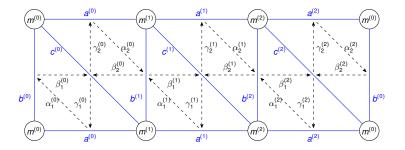
Stability scattering diagrams and quiver coverings

Travis Mandel

Based on joint work with Fan Qin and Qiyue Chen



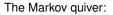
Quivers

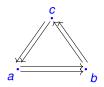
A (finite) quiver is a finite set of vertices Q⁰ and arrows Q¹ (ordered pairs of vertices).

а

Examples:

The A2-quiver





b

Quiver representations

• Notation: Fix a quiver Q. Let $r = |Q^0|$. Let

$$N := \mathbb{Z}^r, \qquad N^{\oplus} := \mathbb{N}^r \subset N.$$

- Given $n = (a_1, \ldots, a_r) \in N^{\oplus}$, an *n*-dimensional representation of *Q* is:
 - For each $i \in Q^0$, an a_i -dimensional \mathbb{C} -vector space V_i plus
 - for each arrow from *i* to *j* in Q^1 , an element of Hom (V_i, V_i) .

Quiver representations

• Notation: Fix a quiver Q. Let $r = |Q^0|$. Let

$$N := \mathbb{Z}^r, \qquad N^{\oplus} := \mathbb{N}^r \subset N.$$

• Given $n = (a_1, \ldots, a_r) \in N^{\oplus}$, an *n*-dimensional representation of *Q* is:

- For each $i \in Q^0$, an a_i -dimensional \mathbb{C} -vector space V_i plus
- for each arrow from *i* to *j* in Q^1 , an element of Hom (V_i, V_j) .
- Example: a (3,2)-dimensional representation of

is a linear transformation

• Let $\operatorname{Rep}(Q)$ be the category of representations of Q.

크

Moduli of *Q*-representations

- Let $\operatorname{Rep}(Q)$ be the category of representations of Q.
- For each n ∈ N[⊕], let M_n(Q) be the moduli space of E ∈ Rep(Q) with dim(E) = n = (d₁, ..., d_r).

Moduli of *Q*-representations

- Let $\operatorname{Rep}(Q)$ be the category of representations of Q.
- For each n ∈ N[⊕], let M_n(Q) be the moduli space of E ∈ Rep(Q) with dim(E) = n = (d₁, ..., d_r).

So

$$\mathcal{M}_{\textit{n}}(\textit{Q}) = \prod_{a \in \textit{Q}^1} \mathsf{Hom}_{\mathbb{C}}(\mathbb{C}^{d_{\textit{S}(a)}}, \mathbb{C}^{d_{\textit{t}(a)}}) / \prod_{\nu \in \textit{Q}^0} \mathsf{GL}_{\mathbb{C}}(\textit{d}_{\nu})$$

3

• Let $M_{\mathbb{R}} = \text{Hom}(N, \mathbb{R}) \cong \mathbb{R}^r$, and let $\theta \in M_{\mathbb{R}}$.

э

- Let $M_{\mathbb{R}} = \text{Hom}(N, \mathbb{R}) \cong \mathbb{R}^r$, and let $\theta \in M_{\mathbb{R}}$.
- Say $E \in \operatorname{Rep}(Q)$ is θ -semistable (resp. stable) if:
 - $\theta(\dim(E)) = 0$, and
 - $\theta(B) \leq 0$ (resp. $\theta(B) < 0$) for all sub-representations $B \subset E$.

- Let $M_{\mathbb{R}} = \text{Hom}(N, \mathbb{R}) \cong \mathbb{R}^r$, and let $\theta \in M_{\mathbb{R}}$.
- Say $E \in \operatorname{Rep}(Q)$ is θ -semistable (resp. stable) if:
 - $\theta(\dim(E)) = 0$, and
 - $\theta(B) \leq 0$ (resp. $\theta(B) < 0$) for all sub-representations $B \subset E$.
- ▶ $\mathcal{M}_n^{\theta \text{-sst}}(Q) = \text{space of } \theta \text{-semistable } E \in \text{Rep}(Q) \text{ with } \text{Rep}(Q) = n.$

