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Chapter 1

Introduction

These notes are based on a course taught by the author at the Center for Quantum Geometry of

Moduli Spaces in Fall, 2014. The constructions are algebro-geometric, but students in the class are

not assumed to have a strong algebraic geometry background. As such, these notes will introduce

most of the relevant algebraic geometry background as needed or in the appendix. The main goal is to

explain the [GHKK] construction of dual canonical bases for cluster varieties, including the motivation

from mirror symmetry.

1.1 Historical context

Motivated by ideas from string theory, mirror symmetry roughly relates the symplectic geometry of

one Calabi-Yau manifold Y (the A-model) to the algebraic geometry of another Calabi-Yau manifold

X (the B-model), and vice versa. In 1991, [CdlOGP92] motivated mathematical interest in mirror

symmetry by using B-model data (i.e., period integrals on X) to predict certain Gromov-Witten

invariants (i.e., A-model data) of Y . The first solid mathematical description of mirror symmetry was

given in 1994 by Kontsevich in [Kon95], where he defined mirror symmetry as a derived equivalence

between the Fukaya category Fuk(Y ) and the bounded derived category of coherent sheaves DbCoh(X)

of X. We will not discuss this viewpoint, but it is worth mentioning that the existence of certain

canonical bases of global regular functions (called theta functions) on X can, under certain conditions,

be realized as a consequence of this—intersection points of Lagrangians form canonical bases for the

Hom-spaces in Fuk(Y ), and the theta functions are supposed to be mirror to such a basis.

In 1996, [SYZ96] gave another, more constructive interpretation of mirror symmetry, in which

Y and X are seen to roughly admit dual special Lagrangian torus fibrations over a common affine

manifold B. Our interest is in the Gross-Siebert program,1 which uses a tropicalized version of the

SYZ-viewpoint to create a very hands-on relationship between Y and X. In particular, in [GHK11],

Gross, Hacking, and Keel use the techniques of Gross and Siebert to define canonical “theta functions”

on X in terms of tropical disks in the tropicalization of Y . This is the piece of mirror symmetry in

which we will be interested.

The other side of our story is that of cluster algebras. These combinatorially defined algebras

were introduced in 2001 by Fomin and Zelevinsky [FZ02] with the hope of better understanding

1The Gross-Siebert program has been developed in [GS03], [GS06], and [GS11a]. A good overview is given in [Gro13].
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Lusztig’s dual canonical bases [Lus90] and total positivity [Lus94]. Since then, many objects of

interest have been found to admit cluster structures, including (but not limited to) double Bruhat

cells of semisimple Lie groups [BFZ05], Grassmanians [Sco06] and more general (partial) flag varieties

[GLS08], and generalizations of Teichmüuller space [FG06]. In addition to giving special coordinate

systems that help with understanding positivity and canonical bases, these cluster structures are useful

for studying Poisson geometry and generalizations of Weil-Petersson forms ([GSV05],[FG06],[GSV10]),

tropicalization [FG09], and quantum deformations ([BZ05],[FG09]).

In [FG09], Fock and Goncharov formalized the framework for a geometric approach to cluster

algebras (i.e., cluster varieties). They also conjectured the existence of canonical bases of global regular

functions on cluster varieties, parameterized by certain tropical points of their Langland’s duals. Gross,

Hacking, and Keel reinterpreted cluster varieties from the viewpoint of birational geometry, realizing

that cluster varieties are an ideal candidate for beginning to generalizae their log Calabi-Yau surface

constructions [GHK11] to higher dimensions. Together with Kontsevich in [GHKK], they used their

techniques construct the bases conjectured by Fock and Goncharov (to the extent that they actually

exist).2 In the process, they prove other significant conjectures from cluster theory, including the

positive Laurent phenomenon3. Understanding this construction of [GHKK] is the driving goal of

these notes.

1.2 Outline

In Chapter 2, we give an overview of the theory of toric varieties. This is main tool for the Gross-

Siebert program, and the chapters that follow will frequently rely on this background. As mentioned

above, the reader is not assumed to have much algebraic geometry background, so this background is

introduced as need or in Appendix A. Toric varieties may be viewed as trivial cluster varieties (i.e.,

cluster varieties with no non-trivial mutations), and the canonical bases here are simply the usual

bases of monomials.

