy_j$ gives local holomorphic coordinates for *Y*.
- $z_j := \exp(2\pi i w_j)$ gives local algebraic coordinates.

▶ For some cases, $p \in T_{\mathbb{Z}}B \rightsquigarrow$ global function ϑ_p on *Y*.

- ▶ For some cases, $p \in T_{\mathbb{Z}}B \rightsquigarrow$ global function ϑ_p on Y.
- ► Let D_{p,Q} be the set of holomorphic disks going to infinity in direction p and with boundary on torus over Q.

- ▶ For some cases, $p \in T_{\mathbb{Z}}B \rightsquigarrow$ global function ϑ_p on Y.
- ► Let D_{p,Q} be the set of holomorphic disks going to infinity in direction p and with boundary on torus over Q.

For
$$\Gamma \in D_{p,Q}$$
, let $y_{\Gamma} := \operatorname{Area}(\Gamma)$.

- ▶ For some cases, $p \in T_{\mathbb{Z}}B \rightsquigarrow$ global function ϑ_p on Y.
- ► Let D_{p,Q} be the set of holomorphic disks going to infinity in direction p and with boundary on torus over Q.

For
$$\Gamma \in D_{p,Q}$$
, let $y_{\Gamma} := \operatorname{Area}(\Gamma)$.

Varying Q makes y_Γ a local function on B. Let x_Γ := dy_Γ.

- ▶ For some cases, $p \in T_{\mathbb{Z}}B \rightsquigarrow$ global function ϑ_p on Y.
- ► Let D_{p,Q} be the set of holomorphic disks going to infinity in direction p and with boundary on torus over Q.

For
$$\Gamma \in D_{p,Q}$$
, let $y_{\Gamma} := \operatorname{Area}(\Gamma)$.

Varying Q makes y_Γ a local function on B. Let x_Γ := dy_Γ.

• Let
$$z_{\Gamma} := \exp(2\pi i(x_{\Gamma} + iy_{\Gamma}))$$
.

- ▶ For some cases, $p \in T_{\mathbb{Z}}B \rightsquigarrow$ global function ϑ_p on Y.
- ► Let D_{p,Q} be the set of holomorphic disks going to infinity in direction p and with boundary on torus over Q.

For
$$\Gamma \in D_{p,Q}$$
, let $y_{\Gamma} := \operatorname{Area}(\Gamma)$.

Varying Q makes y_Γ a local function on B. Let x_Γ := dy_Γ.

• Let
$$z_{\Gamma} := \exp(2\pi i(x_{\Gamma} + iy_{\Gamma}))$$
.

 Local expression for ϑ_p near torus over Q given by:

$$\vartheta_{p,Q} := \sum_{\Gamma \in D_{p,Q}} z_{\Gamma}.$$

Holomorphic disks

Typically, some fibers are singular (e.g., pinched tori). This results in more holomorphic disks.

The Gross-Siebert program

The Gross-Siebert program

The graph in *B* is called a **tropical disk**.

The Gross-Siebert program

The Gross-Siebert program

The graph in *B* is called a **tropical disk**.

The Gross-Siebert Program:

- Use the tropical picture to construct mirrors Y with canonical theta function bases for their rings of global functions.
- ► Use log geometry to relate these bases to curve counts in *X*.

Wall-crossing

Holomorphic disks over *B* result in walls in *B* where our local coordinate system changes:

Wall-crossing

Holomorphic disks over *B* result in walls in *B* where our local coordinate system changes:

 $\mathsf{E.g.}, \quad (\mathbb{C}^*)^2 \dashrightarrow (\mathbb{C}^*)^2, \quad x \mapsto x(1+y).$

Scattering

The initial walls can interact to form new walls:

Scattering diagrams

The data of these walls is encoded in a "scattering diagram."

Walls labelled with functions indicating the corresponding transition functions.

Broken lines

Broken lines with ends (p, Q) — tropical version of the holomorphic disks whose behavior at ∞ is determined by p, and whose boundary is on the fiber over Q.

Theta functions

• Theta function for each $p \in T_{\mathbb{Z}}B$, given locally by:

$$\vartheta_{p,Q} := \sum_{\mathsf{Ends}(\gamma) = (p,Q)} a_{\gamma} z^{m_{\gamma}}$$

where $a_{\gamma} z^{m_{\gamma}}$ is the monomial attached to the last straight segment of γ .

Theta functions

• Theta function for each $p \in T_{\mathbb{Z}}B$, given locally by:

$$\vartheta_{p,Q} := \sum_{\operatorname{Ends}(\gamma)=(p,Q)} a_{\gamma} z^{m_{\gamma}},$$

where $a_{\gamma} z^{m_{\gamma}}$ is the monomial attached to the last straight segment of γ .