- Let $M_{\mathbb{R}} = \text{Hom}(N, \mathbb{R}) \cong \mathbb{R}^r$, and let $\theta \in M_{\mathbb{R}}$.
- Say $E \in \operatorname{Rep}(Q)$ is θ -semistable (resp. stable) if:
 - $\theta(\dim(E)) = 0$, and
 - ▶ $\theta(B) \leq 0$ (resp. $\theta(B) < 0$) for all sub-representations $B \subset E$.
- ▶ $\mathcal{M}_n^{\theta \text{-sst}}(Q) = \text{space of } \theta \text{-semistable } E \in \text{Rep}(Q) \text{ with } \text{Rep}(Q) = n.$
- $\mathcal{M}_n^{\theta \operatorname{-st}}(Q) = \operatorname{open} \operatorname{subspace} \operatorname{of} \theta \operatorname{-stable} \operatorname{objects}.$

- Let $M_{\mathbb{R}} = \text{Hom}(N, \mathbb{R}) \cong \mathbb{R}^r$, and let $\theta \in M_{\mathbb{R}}$.
- Say E ∈ Rep(Q) is θ-semistable (resp. stable) if:
 - $\theta(\dim(E)) = 0$, and
 - $\theta(B) \leq 0$ (resp. $\theta(B) < 0$) for all sub-representations $B \subset E$.
- ▶ $\mathcal{M}_n^{\theta \text{-sst}}(Q) = \text{space of } \theta \text{-semistable } E \in \text{Rep}(Q) \text{ with } \text{Rep}(Q) = n.$
- $\mathcal{M}_n^{\theta \mathrm{st}}(Q) = \mathrm{open} \ \mathrm{subspace} \ \mathrm{of} \ \theta \mathrm{stable} \ \mathrm{objects}.$
- If M_n^{θ-st} ≠ Ø, let χ_{n,θ} ∈ Z be the topological Euler characteristic of M_n^{θ-sst}(Q).
 Otherwise, χ_{n,θ} := 0.

Simple representations

- For each $i \in Q^0$, let $e_i \in N^{\oplus}$ be the corresponding basis vector (0, ..., 0, 1, 0, ..., 0).
- Up to isomorphism, there is a *unique* representation S_i of Q with dim $(S_i) = e_i$.
- ► S_i is a **simple representation**: it has no subrepresentations.

Simple representations

- For each $i \in Q^0$, let $e_i \in N^{\oplus}$ be the corresponding basis vector (0, ..., 0, 1, 0, ..., 0).
- Up to isomorphism, there is a *unique* representation S_i of Q with dim $(S_i) = e_i$.
- S_i is a **simple representation**: it has no subrepresentations.
- So $\mathcal{M}_{e_i}^{\theta \text{-sst}}(Q) = \{pt\}$ for all $\theta \in e_i^{\perp}$.

Simple representations

- For each $i \in Q^0$, let $e_i \in N^{\oplus}$ be the corresponding basis vector (0, ..., 0, 1, 0, ..., 0).
- Up to isomorphism, there is a *unique* representation S_i of Q with dim $(S_i) = e_i$.
- ► *S_i* is a **simple representation**: it has no subrepresentations.
- ▶ So $\mathcal{M}_{e_i}^{\theta \text{-sst}}(Q) = \{pt\}$ for all $\theta \in e_i^{\perp}$.
- ▶ If *Q* is **acyclic** (has no oriented cycles), these are the only simple objects.
- ▶ But if *Q* has an oriented cycle, then there are additional simple objects.

- Consider the formal power series ring $\Bbbk \llbracket N^{\oplus} \rrbracket = \Bbbk \llbracket x_1, x_2, \dots, x_r \rrbracket$.
 - For $n = (a_1, ..., a_r)$, denote $x^n = x_1^{a_1} \cdots x_r^{a_r}$.
- Let $N^+ := N^{\oplus} \setminus \{0\}$.

э

• Consider the formal power series ring $\Bbbk \llbracket N^{\oplus} \rrbracket = \Bbbk \llbracket x_1, x_2, \dots, x_r \rrbracket$.