Chapter 3 introduces the ideas from mirror symmetry that motivate the Gross-Hacking-Keel

construction. This chapter is not strictly necessary, but it serves as the main motivation for the

constructions of Chapters 4 and 6. We first follow [Aur] to explain the SYZ picture of mirror symmetry.

Very briefly, let Y be a smooth compact Kähler manifold with Kähler form ω and non-vanishing

holomorphic n-form Ω. Choose an anti-canonical divisor D (i.e. Ω has simple poles along D and is a

holomorphic volume form on Y \D), and a special Lagrangian torus L0 ⊂ Y . The mirror X to the pair

(Y,D) can be viewed as the (quantum corrected) moduli space of special Lagrangian deformations of

L0, decorated with the class of a trivial flat U(1)-connection ∇. X has local holomorphic coordinates

given by

zΓ(L,∇) := exp(−
∫

Γ

ω) hol∇(∂Γ),

2[GHK13a] showed that the bases conjectured by Fock and Goncharov cannot always exist. From the mirror sym-

metry viewpoint, the bases may only be defined in a formal neighborhood of a large complex structure limit. [GHKK]

does construct formal versions of these bases in general and gives nearly optimal conditions under which these extend

to algebraic bases.
3The positive Laurent phenomenon was previously proved by very different means in [LS14] for all skew-symmetric

cluster algebras. [GHKK] does not assume skew-symmetry, but does assume geometric type.
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where Γ ∈ H2(X,L,Z) with ∂Γ 6= 0 ∈ H1(L,Z), and ω is the Kähler form on X. One can then hope

to define the “superpotential” (and, by a slight modification, the theta funcitons) W on X by

W (L,∇) :=
∑

β, β·D=1

nβ(L)zβ .

Here, nβ is a Gromov-Witten count of the holomorphic disks in Y of class β whose boundary passes

through a generically specified point of L. The problem with this definition is that defining zΓ requries

keeping track of how Γ deforms as we vary L, and this cannot usually be done globally. Instead, one

can define the mirror with these coordinates and this W locally, and then glue via “wall-crossing”

automorphisms which take into account so-called instanton/quantum corrections in order to get a

global mirror with a well-defined W (and well-defined theta functionns).

Next, in §3.2 we sketch the Gross-Siebert approach to SYZ fibrations and the construction the

mirror. We mostly follow the much more detailed survey [Gro13] of the Gross-Siebert program.

Basically, since finding explicit special Lagrangian fibrations and counting holomorphic disks is often

too difficult to actually do in practice, Gross and Siebert describe combinatorial versions of this data.

The base of the SYZ fibration is taken to be a tropicalization of the manifold, and counts of (virtual)

holomorphic disks are replaced by counts of tropical curves (which [GHK11] then condenses into

broken lines).

Chapter 4 is where we actually describe the Gross-Hacking-Keel construction for log Calabi-Yau

surfaces, following [GHK11]. This construction is essentially an explicit application of the Gross-

Siebert program, although the affine manifolds used in [GHK11] typically have worse singularities

than Gross and Siebert usually allow. This change is not too significant though since the singularities

can be factored into the type (focus-focus) which Gross and Siebert do consider. If we sacrifice some

boundary divisors of the mirror family, we can even remove the singularities completely, as we do in

§4.7.3, and as [GHK11] does in their §3. This is the picture we will use when generalizing to cluster

varieties (although it should be possible to generalize the singular version too).

In Chapter 5 we introduce the basic definitions and properties of cluster algebras and cluster

varieties, following [FG09]. We also explain the birational geometry viewpoint of [GHKK]. Basically,

[GHKK] show that the operation of “mutation” for cluster varieties can be understood as a blowup of

a certain “hypertorus” on the boundary of a toric variety, followed by a certain blowdown to another

toric variety. Cluster varieties are thus seen to roughly be certain blowups of toric varieties.

Cluster varieties come in pairs A and X , where X is a Poisson manifold, and A is a manifold with

a (possibly degenerate) skew-symmetric form. There is a natural map from A to a certain symplectic

leaf of X with the skew form being the pull-back of the symplectic form. We will see that all the

log Calabi-Yau surfaces from Chapter 4 appear (up to codimension 2) as symplectic leaves of some

X -space, so we will view these symplectic leaves as the thing generalizing the log Calabi-Yau surfaces.