 Gross-Hacking-Keel (Publ. IHES, 2015): Used this to define canonical bases for log Calabi-Yau surfaces.

Theta functions

▶ Theta function for each $p \in T_{\mathbb{Z}}B$, given locally by:

$$\vartheta_{p,Q} := \sum_{\operatorname{Ends}(\gamma)=(p,Q)} a_{\gamma} z^{m_{\gamma}},$$

where $a_{\gamma} z^{m_{\gamma}}$ is the monomial attached to the last straight segment of γ .

- Gross-Hacking-Keel (Publ. IHES, 2015): Used this to define canonical bases for log Calabi-Yau surfaces.
- Gross-Hacking-Keel-Kontsevich (JAMS, 2018): Used this to define canonical bases for cluster algebras.

Cluster algebras

Cluster algebras — certain combinatorially constructed commutative rings.

Fomin-Zelevinsky (JAMS 2002) — to create an algebraic/combinatorial framework for understanding Lusztig's dual canonical bases and total positivity for semisimple (quantum) groups.

Cluster algebras

Cluster algebras — certain combinatorially constructed commutative rings.

Fomin-Zelevinsky (JAMS 2002) — to create an algebraic/combinatorial framework for understanding Lusztig's dual canonical bases and total positivity for semisimple (quantum) groups.

Applications:

- Representation theory and quantum groups;
- (Higher) Teichmüller theory and Poisson geometry;
- Discrete integrable systems;
- DT-theory and quiver representations;
- Mirror symmetry;

Fock-Goncharov (Ann. Sci. Éc. Norm. Supér. 2009):
Cluster varieties constructed by gluing together algebraic tori, called clusters, via certain birational maps called mutations.

Fock-Goncharov (Ann. Sci. Éc. Norm. Supér. 2009):
Cluster varieties constructed by gluing together algebraic tori, called clusters, via certain birational maps called mutations.

 Upper cluster algebra — ring of global regular functions on the cluster variety.

Fock-Goncharov (Ann. Sci. Éc. Norm. Supér. 2009):
Cluster varieties constructed by gluing together algebraic tori, called clusters, via certain birational maps called mutations.

- Upper cluster algebra ring of global regular functions on the cluster variety.
- Cluster algebra subring generated by the "cluster monomials," i.e., elements which are monomials in some cluster.

Examples

...

Many important spaces have cluster structures, including:

- Semisimple Lie groups;
- Grassmannians, other partial flag varieties, and Schubert varieties;
- Higher Teichmüller spaces;
- All log Calabi-Yau surfaces;

Consider
$$SL_2(\mathbb{C}) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \middle| ad - bc = 1 \right\}.$$

- Two clusters $\mathbb{C}^* \times \mathbb{C}^2$:
 - One where $a \neq 0$: coordinate ring $\mathbb{C}[a^{\pm 1}, b, c]$
 - One where $d \neq 0$: coordinate ring $\mathbb{C}[d^{\pm 1}, b, c]$.

Consider
$$SL_2(\mathbb{C}) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \middle| ad - bc = 1 \right\}.$$

- ► Two clusters C* × C²:
 - One where $a \neq 0$: coordinate ring $\mathbb{C}[a^{\pm 1}, b, c]$
 - One where $d \neq 0$: coordinate ring $\mathbb{C}[d^{\pm 1}, b, c]$.
- Glued via the mutation ad = 1 + bc.

Consider
$$SL_2(\mathbb{C}) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \middle| ad - bc = 1 \right\}.$$

- ► Two clusters C* × C²:
 - One where $a \neq 0$: coordinate ring $\mathbb{C}[a^{\pm 1}, b, c]$
 - One where $d \neq 0$: coordinate ring $\mathbb{C}[d^{\pm 1}, b, c]$.
- Glued via the mutation ad = 1 + bc.
- **Canonical basis** for coordinate ring $\mathbb{C}[a, b, c, d]/\langle ad bc = 1 \rangle$:

 $\{a^rb^sc^t, d^rb^sc^t | r, s, t \in \mathbb{Z}_{\geq 0}\}.$

Consider
$$SL_2(\mathbb{C}) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \middle| ad - bc = 1 \right\}.$$

- ► Two clusters C* × C²:
 - One where $a \neq 0$: coordinate ring $\mathbb{C}[a^{\pm 1}, b, c]$
 - One where $d \neq 0$: coordinate ring $\mathbb{C}[d^{\pm 1}, b, c]$.
- Glued via the mutation ad = 1 + bc.
- **Canonical basis** for coordinate ring $\mathbb{C}[a, b, c, d]/\langle ad bc = 1 \rangle$:

$$\{a^rb^sc^t, d^rb^sc^t | r, s, t \in \mathbb{Z}_{\geq 0}\}.$$

- Universally positive: $\mathbb{Z}_{\geq 0}$ -coefficients in each cluster. E.g., $d = a^{-1} + a^{-1}bc$.
- Strongly positive: structure constants in Z_{≥0}. E.g. both equal 1 for a · d = 1 + bc.
- Atomic: basis elements cannot be decomposed as sums of other universally positive elements.