• For
$$n = (a_1, ..., a_r)$$
, denote $x^n = x_1^{a_1} \cdots x_r^{a_r}$.

• Let $N^+ := N^{\oplus} \setminus \{0\}$.

▶ A wall in $M_{\mathbb{R}} \cong \mathbb{R}^r$ is a pair $(\mathfrak{d}, f_{\mathfrak{d}})$ where

- ∂ is a convex (r − 1)-dimensional integral polyhedral cone such that ∂[⊥] ⊂ N_ℝ intersects N⁺.
- Let $n_{\mathfrak{d}} \in N^+$ be a primitive vector in \mathfrak{d}^{\perp} .

• Consider the formal power series ring $\Bbbk \llbracket N^{\oplus} \rrbracket = \Bbbk \llbracket x_1, x_2, \dots, x_r \rrbracket$.

• For
$$n = (a_1, ..., a_r)$$
, denote $x^n = x_1^{a_1} \cdots x_r^{a_r}$.

• Let $N^+ := N^{\oplus} \setminus \{0\}$.

▶ A wall in $M_{\mathbb{R}} \cong \mathbb{R}^r$ is a pair $(\mathfrak{d}, f_{\mathfrak{d}})$ where

- ∂ is a convex (r − 1)-dimensional integral polyhedral cone such that ∂[⊥] ⊂ N_ℝ intersects N⁺.
- Let $n_{\mathfrak{d}} \in N^+$ be a primitive vector in \mathfrak{d}^{\perp} .

•
$$f_0 = 1 + c_1 x^{n_0} + c_2 x^{2n_0} + \ldots \in \mathbb{k}[\![x^{n_0}]\!].$$

• Consider the formal power series ring $\Bbbk \llbracket N^{\oplus} \rrbracket = \Bbbk \llbracket x_1, x_2, \dots, x_r \rrbracket$.

• For
$$n = (a_1, ..., a_r)$$
, denote $x^n = x_1^{a_1} \cdots x_r^{a_r}$.

• Let $N^+ := N^{\oplus} \setminus \{0\}$.

▶ A wall in $M_{\mathbb{R}} \cong \mathbb{R}^r$ is a pair $(\mathfrak{d}, f_{\mathfrak{d}})$ where

- ∂ is a convex (r − 1)-dimensional integral polyhedral cone such that ∂[⊥] ⊂ N_ℝ intersects N⁺.
- Let $n_{\mathfrak{d}} \in N^+$ be a primitive vector in \mathfrak{d}^{\perp} .
- $\bullet \ f_{\mathfrak{d}} = 1 + c_1 x^{n_{\mathfrak{d}}} + c_2 x^{2n_{\mathfrak{d}}} + \ldots \in \Bbbk \llbracket x^{n_{\mathfrak{d}}} \rrbracket.$
- A scattering diagram D is a set of walls.

San

• Consider the formal power series ring $\Bbbk \llbracket N^{\oplus} \rrbracket = \Bbbk \llbracket x_1, x_2, \dots, x_r \rrbracket$.

• For
$$n = (a_1, ..., a_r)$$
, denote $x^n = x_1^{a_1} \cdots x_r^{a_r}$.

• Let $N^+ := N^{\oplus} \setminus \{0\}$.

▶ A wall in $M_{\mathbb{R}} \cong \mathbb{R}^r$ is a pair $(\mathfrak{d}, f_{\mathfrak{d}})$ where

- ∂ is a convex (r − 1)-dimensional integral polyhedral cone such that ∂[⊥] ⊂ N_ℝ intersects N⁺.
- Let $n_{\mathfrak{d}} \in N^+$ be a primitive vector in \mathfrak{d}^{\perp} .
- $f_0 = 1 + c_1 x^{n_0} + c_2 x^{2n_0} + \ldots \in \mathbb{k}[\![x^{n_0}]\!].$
- A scattering diagram D is a set of walls.
- For each generic $\theta \in M_{\mathbb{R}}$, let $f_{\theta} = \prod_{\mathfrak{d} \ni \theta} f_{\mathfrak{d}}$.
 - Up to "equivalence," \mathfrak{D} can be determined by specifying f_{θ} for all generic $\theta \in M_{\mathbb{R}}$.