Taking this perspective in Chapter 6, we will explain a slightly modified version of the [GHKK]

construction as a direct generalization of the [GHK11] construction. This interpretation seems to be

new. From this perspective, A (or at least its tropicalization) plays the role of the symplectic data for

a symplectic leaf U of X , while X is essentially the moduli space of complex structures. One views A
as mirror to the “Langland’s dual” X -space X∨, and X as mirror to A∨. This exchange of symplectic

and complex structures is what one expects in mirror symmetry.

Finally, in Chapter 7, we sketch some of the main applications of cluster algebras, including the

Fock-Goncharov constructions of higher Teichmüuller theory. [I MAY ADD MORE]. This Chapter
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could easily preceed Chapter 6, and can in fact be read independently of the rest of the notes, except

for the basic definitions of cluster algebras from Chapter 5.

1.3 Acknowledgements
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Chapter 2

Toric Varieties

My main reference is [Ful93]. Chapter 7 of [HKK+03] also has a good introduction from a different,

more physics oriented point of view. Another good book that is more recent and covers quite a bit

more is [CJS11]. [Gro11] also includes a good brief introduction to toric varieties which is well-tailored

to our needs in these notes. I will use this for the toric degenerations section, and I will mention some

other references as we go. For the reader unfamiliar with the language of divisors and linear systems

in algebraic geometry, see §A.1 for an overview.

2.1 Constructing an atlas for a toric variety from a fan

Definition 2.1.1. A toric variety is a complex1 algebraic variety X containing T := (C∗)r as a

dense open subset such that the torus action extends to all of X. We’ll always assume that X is

normal (these are the cases which can be constructed from fans). The complement of the big torus

orbit is called the (toric) boundary.

Let N :∼= Zn be a finite rank lattice (the cocharacter lattice) and M := N∗ := Hom(N,Z) ∼= Zn

the dual lattice (the character lattice). We denote the dual paring by 〈·, ·〉 : N ⊕M → Z. For any

lattice L and abelian group A, let LA := L⊗A. We may also denote TL := LC∗ .

For any monoid σ, define

C[σ] := C[zu|u ∈ σ]/〈zu · zv = zu+v〉,

where the addition in the exponent is the monoid addition.

Given a strictly convex (i.e., not containing any line through the origin) rational polyhedral cone

(a cone with apex at the origin generated by a finite number of vectors in N) σ ⊂ NR, let

σ∨ := {m ∈M |〈n,m〉 ≥ 0 ∀n ∈ σ}.

The monoid σ then determines an affine toric variety TV(σ) := SpecC[σ∨]. Alternatively, we may

define (the geometric points of) TV(σ) as the space of semigroup homomorphisms Homsg(σ
∨,C)

1The base field can be generalized quite a bit depending on the situation. Most of what we will do works over any

algebraically closed characteristic 0 field k, and sometimes even more generally than this. In fact, many ideas in cluster

theory, including the definition of the theta functions, work over Z, and even over semi-fields.
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(recall that a semigroup is a set with an associative binary operation i.e., a monoid without identity,

so C is a semigroup under multiplication).

Example 2.1.2. Let N = Z2, σ = 〈e1, e2〉, so σ∨ = 〈e∗1, e∗2〉. Then C[σ∨] = C[x, y] where x := ze
∗
1 ,

y := ze
∗
2 , and SpecC[σ∨] = A2. We will continue to use this notation in future examples.

Definition 2.1.3. A fan Σ is a set of rational, strictly convex, polyhedral cones in NR such that each

face of a cone in Σ is also a cone in Σ, and the intersection of any two cones is a face in each.

If ρ ⊂ σ, then σ∨ ⊂ ρ∨, and SpecC[ρ∨] ↪→ SpecC[σ∨]. Thus, if ρ = σ1 ∩ σ2, then we can glue

SpecC[σ∨1 ] to SpecC[σ∨2 ] along SpecC[ρ∨]. In this way, we construct a toric variety from Σ, denoted

TV(Σ).

Example 2.1.4. Every fan Σ contains the origin, and {0}∨ = M , so every toric variety contains the

algebraic torus SpecC[M ] ∼= TN . This is the torus T required in Definition 2.1.1. Note that we are

following the common practice of conflating a toric variety with its geometric points (i.e., saying Spec

when we should perhaps be saying m Spec).

Example 2.1.5. Let N = Zn, and let Σ be the fan consisting of the n+1 rays generated by e1, . . . , en

and −(
∑n
i=1 ei), along with {0} and the cones that these rays bound. Then TV(Σ) = Pn.

