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1. Talk 1: Tropical correspondence

The Gross-Siebert program approaches mirror symmetry by tropicalizing the A- and B-models.

This talk relates to tropicalizing the A-model. The A-model is concerned with Gromov-Witten the-

ory (counting holomorphic curves). I’ll explain how certain Gromov-Witten type invariants can be

computed tropically.

The first papers on this are [Mik05] (all genus in dimension 2) and [NS06] (genus 0 in all dimensions).

I’ll explain some cases from [MR16] (see the paper for details I skip), where we followed the [NS06]

log degeneration approach.

1.1. Tropical curves. We’ll stick to genus 0 since I don’t yet know how higher genus plays into the

Gross-Siebert program.

Let Γ denote a tree with its 1-valent vertices removed. Let Γ[0], Γ[1], and Γ
[1]
∞ , and Γ

[1]
c denote

the the sets of vertices, edges, non-compact edges, and compact edges, respectively. Equip Γ with a

weight function w : Γ[1] → Z≥0. A marking of Γ is a map µ : {1, . . . ,m} → Γ[0] plus a bijection

ε : {1, . . . , e∞}
∼→ Γ

[1]
∞ . We denote Vi := µ(i) and Ej := ε(j). We only allow bivalent vertices if they

are marked.

Definition 1.1. A parametrized marked (genus 0) tropical curve (Γ, µ, ε, h) is data (Γ, µ, ε) as

above, along with a proper continuous map h : Γ→ NR such that

(1) For each edge E ∈ Γ[1], h|E is an embedding into an affine line with rational slope.

(2) For all V ∈ Γ[0], h(V ) ∈ NQ, and the balancing condition holds: For any edge E 3 V ,

denote by u(V,E) the primitive integral vector emanating from h(V ) into h(E). Then∑
E3V

w(E)u(V,E) = 0.

A (marked, genus 0) tropical curve is then a parametrized marked tropical curve up to isomorphism

(morphisms are homeomorphisms of trees commuting with the markings, weights, and h’s).
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2 TRAVIS MANDEL

The degree ∆ of (Γ, µ, ε, h) is the set

∆(Γ, µ, ε, u) = {(w(Ej)uEj , j) | 1 ≤ j ≤ e∞}.(1)

For each V ∈ Γ[0], denote mV := #µ−1(V ), ov(V ) := val(V ) + mV − 3 (motivation: ov(V ) =

dimM0,val(V )+mV ).

1.1.1. Incidence and psi-class conditions.

Definition 1.2. Incidence conditions: Let A be a tuple (A1, . . . , Am;B1, . . . , Be∞) of affine sub-

spaces of NQ. (Γ, µ, ε, h) matches the constraints A if h(Vi) ∈ Ai for i = 1, . . . ,m and h(Ej) ⊂ Bj
for j = 1, . . . , e∞.

Psi-class conditions: Consider another tuple Ψ := (s1, . . . , sm) ∈ Zm≥0. (Γ, µ, ε, h) satisfies Ψ if

for each marked vertex V ,

ov(V ) ≥
∑

i∈µ−1(V )

si.(2)

Generically this will actuall be an equality.

Definition 1.3. Assuming
∑
si +

∑
codim(Ai) +

∑
codim(Bi) = e∞ +m+ n− 3,

GWtrop
0,m,e∞,NQ,∆

(A,Ψ) :=
∑

Mult(Γ),

where the sum is over all (Γ, µ, ε, h) with m marked points and degree ∆ satisfying A and Ψ. Mult(Γ)

will be defined later.

1.2. Descendant log Gromov-Witten invariants.

1.2.1. Toric degenerations. Fix a rational polyhedral decomposition P ofNR whose 1-skeleton contains

all tropical curves contributing to GWtrop
0,m,e∞,NQ,∆

(A,Ψ). Assume P also contains each Ai and Bj .

Taking the closure of the cones over P in (N × Z)R gives a fan Σ̃ which has a natural map to the

fan for A1. (This is a toric degeneration and might be covered in Mandy’s talk). Let X := TV(Σ).

Have X → A1
t . Let Xt denote the fiber over t. For t 6= 0, Xt = TV(Σ) where Σ = Σ̃ ∩NR ∩ {0} is the

asymptotic fan of P. X0 =
⋃
V ∈P[0] XV , where XV is the toric variety whose fan looks like the star of

V in P. If V, V ′ ∈ E, then XV and XV ′ intersect along a common divisor DE .