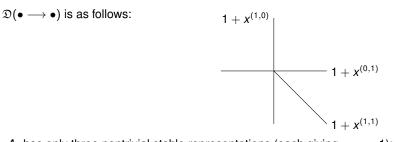
The stability scattering diagram

- Fix generic $\theta \in M_{\mathbb{R}}$.
- Let *n* be the primitive element of $\theta^{\perp} \cap N^{\oplus}$.
- We define

$$f_{\theta} = \sum_{k=0}^{\infty} \chi_{kn,\theta} x^{kn}.$$

The corresponding scattering diagram D(Q) is called the stability scattering diagram.

The stability scattering diagram for the A_2 -quiver



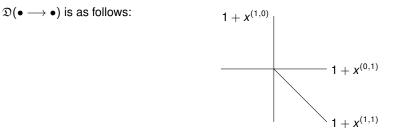
► A_2 has only three nontrivial stable representations (each giving $\chi_{n,\theta} = 1$):

1.
$$S_1 = \mathbb{C} \to 0$$
 is stable for $\theta \in e_1^{\perp} \setminus \{0\}$.
2. $S_2 = 0 \to \mathbb{C}$ is stable for $\theta \in e_2^{\perp} \setminus \{0\}$.

2.
$$S_2 = 0 \rightarrow \mathbb{C}$$
 is stable for $\theta \in e_2^{\perp} \setminus \{0\}$

3.
$$\mathbb{C} \xrightarrow{Id} \mathbb{C}$$
 is stable for $\theta \in \mathbb{R}_{>0}(1, -1)$.

The stability scattering diagram for the A_2 -quiver



• A_2 has only three nontrivial stable representations (each giving $\chi_{n,\theta} = 1$):

1.
$$S_1 = \mathbb{C} \to 0$$
 is stable for $\theta \in e_1^{\perp} \setminus \{0\}$

2.
$$S_2 = 0 \rightarrow \mathbb{C}$$
 is stable for $\theta \in e_2^1 \setminus \{0\}$.

- 3. $\mathbb{C} \xrightarrow{Id} \mathbb{C}$ is stable for $\theta \in \mathbb{R}_{>0}(1, -1)$.
- $\mathbb{C} \xrightarrow{\text{Id}} \mathbb{C}$ this is NOT stable for $\theta \in \mathbb{R}_{<0}(1, -1)$:
 - Because $0 \longrightarrow \mathbb{C}$ is a suprepresentation of dimension (0, 1).
 - For $r \in \mathbb{R}_{<0}$, $(r, -r) \cdot (0, 1) = -r > 0$.

The Kronecker Quiver

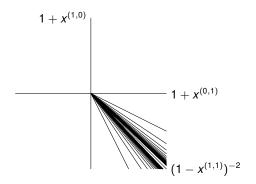


Figure: The scattering diagram for the Kronecker Quiver $K_2: \bullet \implies \bullet$

э

Higher Kronecker quivers

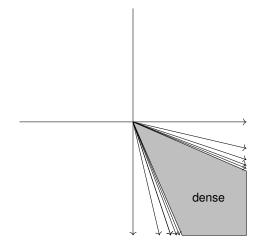


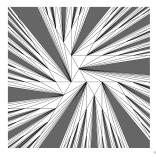
Figure: Sketch of the scattering diagram for the *n*-Kronecker quiver K_n , $n \ge 3$.

E

The Markov Quiver

Recall the Markov Quiver:

- ► This scattering diagram lives in three dimensions. A slice is shown below.
- (Image from Fock and Goncharov, Cluster Poisson varieties at infinity (Selecta Math). arXiv:1104.0407)



Wall-crossing

► We have a skew-symmetric form on *N* defined by

$$B(e_i, e_j) = #(\text{arrows } i \rightarrow j) - #(\text{arrows } j \rightarrow i)$$

臣

Wall-crossing

We have a skew-symmetric form on N defined by

$$B(e_i, e_j) = #(arrows i \rightarrow j) - #(arrows j \rightarrow i).$$

When we cross a wall ∂ from the positive to negative side, we apply an automorphism of k[[N[⊕]]]:

$$\phi_{\mathfrak{d}}: \mathbf{X}^{n} \mapsto \mathbf{X}^{n} \mathbf{f}_{\mathfrak{d}}^{\mathbf{B}(n_{\mathfrak{d}}, n)}$$