2.2 Cones correspond to torus orbits

There is an order-reversing correspondence between cones σ ∈ Σ and orbits of the action of TN on

TV(Σ): σ corresponds to the orbit

Oσ := TV(σ) \
⋃
τ(σ

TV(τ) ∼= SpecC[σ⊥ ∩M ].

More importantly are the orbit closures, Cσ := Oσ. Note that if dim(σ) = r, then dim(Oσ) =

dim(Cσ) = n− r. These orbit closures are called the toric strata of TV(Σ). In particular, if ρ ∈ Σ[1]

(the set of rays of Σ), then Cρ is a divisor, called a boundary divisor of TV(Σ). For ρ a ray generated

by u ∈ N , we may write Dρ or Du for the divisor Cρ. The union D :=
⋃
ρ∈Σ[1] Dρ = TV(Σ) is called

the toric boundary.

2.3 Singularities

Proposition 2.3.1. TV(Σ) is nonsingular if and only if each σ ∈ Σ is generated by part of a basis for

N . If Σ is simplicial, i.e., each cone is generated by independent vectors, then TV(Σ) is an orbifold,

i.e., it has only quotient singularities.

Example 2.3.2. N = Z2, σ generated by (1, 0) and (1, 2). Then σ∨ is generated by (0, 1) and (2,−1)

(using the standard inner product to identify N with M), and C[σ∨] ∼= C[x2y−1, x, y] ⊂ C[x±1, y±1].

Letting U2 = x2y−1, V 2 = y, we get C[σ∨] ∼= C[U2, UV, V 2] = C[U, V ]Z/2Z, that is, the ring of

invariants under the Z/2Z-action that negates U and V . Thus, SpecC[σ∨] is the quotient of C2 by

Z/2Z (acting by negation). This is the A1 singularity.

Similarly, replacing (1, 2) replaced by (1, n) and the Z/2Z action by a Z/nZ action (multiplying

by nth roots of unity) we get an An−1 singularity.
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2.4 Maps of fans

A map of fans ϕ : Σ1 → Σ2 is a homomorphism ϕ : N1 → N2, Σi a fan in Ni, such that for all σ1 ∈ Σ1,

there exists some σ2 ∈ Σ2 containing ϕ(σ1). Such a ϕ induces a morphism ϕ : TV(Σ1)→ TV(Σ2).

Let |Σ| ⊂ NR denote the support of Σ (i.e., the union of all the cones).

Proposition 2.4.1. ϕ is proper (i.e., fibers are compact) if and only if ϕ−1(|Σ2|) = |Σ1|. In particular,

TV(Σ) is complete (i.e., compact, or proper over SpecC) if and only if |Σ| = NR.

Examples 2.4.2.

• We have seen that ρ ⊂ σ induces TV(ρ) ↪→ TV(σ).

• Blowups: Adding rays corresponds to taking blowups. For example, we can resolve the An

singularities of Example 2.3.2 by adding the rays generated by (1, 1), . . . , (1, n− 1).

• Very important for our geometric picture of cluster varieties: Let u ∈ N , and suppose

R≥0(±u) are rays in Σ. Then N → N/〈u〉 induces a map of fans Σ → Σ/〈u〉, and the corre-

sponding map of toric varieties gives a P1-fibration of TV(Σ) with Du and D−u as sections. If

R≥0(±u) are the only rays in Σ, then TV(Σ) ∼= P1 × (C∗)n−1, with D±u being the sections cor-

responding to 0 and ∞ in P1. With cluster varieties, “mutation” will corresponding to blowing

up some locus in Du and then contracting some fibers of this fibration.

• Products: We can take a product of two fans Σi in Ni, i = 1, 2. The cones in Σ1 × Σ2 are

the cones in N1 × N2 of the form {(x1, x2), xi ∈ Ni, |xi ∈ σi for some cone σi in Σi}. Then

TV(Σ1 × Σ2) = TV(Σ1)× TV(Σ2).

• More General Fiber Bundles: See the exercise at the bottom of [Ful93, pg 41]. The fiber

bundles showing up in the previous two examples and the quotient construction below are enough

for our purposes.

2.5 The quotient construction

We now construct toric varieties as quotients, generalizing the standard quotient construction of Pn.

This is the primary approach in [HKK+03], and some constructions with cluster varieties (the map

from A to its image in X ) can be viewed as a generalization of this.