1.2.2. The moduli space. Denote ∆ = {(wiui, i)|i = 1, . . . e∞}, ui primitive. Let M0,m,e∞(Xt,∆)

denote the moduli space parametrizing stable (basic, log) maps ϕ : (C;x1, . . . , xm; y1, . . . , ye∞)→ Xt
such that C has genus 0 and each yi maps to Dui with intersection multiplicity wi (and these are all

the intersections with the boundary). See [MR16, §3.2] for a more precise definition.

See [GS13] and [AC14] for full details on moduli of basic stable log maps.

1.2.3. Incidence conditions. For affine A ⊂ N with rational slope, the cone over A determines a

subspace LC(A) ⊆ (N ×Z)R, hence a subtorus LC(A)⊗C∗ of the big torus orbit TN ′ := (N ×Z)⊗C∗

of X . Fixing generic QA ∈ TN ′ determines a subvariety

ZA,QA := (LC(A)⊗ C∗) ·QA ⊂ X .

Equivalently, ZA,QA is cut out by polynomials of the form zm = zm(QA) with m ∈ L(A)⊥ (L meaning

the linear span), where zm(QA) means zm evaluated at QA.
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Figure 1.1. Unique tropical line through two given points, respectively through a

single point with a ψ-class condition. Algebraically, the first of these corresponds to

the fact that two points determine a line. The second shows that a a line in P2 is

uniquely determined by specifying the image of one point along with the cross-ratio

of this point with the coordinate-axis intersections.

Similarly, for a vector uB ∈ N parallel to B, denote

ZB,uB ,QB := ZB,QB ∩DuB .

We will use the same notation for the intersections with Xt.
Fact: For A ⊂ Supp(P), XV ∩ ZA 6= ∅ if and only if V ∈ A.

1.2.4. Psi-class conditions. Let Lψi be the line bundle over Mg,m,e∞(Xt,∆) whose fiber over [ϕ :

(C;x1, . . . , xm; y1, . . . , ye∞)→ Xt] is T ∗xiC. Define

ψi := c1(Lψi).

Let ψi denote the corresponding psi-class on M0,m+e∞ .

Proposition 1.4. ψi = Forget∗ ψi.

Proof. Typically these differ by the locus where Forget destabilizes and contracts the irreducible

component of C containing xi, but since all intersections with the toric boundary are marked for log

curves, this destabilization never happens for us. �

1.2.5. The algebraic curve counts.

GWlog

g,m,e∞,X †t ,∆
(A,Ψ) :=

∫
[Mg,m,e∞ (Xt,∆)]vir

ψs11 ∪ ev∗x1
[ZA1 ] ∪ ... ∪ ψsmm ∪ ev∗xm [ZAm ] ∪ ev∗y1 [ZB1

] ∪ ... ∪ ev∗ye∞ [ZBe∞ ].

This is equivalent to the count of torically transverse maps in Mg,m,e∞(Xt,∆) with xi (resp. yj)

mapping to a generic translate of Ai (resp. Bj) whose image under Forget is in the locus cut out by

some generic ψ-class conditions.

Proposition 1.5. GWlog

g,m,e∞,X †t ,∆
(A,Ψ) is independent of t, so we can just compute it for t = 0.

Also, the virtual and actual fundamental classes agree, so (after an application of Bertini) the log

count is an actual naive enumerative count.

Theorem 1.6.

GWtrop
g,m,e∞,NQ,∆

(A,Ψ) = GWlog

g,m,e∞,X †t ,∆
(A,Ψ).

1.3. Proof sketch.
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1.3.1. Log  tropical. Tropicalization [ϕ : (C;x1, . . . , xm; y1, . . . , ye∞)→ X0] (Γ, µ, ε, h) as follows:

• Irreducible component CV ⊂ XV  V ∈ NQ.

• Node CV ∩ CV ′  compact edge E 3 V, V ′.
• yj ∈ CV  unbounded edge Ej 3 V .

• xi ∈ CV  µ(i) = V .

We see that xi ∈ ZAi,Qi =⇒ Vi ∈ Ai. Similarly with yj ’s. So satisfying algebraic A  satisfying

tropical A.