Wall-crossing

We have a skew-symmetric form on N defined by

$$B(e_i, e_j) = #(arrows i \rightarrow j) - #(arrows j \rightarrow i).$$

When we cross a wall ∂ from the positive to negative side, we apply an automorphism of k[[N[⊕]]]:

$$\phi_{\mathfrak{d}}: \mathbf{X}^{n} \mapsto \mathbf{X}^{n} f_{\mathfrak{d}}^{B(n_{\mathfrak{d}}, n)}$$

- Given a path γ , define ϕ_{γ} = the composition of $\phi_{\mathfrak{d}}$ for all \mathfrak{d} 's crossed by γ , in order.
- **Theorem**: $\mathfrak{D}(Q)$ is consistent, meaning ϕ_{γ} is determined by the endpoints of γ .
 - In different contexts, due to Reineke, Gross-Pandharipande, Kontsevich-Soibelman, Bridgeland.

- Call $(\mathfrak{d}, f_{\mathfrak{d}})$ incoming if \mathfrak{d} is a full hyperplane.
- The cluster scattering diagram D^{cl}(Q) is the consistent scattering diagram whose only incoming walls are the e[⊥]_i associated to the simple objects S_i, i ∈ Q⁰.

Connection to cluster algebras

- Call $(\mathfrak{d}, f_{\mathfrak{d}})$ incoming if \mathfrak{d} is a full hyperplane.
- The cluster scattering diagram D^{cl}(Q) is the consistent scattering diagram whose only incoming walls are the e[⊥]_i associated to the simple objects S_i, i ∈ Q⁰.
- ► **Fact**: The incoming walls totally determine 𝔅 (up to equivalence).

Connection to cluster algebras

- Call $(\mathfrak{d}, f_{\mathfrak{d}})$ incoming if \mathfrak{d} is a full hyperplane.
- The cluster scattering diagram D^{cl}(Q) is the consistent scattering diagram whose only incoming walls are the e[⊥]_i associated to the simple objects S_i, i ∈ Q⁰.
- ► **Fact**: The incoming walls totally determine 𝔅 (up to equivalence).
- The cluster scattering diagrams are very useful for understanding cluster algebras [Gross-Hacking-Keel-Kontsevich].

- Call $(\mathfrak{d}, f_{\mathfrak{d}})$ incoming if \mathfrak{d} is a full hyperplane.
- The cluster scattering diagram D^{cl}(Q) is the consistent scattering diagram whose only incoming walls are the e[⊥]_i associated to the simple objects S_i, i ∈ Q⁰.
- ► **Fact**: The incoming walls totally determine 𝔅 (up to equivalence).
- The cluster scattering diagrams are very useful for understanding cluster algebras [Gross-Hacking-Keel-Kontsevich].
- "Quantum" scattering diagrams can be used to construct quantum theta function bases for quantum cluster algebras [Davison-M].
 - We showed the coefficients of the quantum scattering functions are always positive integers.
 - Combines cluster scattering diagram techniques with results of Davison-Meinhardt related to quantum stability scattering diagrams.

- Call $(\mathfrak{d}, f_{\mathfrak{d}})$ incoming if \mathfrak{d} is a full hyperplane.
- The cluster scattering diagram D^{cl}(Q) is the consistent scattering diagram whose only incoming walls are the e[⊥]_i associated to the simple objects S_i, i ∈ Q⁰.
- ► **Fact**: The incoming walls totally determine 𝔅 (up to equivalence).
- The cluster scattering diagrams are very useful for understanding cluster algebras [Gross-Hacking-Keel-Kontsevich].
- "Quantum" scattering diagrams can be used to construct quantum theta function bases for quantum cluster algebras [Davison-M].
 - We showed the coefficients of the quantum scattering functions are always positive integers.
 - Combines cluster scattering diagram techniques with results of Davison-Meinhardt related to quantum stability scattering diagrams.