Let Σ(1) denote the rays of Σ, generated by v1, . . . , vm. Let ZΣ(1) denote the lattice freely gen-

erated by these rays, with generators denoted ṽ1, . . . , ṽm. We define a fan Σ̃ in ZΣ(1) as follows: If

σ = 〈v1, . . . , vs〉 is a cone in Σ generated by vi1 , . . . , vis , then Σ̃ contains a cone generated by the

corresponding ṽi1 , . . . , ṽis . Alternatively, let Z ⊂ SpecC[ṽ1
∗, . . . , ṽm

∗
] be the union of all sets of the

form

V ({zṽij
∗
|j = 1, . . . , k − s such that the vij ’s do not span a cone in Σ}).

Then TV(Σ̃) is SpecC[ṽ1
∗, . . . , ṽm

∗
] \ Z = Cm \ Z.

We have an obvious map π : ZΣ(1) → N induced by ṽi 7→ vi. By construction, this is a map of

fans, so we get a map TV(Σ̃) → TV(Σ). We would like to view this as a quotient of TV(Σ̃) by the

action of some group G—this way we get a construction of TV(Σ) that does not depend on our prior

construciton involving dual cones and gluing. We treat the nonsingular case first.

The kernel K of π is the trivial fan in the lattice of relations among the vi’s. The short exact

sequence 0 → K → ZΣ(1) → N → 0 induces (in the nonsingular cases) a short exact sequence of
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the corresponding toric varieties which realizes TV(Σ) as the quotient of TV(Σ̃) by the action of the

torus G := TK . Explicitely, the element (
∑
aivi) ⊗ λ ∈ K ⊗ C∗ acts on TV(Σ̃) by (x1, . . . , xn) 7→

(λa1x1, . . . , λ
anxn).

Now suppose we are in a non-singular case. We will see in §2.6 that ZΣ(1) is the lattice of T -

invariant Weil-divisors, and M can be identified with the principal T -invariant divisors. The quotient

is the group An−1 of divisors up to linear equivalence (see [Ful93], §3.4. Note that we don’t need to

say T-invariant here). That is, we have a short exact sequence

0→M → ZΣ(1) → An−1 → 0

Let G := Hom(An−1,C∗). In the nonsingular cases, this is just TK . However, in the singular cases

An−1 may have torsion elements, and G is then isomorphic to TK × Hom((An−1)tor,Q/Z). Taking

Hom(·,C∗) of the above short exact sequence, we get

0→ G→ (C∗)Σ(1) → TN → 0.

G ⊂ (C∗)Σ(1) acts on CΣ(1) by g · (v1, . . . , vn) = (g([Dv1 ])v1, . . . , g([Dvn ])vn), where [Dvi ] denotes the

linear equivalence class of the Weil divisor corresponding to vi.

Cox explains this quite well (I used his explanation when writing up the singular cases above), and

he gives some very interesting additional structure, in [Cox95]. Here he shows that this quotient is a

“categorical quotient,” and it is a “geometric quotient” iff Σ is simplicial.

2.6 The Dual Pairing

Recall that a ray ρ ⊂ NR corresponds to a (T-invariant) Weil divisors Dρ ⊂ TV(Σ), Σ 3 ρ. Alter-

natively, let v be the primitive2 generator of ρ, and define Dv := Dρ. More generally, for k ∈ Z≥0,

define Dkv := kDv = kDρ.

Proposition 2.6.1. Let n ∈ N , m ∈M . Then valDn(zm) = 〈n,m〉.

Checking this in a simple example should suffice to see why it is true.

Remark 2.6.2. Note that even if n ∈ N is not in a ray of Σ, we can still think of it as corresponding

to a divisor in some toric blowup (i.e., a blowup corresponding to refining the fan) of TV(Σ), and

thus to a discrete valuation on the function field determined by the formula in the above proposition.

As a generalization, Gross, Hacking, and Keel define the integer points in the tropicalization of a log

Calabi-Yau variety Y as the set of “divisorial” discrete valuations on the function field of Y along

which the holomorphic volume form (
∑
d log zi for toric varieties) has a pole.

We see that ZΣ(1) corresponds to T-invariant Weil divisors. Also, M corresponds to T-invariant

principal divisors via: div(m) := −
∑
ρ〈m,nρ〉Dρ, which is −(zm) the notation of §A.1.