C satisfying ψ’s =⇒ for each V , CV satisfies
⋃
i∈µ−1(V ) Forget∗ ψi

si
, where here ψi is a class on

M0,val(V )+mV . By dimension counts, this forces
∑
i∈µ−1(V ) si ≤ dim(M0,val(V )+mV ) = ov(V ), and

this is the tropical ψ-class condition.

1.3.2. Tropical  log. Let µ−1(V ) = {si1 , . . . , simV },
∑
sij = ov(V ). Then on M0,ov(V ),

mV⋃
j=1

ψij =

(
ov(V )

si1 , . . . , simV

)
ij∈µ−1(V )

[pt] =
ov(V )!∏
i∈µ−1(V ) si!

[pt].

Denote this coefficient by 〈V 〉.
Say we want to describe the log stable maps with tropicalization Γ. From the above, ψ-class

conditions determine the domains of these maps up to
∏
V ∈Γ[0]〈V 〉 choices.

Fixing the domain curve, the possibilities for the (pre-log) map satisfying the incidence conditions

are a fiber of

ΦC∗ :
∏

V ∈Γ[0]

N ⊗ C∗ →

 ∏
E∈Γ

[1]
c

[(N/ZuE)⊗ C∗]

×( m∏
i=1

[((N/L(Ai)) ∩N)⊗ C∗]

)
×

 e∞∏
j=1

[((N/L(Bj)) ∩N)⊗ C∗]


(3)

(H)V 7→ ((H∂+E/H∂−E)
E∈Γ

[1]
c
, (Hµ−1(i))i=1,...,m, (H∂Ej )j=1,...,e∞).

Here, the V -components in the domain of ΦC∗ corresponds to evaluation of ϕ at some chosen point on

CV (this evaluation and the marked domain curve CV are in fact enough to determine ϕ|CV ). Being in

a certain fiber of the first factors of the codomain corresponds to requiring that adjacent CV ’s actually

meet so they can be glued at nodes. Being in certain fibers of the other factors of course corresponds

to satisfying the incidence conditions.

Hence, the number of such pre-log curves is the degree of ΦC∗ , or equivalently, the index of the

map without the ⊗C∗’s:

ΦΓ :=
∏

V ∈Γ[0]

N →

 ∏
E∈Γ

[1]
c

N/Zu∂−E,E

×( m∏
i=1

N/LN (Ai)

)
×

 ∏
j=1,...,e∞

N/LN (Bj)

(4)

H 7→ ((H∂+E −H∂−E)
E∈Γ

[1]
c
, (Hµ(i))i=1,...,m, (H∂Ej )j=1,...,e∞).

Finally, for a pre-log curve associated to Γ, there are
∏
E∈Γ

[1]
c
w(E) possible distinct log structures

we can put on the curve (w(E) at the node corresponding to E). We thus get that the tropical and

log counts agree for

Mult(Γ) := index(Φ)
∏

E∈Γ
[1]
c

w(E)
∏

V ∈Γ[0]

〈V 〉.



KIAS TALK 5

2. Talk 2: Broken lines and theta functions

The B-model side of mirror symmetry concerns sheaves and their sections, in particular sections of

line bundles. Here we sketch [GHKK14]’s construction of theta functions (certain canonical bases of

sections of line bundles) on cluster varieties. See also [GHK15] for the surfaces case and [GS12] for other

contexts. The construction is in terms of scattering diagrams and broken lines. The construction of

these objects is motivated by the A-model data and the idea that this should give B-model information.

The broad heuristic picture is that a holomorphic disk in N ⊗ C∗ corresponds to a tropical disk

in NR, the final segment of which has a tangent direction and weight giving a vector u ∈ N , hence a

function zu ∈ C[N ] on the mirror.

2.1. Cluster-type varieties. [GHK15] dealt with log Calabi-Yau surfaces, which they show can all

be obtained from toric surfaces by blowing up some non-nodal points of the toric boundary (and then

possibly doing some toric blowdowns). We’ll look at the higher-dimensional analog where we allow

blowups along “hypertori” in the boundary i.e., subvarieties ZB,u,Q as in my previous talk.

