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Quivers

▶ A (finite) quiver is a finite set of vertices Q0 and arrows Q1 (ordered pairs of
vertices).

▶ Examples:

The A2-quiver

a b

The Markov quiver:

a b

c
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Quiver representations

▶ Notation: Fix a quiver Q. Let r = |Q0|. Let

N := Zr , N⊕ := Nr ⊂ N.

▶ Given n = (a1, . . . , ar ) ∈ N⊕, an n-dimensional representation of Q is:
▶ For each i ∈ Q0, an ai -dimensional C-vector space Vi plus
▶ for each arrow from i to j in Q1, an element of Hom(Vi ,Vj ).

▶ Example: a (3, 2)-dimensional representation of

a b

is a linear transformation

C3 C2
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Moduli of Q-representations

▶ Let Rep(Q) be the category of representations of Q.

▶ For each n ∈ N⊕, let Mn(Q) be the moduli space of E ∈ Rep(Q) with
dim(E) = n = (d1, ..., dr ).

▶ So

Mn(Q) =
∏

a∈Q1

HomC(Cds(a) ,Cdt(a))/
∏

v∈Q0

GLC(dv )
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Semistable representations

▶ Let MR = Hom(N,R) ∼= Rr , and let θ ∈ MR.

▶ Say E ∈ Rep(Q) is θ-semistable (resp. stable) if:
▶ θ(dim(E)) = 0, and
▶ θ(B) ≤ 0 (resp. θ(B) < 0) for all sub-representations B ⊂ E .

▶ Mθ -sst
n (Q) = space of θ-semistable E ∈ Rep(Q) with Rep(Q) = n.

▶ Mθ -st
n (Q) = open subspace of θ-stable objects.

▶ If Mθ -st
n ̸= ∅, let χn,θ ∈ Z be the topological Euler characteristic of Mθ -sst

n (Q).
Otherwise, χn,θ := 0.
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Simple representations

▶ For each i ∈ Q0, let ei ∈ N⊕ be the corresponding basis vector (0, ..., 0, 1, 0, ..., 0).

▶ Up to isomorphism, there is a unique representation Si of Q with dim(Si) = ei .

▶ Si is a simple representation: it has no subrepresentations.

▶ So Mθ -sst
ei

(Q) = {pt} for all θ ∈ e⊥
i .

▶ If Q is acyclic (has no oriented cycles), these are the only simple objects.

▶ But if Q has an oriented cycle, then there are additional simple objects.
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Scattering diagrams

▶ Consider the formal power series ring kJN⊕K = kJx1, x2, . . . , xr K.
▶ For n = (a1, . . . , ar ), denote xn = xa1

1 · · · xar
r .

▶ Let N+ := N⊕ \ {0}.

▶ A wall in MR ∼= Rr is a pair (d, fd) where
▶ d is a convex (r − 1)-dimensional integral polyhedral cone such that d⊥ ⊂ NR

intersects N+.
▶ Let nd ∈ N+ be a primitive vector in d⊥.
▶ fd = 1 + c1xnd + c2x2nd + . . . ∈ kJxndK.

▶ A scattering diagram D is a set of walls.

▶ For each generic θ ∈ MR, let fθ =
∏

d∋θ fd.
▶ Up to “equivalence,” D can be determined by specifying fθ for all generic θ ∈ MR.
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The stability scattering diagram

▶ Fix generic θ ∈ MR.

▶ Let n be the primitive element of θ⊥ ∩ N⊕.

▶ We define

fθ =
∞∑

k=0

χkn,θxkn.

▶ The corresponding scattering diagram D(Q) is called the stability scattering
diagram.
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The stability scattering diagram for the A2-quiver

D(• −→ •) is as follows:

1 + x (0,1)

1 + x (1,0)

1 + x (1,1)

▶ A2 has only three nontrivial stable representations (each giving χn,θ = 1):
1. S1 = C → 0 is stable for θ ∈ e⊥

1 \ {0}.
2. S2 = 0 → C is stable for θ ∈ e⊥

2 \ {0}
3. C Id−→ C is stable for θ ∈ R>0(1,−1).

▶ C Id−→ C this is NOT stable for θ ∈ R<0(1,−1):
▶ Because 0 −→ C is a suprepresentation of dimension (0, 1).
▶ For r ∈ R<0, (r ,−r) · (0, 1) = −r > 0.
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The Kronecker Quiver

1 + x (0,1)

1 + x (1,0)

(1 − x (1,1))−2

Figure: The scattering diagram for the Kronecker Quiver K2 : • =⇒ •
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Higher Kronecker quivers

dense

Figure: Sketch of the scattering diagram for the n-Kronecker quiver Kn, n ≥ 3.
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The Markov Quiver

▶ Recall the Markov Quiver:

a b

c

▶ This scattering diagram lives in three dimensions. A slice is shown below.
▶ (Image from Fock and Goncharov, Cluster Poisson varieties at infinity (Selecta Math). arXiv:1104.0407)
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Wall-crossing

▶ We have a skew-symmetric form on N defined by

B(ei , ej) = #(arrows i → j)−#(arrows j → i).