Another perspective: the path algebra

► : Issue: D(Q) = D^{cl}(Q) if and only if Q is acyclic. We can sometimes fix this by introducing a "potential."

Another perspective: the path algebra

- ► : Issue: D(Q) = D^{cl}(Q) if and only if Q is acyclic. We can sometimes fix this by introducing a "potential."
- ► The **path algebra** $\mathbb{C}Q$ of Q consists of finite \mathbb{C} -linear combinations of paths $a_1 \cdots a_k$ in Q (each $a_i \in Q^1$);

Another perspective: the path algebra

- ► : Issue: D(Q) = D^{cl}(Q) if and only if Q is acyclic. We can sometimes fix this by introducing a "potential."
- ► The **path algebra** $\mathbb{C}Q$ of Q consists of finite \mathbb{C} -linear combinations of paths $a_1 \cdots a_k$ in Q (each $a_i \in Q^1$);
- Multiplication is concatenation of paths (read from right to left);

Another perspective: the path algebra

- ► : Issue: D(Q) = D^{cl}(Q) if and only if Q is acyclic. We can sometimes fix this by introducing a "potential."
- ► The **path algebra** $\mathbb{C}Q$ of Q consists of finite \mathbb{C} -linear combinations of paths $a_1 \cdots a_k$ in Q (each $a_i \in Q^1$);
- Multiplication is concatenation of paths (read from right to left);
- Subject to the relations pq = 0 unless p starts where q ends.

15/21

Another perspective: the path algebra

- ► : Issue: D(Q) = D^{cl}(Q) if and only if Q is acyclic. We can sometimes fix this by introducing a "potential."
- ► The **path algebra** $\mathbb{C}Q$ of Q consists of finite \mathbb{C} -linear combinations of paths $a_1 \cdots a_k$ in Q (each $a_i \in Q^1$);
- Multiplication is concatenation of paths (read from right to left);
- Subject to the relations pq = 0 unless p starts where q ends.
- For each $i \in Q^0$ we have an idempotent lazy path e_i .

Modules over the path algebra

- ▶ Representations of *Q* can equivalently be understood as (left) modules over *CQ*.
- A *Q*-rep (V_i , ρ_α) determines a module

$$M = \bigoplus_{i} V_i, \qquad \alpha \cdot \mathbf{v} = \rho_{\alpha}(\mathbf{v}_i).$$

Conversely, a module M yields a representation

$$V_i = e_i M, \qquad \rho_{\alpha}(v_i) = \alpha \cdot v_i.$$

A potential $W \in \mathbb{C}Q$ is a linear combination of closed paths in Q.

E

- A potential $W \in \mathbb{C}Q$ is a linear combination of closed paths in Q.
- Given a closed path $w = a_1 \cdots a_k \in \mathbb{C}Q$ and an arrow $\alpha \in Q^1$, define

$$\partial_{\alpha}(w) = \sum_{i:a_i=\alpha} a_{i+1} \cdots a_k a_1 \cdots a_{i-1}.$$

- A potential $W \in \mathbb{C}Q$ is a linear combination of closed paths in Q.
- Given a closed path $w = a_1 \cdots a_k \in \mathbb{C}Q$ and an arrow $\alpha \in Q^1$, define

$$\partial_{\alpha}(w) = \sum_{i:a_j=\alpha} a_{i+1} \cdots a_k a_1 \cdots a_{i-1}.$$

- Let $\langle \partial W \rangle$ be the two sided ideal of $\mathbb{C}Q$ generated by $\partial_{\alpha}(W)$ for $\alpha \in Q^{1}$.
- Define the Jacobian algebra

$$J = \mathbb{C}Q/\langle \partial W \rangle$$

- A potential $W \in \mathbb{C}Q$ is a linear combination of closed paths in Q.
- Given a closed path $w = a_1 \cdots a_k \in \mathbb{C}Q$ and an arrow $\alpha \in Q^1$, define

$$\partial_{\alpha}(w) = \sum_{i:a_j=\alpha} a_{i+1} \cdots a_k a_1 \cdots a_{i-1}.$$

- Let $\langle \partial W \rangle$ be the two sided ideal of $\mathbb{C}Q$ generated by $\partial_{\alpha}(W)$ for $\alpha \in Q^{1}$.
- Define the Jacobian algebra

$$J = \mathbb{C}Q/\langle \partial W \rangle$$

Let $\operatorname{Rep}(Q, W)$ be the category of *J*-modules.