More precisely, we consider space Y which can be obtained as follows. Let Y be a toric variety with

cocharacter lattice N , De denoting the boundary divisor associated to e ∈ N . Let {(ei, ui)|i ∈ I} be

a finite collection of pairs ei ∈ N \ {0} contained in rays of the fan for Y, and ui ∈M \ {0} such that

the dual pairing 〈ei, ui〉 = 0. We obtain Y by blowing up Y along the loci {(1 + zui)|ei|} ∩ Dei for

each i. We note that {(1 + zui)|ei|} ∩Dei is the same as di times what we called Zu⊥i ,ei,1.

Remark 2.1. We should assume that all the ei’s are contained in a convex cone in M . There are tech-

nical issues without this which can sometimes be worked around (e.g., by working with the universal

torsor over Y instead) but which sometimes result in non-convergent theta functions.

Also, instead of 1 + zui we could allow ai + zui = ai for some constants ai ∈ C∗, but this would

complicate the results with extra coefficients. Besides, using “principal coefficients” reduces all cases

to ai = 1 cases (and to cases where the ei’s are part of a basis for M , taking care of the convexity

issue above).

Example 2.2. For [GHKK14], [Mana], and pretty much anything on cluster varieties, there is a

skew-symmetric form {·, ·} on N or M such that ui = {ei, ·} or ei = {ui, ·}, or something similar,

maybe up to scaling. I believe the methods of [GS11] make it possible to avoid this, but let me give

some more details for the cluster setup.

In Mandy’s talks she will associate scattering diagrams to a quiver Q. Here’s how her quivers are

viewed in the approach here. N = ZQ[0]

(i.e., one dimension for each vertex) with basis e1, . . . , en

parametrized by the vertices of Q. Then we have a skew-symmetric form on N defined by {ei, ej} =the

number of arrows from i to j minus the number of arrows from j to i. The ui’s are then given by by

{·, ei} ∈M . The mirror construction is then given by switching the roles of N and M and of the ei’s

and ui’s, and using {ei, ·} instead of {·, ei}. [Warning: I don’t promise that I’m not mixing anything

up or making any sign errors.]

Note: I don’t just write −{ei, ·} instead of {·, ei} because there is a generalization to “skew-

symmetrizable” forms, and I believe [GS11] can be used to generalize even further to any Z-valued

bilinear form {·, ·} for which each {ei, ei} = 0.

Note: When defining theta functions from the perspective Mandy will discuss, I think one actually

uses principal coefficients, meaning that N is replaced by Nprin := N ⊕M , the ei’s are as above, and

{(n1,m1), (n2,m2)}prin := {n1, n2}+ 〈n1,m2〉 − 〈n2,m1〉.
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Why study these things? Cluster varieties make nice toy versions of a lot of what we can study

with the Gross-Siebert program, but more than that, they include a lot of important spaces. The

trivial cases are toric varieties. More generality, there are semi-simple Lie groups, their quotients by

Borel subgroups (flag and partial flag varieties, like Grassmannians), quotients by unipotent radicals,

M0,n, various moduli spaces of local systems on punctured Riemann surfaces (cf. [FG06], these

examples might include all the others), and I believe many other examples I don’t know much about.

2.2. The initial scattering diagram. To construct theta functions on the mirror Y∨ to Y, we use

the initial scattering diagram

Din = {(u⊥i , 1 + zei , ui)|i ∈ I}

The ui at the end is to denote (a version of) the “direction” of the wall. In other words, the wall-

crossing function for crossing u⊥i ⊂ NR is

zn 7→ zn(1 + zei)−〈n,ui〉.

Note that the roles of ei and ui have been switched, so gluing via wall-crossing now produces the

mirror space Y∨.

Then let D be the consistent scattering diagram that can be obtained by adding only outgoing

walls to Din. (Consistent meaning that path-ordered products only depend on the initial and final

points of the path).

2.3. Broken lines.

Definition 2.3. Let q ∈ N \ {0}, Q ∈ NR \ Supp(D). A broken line γ with ends (q,Q) is the data

of a continuous map γ : (−∞, 0]→ NR \ Joints(D), values −∞ < t0 ≤ t1 ≤ . . . ≤ t` = 0, and for each

i = 0, . . . , `, an associated monomial ciz
vi ∈ k[N ] with ci ∈ k, vi ∈ N , such that:

• γ(0) = Q.