Now, let W =
∑
ni∈Σ(1) aiDni be a Cartier divisor. We have a line bundle O(W ) whose global

sections may be identified with rational functions f on TV(Σ) such that valDni (f) ≥ −ai for all i.

That is,

H0(TV(Σ),O(W )) = 〈zm|m ∈M, 〈ni,m〉 ≥ −ai ∀i〉.
2Primitive meaning not a positive integer multiple of any other element in the lattice.
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These are the values of m ∈ M lying in the polytope PW :=
⋂
i{〈ni, ·〉 ≥ −ai ⊂ MR}. PW is called

the Newton polytope of W , or of the line bundle LW corresponding to W , or of a generic f section

of LW . Note that if f is expressed as a sum
∑
aiz

mi , ai 6= 0, then the Newton polytope of f is the

convex hull of the mi’s appearing in this sum.

Let ∆ ⊂ NR be a polytope. In the next section, we will need the polar polytope

∆◦ := {u ∈MR|〈u, v〉 ≥ −1 ∀ v ∈ ∆} .

Polar polytopes are convex. Taking polar polytopes is order reversing on the dimensions of faces. The

polar polytope of a rational polytope (one with vertices in a lattice Λ) is also rational (with vertices

in the dual lattice Λ∗).

2.7 Piecewise Linear Functions and Polytopes

Let f ∈ C(M) be a rational function on TN . Define f trop : NR → Z by f trop(n) = valDn(f) for n ∈ N ,

and extend piecewise-linearly to all of NR. Consider a nonsingular fan Σ such that f is Σ-piecewise

linear (i.e., linear on the complement of Σ). Let σ1, σ2 be two maximal dimensional cones whose

intersection σ1 ∩ σ2 is a codimension 1 cone ρ. Let ρ = 〈v1, . . . , vn−1〉, and σi = 〈ρ, ui〉, i = 1, 2.

Let Wf :=
∑
v∈Σ(1) f

trop(v)Dv (in the notation of §A.1, these are the boundary components of

(f))3. What is Wf ·Cρ? We easily see that Dui , i = 1, 2 as above satisfy Dui ·Cρ = 1 (they intersect

only at the point Cσi). For v /∈ σ1 ∪σ2, we easily see Dv ·Cρ = 0. What about for vi ∈ ρ? Since f trop

is linear on σi, we can find a monomial zm such that (f · zm)trop|σ1 = 0. Since Σ is nonsingular, we

have u1 + u2 ∈ ±ρ ∩N , so (zm)trop(u2) = − [f trop|ρ(u1 + u2)− f trop(u1)]. Hence,

Wf · Cρ = (f · zm)trop(u2) = f trop(u2)− f trop|ρ(u1 + u2) + f trop(u1).

Now, let mρ be a primitive element of M which is 0 on ρ and positive on, say, σ2. The bending

parameter of f trop along ρ is the integer bρ such that

f trop|σ2
= f trop|σ1

+ bρmρ. (2.1)

Here, by the restriciton to a cone, I really mean the linear extension of the restriction. With that

interpretation,

bρ = f trop|σ2
(u2)− f trop|σ1

(u2) = f trop(u2)− [f trop|ρ(u1 + u2)− f trop(u1)] = Wf · Cρ.

This proves:

Proposition 2.7.1. The bending parameter of f trop along ρ is given by Wf ·Dρ.

Corollary 2.7.2. f trop is strictly convex (i.e., all bending parameters are negative) if and only if

−Wf is ample.

3There are different sign conventions here, and people sometimes take Wf to be negative of our definition. I believe

I’ve taken Fulton’s convention. I’ve tried to be careful, but it’s very possible that I’ve mixed things up somewhere and

gotten sign errors, so watch out for that.
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Proof. This proof might be using bigger machinery than should be required, but it introduces some

things we will want later on.

The Kleiman condition for ampleness says that a divisor W in a variety Y is ample if and only if

D · C > 0 for all C ∈ NE(Y ) (see also the Nakai-Moishezon criterion). NE(Y ) here is the Mori cone,

which is the cone generated by numerical equivalence classes of effective curves—i.e., the dual to the

cone of numerically effective divisors. Perhaps some intuition to help this seem somewhat reasonable

is to think of having positive intersection as meaning that |D| sees every curve, so none are getting

contracted when applying the map to |D|∗.
For toric varieties, it turns out that NE(Y ) is generated by the codimension 1 cells of Σ. The claim

now follows immediately.