The Fock-Goncharov Conjecture

Conjecture (Fock-Goncharov, 2003)

The atomic elements of a (classical or quantum) cluster algebra form a canonical basis for the algebra. This basis includes all the cluster monomials.

The Fock-Goncharov Conjecture

Conjecture (Fock-Goncharov, 2003)

The atomic elements of a (classical or quantum) cluster algebra form a canonical basis for the algebra. This basis includes all the cluster monomials.

- Universal positivity for the cluster monomials was conjectured in the original cluster algebras paper (Fomin-Zelevinsky, 2002).
 - Universal positivity for the classical cluster monomials proved by Lee-Schiffler (Annals 2015).
 - Universal positivity for the quantum cluster monomials proved by Davison (Annals 2018).

Why care about positive bases?

- Significance in mirror symmetry;
- They frequently show up in natural ways (e.g., minors of matrices, Plücker coordinates, lambda lengths and traces/eigenvalues of holonomies, ...);

Why care about positive bases?

- Significance in mirror symmetry;
- They frequently show up in natural ways (e.g., minors of matrices, Plücker coordinates, lambda lengths and traces/eigenvalues of holonomies, ...);
- Positivity is useful for proving other properties.

Why care about positive bases?

- Significance in mirror symmetry;
- They frequently show up in natural ways (e.g., minors of matrices, Plücker coordinates, lambda lengths and traces/eigenvalues of holonomies, ...);
- Positivity is useful for proving other properties.
- Positivity suggests the coefficients have some deeper meaning:
 - Mirror symmetry: counts of holomorphic disks;
 - Categorification: dimensions of vector spaces.

Classical theta bases

Using scattering diagrams and broken lines:

Theorem (Gross-Hacking-Keel-Kontsevich, JAMS 2018)

A modified version of the Fock-Goncharov conjecture is true for classical cluster algebras. I.e., there are strongly positive, universally positive bases $\{\vartheta_p\}_p$ which include the cluster monomials.

The cluster complex and atomicity

Clusters *weight* chambers in the "nice" part of the scattering diagram.

The cluster complex and atomicity

Clusters <----> chambers in the "nice" part of the scattering diagram.

Theorem (M, Compositio 2017)

 $\{\vartheta_p\}_p$ is atomic with respect to the scattering atlas — i.e., the local coordinate systems associated to the scattering diagram (more charts than just clusters).

Geometric interpretation of theta bases

Theorem (M, Keel-Yu, Gross-Siebert, 2019)

The theta functions really are determined by counts of holomorphic curves as predicted by mirror symmetry.

 Keel-Yu: Structure constants are positive because they literally are counts of curves (at least for affine cluster varieties).

Cluster algebras were motivated by canonical bases for *quantum* groups, so we really want a quantum version of all this.

- Cluster algebras were motivated by canonical bases for *quantum* groups, so we really want a quantum version of all this.
- Replacing the torus algebras with quantum torus algebras and quantizing mutations yields quantum cluster algebras. (Berenstein–Zelevinsky, Fock–Goncharov).
 - (Classical) torus algebra coordinate ring for $(\mathbb{C}^*)^n$:

$$n = 2$$
: $\mathbb{C}[x^{\pm 1}, y^{\pm 1}].$

- Cluster algebras were motivated by canonical bases for *quantum* groups, so we really want a quantum version of all this.
- Replacing the torus algebras with quantum torus algebras and quantizing mutations yields quantum cluster algebras. (Berenstein–Zelevinsky, Fock–Goncharov).
 - (Classical) torus algebra coordinate ring for $(\mathbb{C}^*)^n$:

$$n = 2$$
: $\mathbb{C}[x^{\pm 1}, y^{\pm 1}].$

Quantum torus algebra — non-commutative deformation:

$$n=2:\qquad \mathbb{C}[q^{\pm 1/2}][x^{\pm 1},y^{\pm 1}]/\langle xy=qyx\rangle.$$

Recovers classical version under $q^{1/2} \mapsto 1$.