• For i = 1 . . . , `, γ′(t) = −vi for all t ∈ (ti−1, ti). Similarly, γ′(t) = −v0 for all t ∈ (−∞, t0).

• c0zv0 = zq.

• For i = 0, . . . , ` − 1, γ(ti) is contained in a wall d of D. ci+1z
vi+1 is a monomial in the

Laurent series expansion of θd(ciz
vi) (θd denoting the wall-crossing automorphism associated

to crossing d).

2.4. Theta functions. For q ∈ N \ {0} and Q ∈ NR \ Supp(D), we define

ϑq,Q :=
∑

Ends(γ)=(p,Q)

cγz
nγ ,

where cγz
nγ denotes the final monomial attached to γ. (In general these theta functions are Laurent

series). Define ϑ0 = 1. For each Q, the ϑq,Q’s form an additive (topological) basis for a subalgebra AQ

of the Laurent series ring. Different choices of Q are related by path-ordered product ([CPS] shows

this follows from consistency of the scattering diagram), so we have a canonical abstract algebra A

with a canonical basis {ϑq}q∈N . One should view SpecA (or Spf A) as the mirror to the space Y we

started with.
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2.5. Multiplication rule. The ϑq coefficient in ϑq1 · · ·ϑqs is given by the zq coefficient of ϑq1,Q · · ·ϑqs,Q
for Q sufficiently close to q. In particular, for the constant (ϑ0) coefficient c0, one can use any

Q ∈ NR \ Supp(D), and then one has

c0 =
∑

Ends(γi)=(qi,Q), i=1,...,s

s∑
i=1

nγi = 0c1 · · · cs.

Note that the condition
∑s
i=1 nγi = 0 means the broken lines meet at a balanced s-valent vertex.

This suggests a connection to tropical curve counts with a ψs−2-condition and a point condition at

Q. We’ll see this in the next talk.

3. Talk 3: Theta functions in terms of log GW invariants

This talk will combine the ideas from the previous two talks to explain how the theta functions can

be defined in terms of certain descendant log GW numbers.

3.1. Broken lines tropical curves. When a broken line bends, it’s easy to see how one can glue a

ray at the break to “balence” the broken line, making it into a tropical curve. However, this approach

is too simplistic (two much data is hidden in each wall). To actually turn sums of coefficients of the

final monomials of broken lines into tropical GW invariants, one first has to modify the scattering

diagram. Here’s a sketch of the approach (due to [GPS10, §1.4, §2]):

• Change the base ring—for each initial wall di, adjoin a variable ti. Replace the initial

scattering functions 1+zei with 1+ tiz
ei . Base change again, replacing each ti with

∑k
j=1 uij ,

u2
ij = 0.

• The initial scattering functions can now be factored (cf. [GPS10, pg 16]). One then factors

the initial scattering diagram, associating each factor of the initial scattering functions to a

different wall.

• One then perturbs the new scattering diagram, translating each wall some small generic

amount.

• A recursive procedure produces the corresponding consistent scattering diagram. Basically,

when two walls meet, they form a new wall. The directions of the walls. The monomial of the

new wall and the negatives of the monomials of the old walls are ”balanced” (sum to 0).

• Broken lines with respect to this scattering diagram can be turned into tropical curves by

gluing the broken line to segments and rays contained in scattering walls, with weighted

directions being the exponents of monomials attached to the walls.

• Careful bookkeeping gives the theorem below.

Recall from the previous talk that our initial scattering diagram is Din = {(u⊥i , 1 + zei , ui)|i ∈ I}.
Let e := {ei|i ∈ I}. For p := (p1, . . . , ps, let We,p(0) be the set of weight vectors w := (wi)i∈I ,

wi := (wi1, . . . , wili) with 0 < wi1 ≤ . . . ≤ wili , such that

∑
i∈I

li∑
j=1

wijei +

s∑
k=1

pk = n.

Let ∆e,p,w denote the tropical degree consisting of pairs (wijmi, (i, j)) for each i, j, (pk, k) for each

k = 1, . . . , s.
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For w ∈ Z>0 define

Rw,d :=
d(−1)w−1

w2

Let di := |ui| (the index of ui, i.e., ui is di > 0 times a primitive vector). Define

Rw :=
∏
i,j

Rwij ,di .