More stability scattering diagrams

- Fact: All the constructions we saw for $\operatorname{Rep}(Q)$ also work with $\operatorname{Rep}(Q, W)$.
- In many non-acyclic cases now, D(Q, W) = D^{cl}(Q) as long as W is "non-degenerate."
- ► For the Markov quiver with certain non-degenerate potentials, D(Q, W) has one more wall than D(Q) [Chen-M-Qin].

- Let G be a finite group acting freely on Q.
- Let $\overline{Q} = Q/G$.

590

19/21

臣

- ► Let *G* be a finite group acting freely on *Q*.
- Let $\overline{Q} = Q/G$.
- ► There's a homomorphism

$$\sigma: \mathbb{C}\overline{\boldsymbol{Q}} o \mathbb{C}\boldsymbol{Q} \qquad \boldsymbol{p} \mapsto \sum$$
 (all lifts of \boldsymbol{p})

臣

- ► Let *G* be a finite group acting freely on *Q*.
- Let $\overline{Q} = Q/G$.
- ► There's a homomorphism

$$\sigma: \mathbb{C}\overline{Q} \to \mathbb{C}Q \qquad p \mapsto \sum \text{ (all lifts of } p)$$

For potentials
$$\overline{W} \in \mathbb{C}\overline{Q}$$
, $W = \sigma(W) \in \mathbb{C}Q$, σ descends to $\sigma : \overline{J} \to J$.

臣

- Let G be a finite group acting freely on Q.
- Let $\overline{Q} = Q/G$.
- There's a homomorphism

$$\sigma: \mathbb{C}\overline{Q} \to \mathbb{C}Q \qquad p \mapsto \sum \text{(all lifts of } p)$$

▶ For potentials $\overline{W} \in \mathbb{C}\overline{Q}$, $W = \sigma(W) \in \mathbb{C}Q$, σ descends to $\sigma : \overline{J} \to J$.

• Induces $\sigma^* : \operatorname{Rep}(\overline{Q}, \overline{W}) \to \operatorname{Rep}(Q, W)$.

- Let G be a finite group acting freely on Q.
- Let $\overline{Q} = Q/G$.
- There's a homomorphism

$$\sigma: \mathbb{C}\overline{Q} \to \mathbb{C}Q \qquad p \mapsto \sum \text{ (all lifts of } p)$$

- ▶ For potentials $\overline{W} \in \mathbb{C}\overline{Q}$, $W = \sigma(W) \in \mathbb{C}Q$, σ descends to $\sigma : \overline{J} \to J$.
- ▶ Induces σ^* : $\operatorname{Rep}(\overline{Q}, \overline{W}) \to \operatorname{Rep}(Q, W)$.

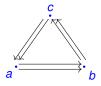
Theorem (Chen-M-Qin)

If (Q, W) admits "nice gradings" and J is finite-dimensional, then we can identify $\mathfrak{D}(\overline{Q}, \overline{W})$ with a "slice" of $\mathfrak{D}(Q, W)$.

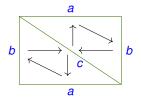
19/21

The Markov quiver

► We were especially interested in the Markov quiver.

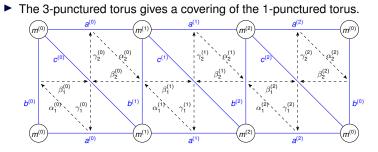


When studying cluster algebras from surfaces, this quiver is associated to the 1-punctured torus:



► There's also a certain potential *W* associated to this *Q* [Labardini-Fragoso].

The 1-punctured torus from the 3-punctured torus



- Our result applies to this covering.
- In other work with Qin, we showed that the "bracelets basis" equals the "theta basis" except for the 1-punctured torus.
- Our result here implies that the result holds for the 1-punctured torus as well if we use the stability scattering diagram instead of the cluster scattering diagram.

21/21