▶ When we cross a wall d from the positive to negative side, we apply an
automorphism of kJN⊕K:

ϕd : xn 7→ xnf B(nd,n)
d .

▶ Given a path γ, define ϕγ = the composition of ϕd for all d’s crossed by γ, in order.

▶ Theorem: D(Q) is consistent, meaning ϕγ is determined by the endpoints of γ.
▶ In different contexts, due to Reineke, Gross-Pandharipande, Kontsevich-Soibelman,

Bridgeland.
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Connection to cluster algebras

▶ Call (d, fd) incoming if d is a full hyperplane.

▶ The cluster scattering diagram Dcl(Q) is the consistent scattering diagram
whose only incoming walls are the e⊥

i associated to the simple objects Si , i ∈ Q0.

▶ Fact: The incoming walls totally determine D (up to equivalence).

▶ The cluster scattering diagrams are very useful for understanding cluster algebras
[Gross-Hacking-Keel-Kontsevich].

▶ “Quantum” scattering diagrams can be used to construct quantum theta function
bases for quantum cluster algebras [Davison-M].
▶ We showed the coefficients of the quantum scattering functions are always positive

integers.
▶ Combines cluster scattering diagram techniques with results of Davison-Meinhardt

related to quantum stability scattering diagrams.
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Another perspective: the path algebra

▶ : Issue: D(Q) = Dcl(Q) if and only if Q is acyclic. We can sometimes fix this by
introducing a “potential.”

▶ The path algebra CQ of Q consists of finite C-linear combinations of paths
a1 · · · ak in Q (each ai ∈ Q1);

▶ Multiplication is concatenation of paths (read from right to left);

▶ Subject to the relations pq = 0 unless p starts where q ends.

▶ For each i ∈ Q0 we have an idempotent lazy path ei .
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Modules over the path algebra

▶ Representations of Q can equivalently be understood as (left) modules over CQ.

▶ A Q-rep (Vi , ρα) determines a module

M =
⊕

i

Vi , α · v = ρα(vi).

▶ Conversely, a module M yields a representation

Vi = eiM, ρα(vi) = α · vi .
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Quiver potentials

▶ A potential W ∈ CQ is a linear combination of closed paths in Q.

▶ Given a closed path w = a1 · · · ak ∈ CQ and an arrow α ∈ Q1, define

∂α(w) =
∑

i:ai=α

ai+1 · · · ak a1 · · · ai−1.

▶ Let ⟨∂W ⟩ be the two sided ideal of CQ generated by ∂α(W ) for α ∈ Q1.

▶ Define the Jacobian algebra
J = CQ/⟨∂W ⟩

▶ Let Rep(Q,W ) be the category of J-modules.
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More stability scattering diagrams

▶ Fact: All the constructions we saw for Rep(Q) also work with Rep(Q,W ).

▶ In many non-acyclic cases now, D(Q,W ) = Dcl(Q) as long as W is
“non-degenerate.”

▶ For the Markov quiver with certain non-degenerate potentials, D(Q,W ) has one
more wall than D(Q) [Chen-M-Qin].
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Coverings

▶ Let G be a finite group acting freely on Q.

▶ Let Q = Q/G.

▶ There’s a homomorphism

σ : CQ → CQ p 7→
∑

(all lifts of p)

▶ For potentials W ∈ CQ, W = σ(W ) ∈ CQ, σ descends to σ : J → J.

▶ Induces σ∗ : Rep(Q,W ) → Rep(Q,W ).

Theorem (Chen-M-Qin)

If (Q,W ) admits “nice gradings” and J is finite-dimensional, then we can identify
D(Q,W ) with a “slice” of D(Q,W ).
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The Markov quiver

▶ We were especially interested in the Markov quiver.

a b

c

▶ When studying cluster algebras from surfaces, this quiver is associated to the
1-punctured torus:

a

a

b b
c

▶ There’s also a certain potential W associated to this Q [Labardini-Fragoso].
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The 1-punctured torus from the 3-punctured torus

▶ The 3-punctured torus gives a covering of the 1-punctured torus.

m(0)

m(0)

m(1)

m(1)

m(2)

m(2)

m(0)
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b(0) b(1) b(2) b(0)
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2
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β
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γ
(2)
1

α
(2)
2

β
(2)
2

γ
(2)
2

▶ Our result applies to this covering.

▶ In other work with Qin, we showed that the “bracelets basis” equals the “theta
basis” except for the 1-punctured torus.

▶ Our result here implies that the result holds for the 1-punctured torus as well if we
use the stability scattering diagram instead of the cluster scattering diagram.
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