The following is a special case of [Mana, Thm 3.7 plus Thm. 2.11] (there I also deal with non-

constant coefficients and quantum theta functions. I do use the skew-symmetry assumption there,

but I think this can be avoided. See also Thm. 3.13 there for an analogous tropical description of the

scattering diagram instead of the theta functions). See [GPS10, 2.8] and [CPS, Prop. 5.15] for related

results.

Theorem 3.1 ([Mana]). The constant (ϑ0) coefficient of
∏s
i=1 ϑpi is given by

∑
w∈We,p(0)

GWtrop
0,1,∆e,p,w

(Aw, (s− 2))
Rw

|Aut(w)|
∏
i,j

wij ,(5)

where Aw := ((A1), ((Bij)ij , (Bk)k)) for A1 a generic point in NQ, Bij a generic translate of u⊥i , and

Bk = NQ for k = 1, . . . , s. Furthermore, the constant coefficients for the cases with s = 2 and s = 3

are sufficient to uniquely determine the algebra generated by the theta functions.

Remark 3.2. We note that the constant coefficient of a function f is equal to
∫
γ
fΩ, where γ is the

class of the compact torus (S1)n ⊂ (C∗)n = TN (conjecturally the class of an SYZ fiber) and Ω is the

holomorphic volume form with log poles along the boundary divisors. See [Manb, §6].

3.2. Tropical curves  log GW invariants. Recall that we know from [MR16] that GWtrop =

GWlog. So Theorem 3.1 can immediately be written using descendant log GW numbers. However,

these are invariants of Y, not of Y (recall Y was a toric variety and Y is obtained by blowing up Y
along {(1 + zui)|ei|}∩Dei for each i). Relatedly, we have these ugly Rw

|Aut(w)|
∏
i,j wij factors. We deal

with both these issues now using the degeneration formula of [KL].

The degeneration: Assume the fan Σ for Y contains rays through each ei, and that no two ei’s

share a cell (so Dei ∩Dej = ∅ for i 6= j. Take P to be a rational polyhedral decomposition refining Σ

whose vertices consist of the origin and ei for each i ∈ I (still thinking about how exactly to do this).

In the resulting space X (as in Talk 1) we blowup Zu⊥i ,ei,1 for each i ∈ I. In other words, we take

Y × A1, blow up (Dei , 0) for each i, then blow up the closure of diZu⊥i ,ei,1 × (A1 \ {0}).
I’ll probably draw pictures to explain the next part, but the point is that the curves we want to

count in X0 are made up of components in Y glued to components in the flaps. The contributions

from the components in Y is the GWtrop
0,1,∆e,p,w

(Aw, (s − 2)) part of (5). Rw gives the contributions

from the flaps (Rw,d is d times the contribution of a w-fold cover of a P1-fiber in the flap with full

ramification at a boundary point. We multiply by d because we blew up di times Zu⊥i ,ei,1). Then∏
i,j wij

|Aut(w)| comes from the degeneration formula (wij counts log structures at the nodes, |Aut(w)| makes
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up for over-labelling). Hence, from the [KL] log degeneration formula,1 we get what [GHK15] called

the Frobenius structure conjecture:

Theorem 3.3. The constant (ϑ0) coefficient of
∏s
i=1 ϑpi is given by

GWlog
0,1,Y,∆p

(([pt]), (s− 2)),

and knowing these constant terms for the s = 2 and s = 3 cases completely determines the multiplica-

tion.

Remark 3.4. For the skew-symmetrizable cases (and other cases?) there is a quantization of the

construction of the theta functions, which I showed in [Mana] can be described in a quantum count of

tropical curves. In some cases, [Mik16] has shown that these quantum counts relate to certain counts

of real curves (the power of q corresponds to the “logarithmic area” of the real curve). I suspect that

there should be a description of the quantum theta functions in terms of some sort of real descendant

log GW invariants. Helge and I are looking into this, but we still haven’t quite managed to actually

define the invariants.
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1There are some technical issues before their formula can be applied. We need the relative divisor to be smooth,

e.g., just the union of the Dei ’s which we assume are disjoint, so we need to check that forgetting the log structure at

the other boundary divisors doesn’t change our invariants. This amounts to checking that the curves we’re counting

are torically transverse. This is not a simple Bertini-type argument because the Zu⊥i ,ei,1
’s are not generic.
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