- Cluster algebras were motivated by canonical bases for *quantum* groups, so we really want a quantum version of all this.
- Replacing the torus algebras with quantum torus algebras and quantizing mutations yields quantum cluster algebras. (Berenstein–Zelevinsky, Fock–Goncharov).
 - (Classical) torus algebra coordinate ring for $(\mathbb{C}^*)^n$:

$$n = 2$$
: $\mathbb{C}[x^{\pm 1}, y^{\pm 1}].$

Quantum torus algebra — non-commutative deformation:

$$n=2:\qquad \mathbb{C}[q^{\pm 1/2}][x^{\pm 1},y^{\pm 1}]/\langle xy=qyx\rangle.$$

Recovers classical version under $q^{1/2} \mapsto 1$.

Motivation for quantum cluster algebras

Examples (quantum versions of everything from before):

- Quantum groups, quantum double Bruhat cells;
- Skein algebras [G. Muller, Quantum Topol. 2016], quantum higher Teichmüller spaces;

$$= q + q^{-1}$$

Quantum integrable systems

Motivation for quantum cluster algebras

Examples (quantum versions of everything from before):

- Quantum groups, quantum double Bruhat cells;
- Skein algebras [G. Muller, Quantum Topol. 2016], quantum higher Teichmüller spaces;

$$= q + q^{-1}$$

- Quantum integrable systems
- ► .
- Motivation from physics.
- Reveals more structure:
 - Poincaré polynomials instead of Euler characteristics;
 - B-field contributions in mirror symmetry.

Quantum theta bases

Using a quantum version of scattering diagrams and broken lines, we prove the quantum Fock-Goncharov conjecture:

Theorem (M-Davison, Oct. 2019)

Quantum cluster algebras admit a strongly positive, universally positive canonical basis $\{\vartheta_p\}_p$, consisting precisely of the elements which are atomic with respect to the scattering atlas, including all cluster monomials.

Quantum theta bases

Using a quantum version of scattering diagrams and broken lines, we prove the quantum Fock-Goncharov conjecture:

Theorem (M-Davison, Oct. 2019)

Quantum cluster algebras admit a strongly positive, universally positive canonical basis $\{\vartheta_p\}_p$, consisting precisely of the elements which are atomic with respect to the scattering atlas, including all cluster monomials.

- Proof uses significant input from cohomological DT-theory:
 - Scattering functions expressed in terms of Poincaré polynomials (refined Euler characteristics) of spaces of quiver representations. These have the desired form by [Davison–Meinhardt (2016)].

Quantum theta bases

Using a quantum version of scattering diagrams and broken lines, we prove the quantum Fock-Goncharov conjecture:

Theorem (M-Davison, Oct. 2019)

Quantum cluster algebras admit a strongly positive, universally positive canonical basis $\{\vartheta_p\}_p$, consisting precisely of the elements which are atomic with respect to the scattering atlas, including all cluster monomials.

- Proof uses significant input from cohomological DT-theory:
 - Scattering functions expressed in terms of Poincaré polynomials (refined Euler characteristics) of spaces of quiver representations. These have the desired form by [Davison–Meinhardt (2016)].
 - Points towards approach via categorification.

Theta bases via categorification.

- ► Theta bases via categorification.
- Connections to representation theory and Teichmüller theory.
- Relation to other bases (greedy bases, bracelet bases, dual canonical bases,...).

- Theta bases via categorification.
- Connections to representation theory and Teichmüller theory.
- Relation to other bases (greedy bases, bracelet bases, dual canonical bases,...).
 - In progress: theta bases = bracelet bases (joint with F. Qin)
 - Will imply the conjecture by D. Thurston (PNAS 2014) that quantum bracelet bases for Skein algebras are strongly positive.

- Theta bases via categorification.
- Connections to representation theory and Teichmüller theory.
- Relation to other bases (greedy bases, bracelet bases, dual canonical bases,...).
 - In progress: theta bases = bracelet bases (joint with F. Qin)
 - Will imply the conjecture by D. Thurston (PNAS 2014) that quantum bracelet bases for Skein algebras are strongly positive.
- Relation to higher-genus curve counts [Bousseau, Compositio 2019].

Future plans: Connection to HMS

For the quantum theta bases, need homological mirror symmetry (HMS).

Future plans: Connection to HMS

- For the quantum theta bases, need homological mirror symmetry (HMS).
- Cluster varieties have a well-defined positive real locus $R = \mathbb{R}^n_{>0}$.
- In HMS, multiplication of theta functions should be determined by counts of holomorphic disks with boundary on R.

Future plans: Connection to HMS

- For the quantum theta bases, need homological mirror symmetry (HMS).
- ► Cluster varieties have a well-defined positive real locus R = ℝⁿ_{>0}.
- In HMS, multiplication of theta functions should be determined by counts of holomorphic disks with boundary on R.

For quantum theta functions, the powers of *q* should come from the areas of the disks with respect to a "*B*-field."