Let ∆f := {f trop ≥ −1}. Recall the polytope PWf
corresponding to Wf .

Proposition 2.7.3. If f trop is strictly convex, then PWf
= ∆◦f . Thus, strictly convex integral polytopes

P in MR (those with points in M as vertices) correspond to ample divisors—translate P so that it

contains the origin (this corresponds to multiplying the sections of the line bundle by some zm, m in

the interior of P ), then define a strictly convex integral piecewise linear function ϕ by saying that it

equals −1 along the boundary of P ◦ ⊂ NR.

We also note the following corollary of Proposition 2.7.1:

Corollary 2.7.4. Let v1, v2, v3 be three consecutive (under a counterclockwise ordering) primitive

generators of rays for the fan of a nonsingular complete toric surface. We have v1 +D2
v2v2 + v3 = 0.

More generally,

Proposition 2.7.5. For any curve class [C] in a nonsingular complete toric variety TV(Σ),
∑
v∈Σ(1)([C]·

Dv)v = 0.

2.7.1 Reflexive Polytopes and Fano Varieties

If P is rational and contains the origin in its interior, and P ◦ is also a rational polytope (equivalently,

P contains no interior lattice points other than the origin), then we say that P (and P ◦) is reflexive.

Such polytopes correspond to Fano toric varieties. In this case, ϕ can be taken to be the tropicalization

of a function ψ (the sum of the monomials corresponding to the vertices of P ) called the superpotential,

and the “Landau-Ginzburg model” ((C∗)n, ψ) is sometimes viewed as “mirror” to the toric variety

corresponding to the polytope P ◦.

Alternatively, people study mirror symmetry of certain Calabi-Yau hypersurfaces of Fano toric

varieties (Batyrev’s construction). Let D denote the toric boundary of a toric variety Y . For any

complete toric variety, D is an anti-canonical divisor, meaning that it can be realized as the poles of

some meromorphic volume form—in this case,
∑
d log zi. For Fano toric varieties, D is ample, so we

can deform it to a linearly equivalent divisor M which does not contain any boundary components.

By the adjunction formula, M is Calabi-Yau: KM = (KY +D)|M , and KY +D = 0.

Dually, if ∆D is the reflexive polytope corresponding to D, we can do the same thing for the toric

variety corresponding to the polar polytope ∆◦D to get a Calabi-Yau M∨. Note that we might get

something singular this way, but we can sub-divide (blow up) to make it nonsingular. The claim is

that the family of M ’s in Y is mirror dual to the family of M∨’s.
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2.8 Projective toric varieties from convex polytopes

Given two faces τ ⊂ σ of ∆ (face can mean any codimension for us), defineKτ (σ) := 〈u−v|u ∈ σ, v ∈ τ〉
(i.e., vectors pointing from τ into σ with their tail translated to the origin).

Note that there is an order-reversing relationship between fans and polytopes: In particular,

maximal cones of the fan correspond to vertices of the polytope.

Lemma 2.8.1. Let ∆ be a strictly convex integral polytope, so it corresponds to an ample divisor.

The corresponding divisor is in fact very ample if and only if the integral points of Kp(σ)(∆) generate

σ∨ ∩M for all maximal cones σ ∈ Σ, where p(σ) is the vertex of ∆ corresponding to σ.

In particular (and more usefully):

Proposition 2.8.2. On complete toric varieties which are either two-dimensional or nonsingular,

T-invariant ample divisors are very ample. Thus, they give an embedding to projective space.

From now on, we might as well assume we’re in these cases.

The above section shows that ample divisors correspond to strictly convex integral polytopes

in MR. Given such a polytope ∆, this means that we can construct the associated toric variety

TV(∆) as follows: Consider Pn with homogeneous coordinates denoted by X0, X1, . . . , Xm. Let

{v0, . . . , vm} := ∆∩M . Then we have a map f : TV(∆) ↪→ Pn defined by f∗(Xi) = zvi , i = 0, 1, . . . ,m.

So TV(∆) is the subvariety of Pn given by requiring the Xi’s to satisfy the same homogeneous relations

as the corresponding zvi ’s. For example, if v1+v2+v3 = 3v0, then we have the relation X1X2X3 = X3
0 .

Example 2.8.3. Let ∆ be the convex hull of (0, 0), (1, 0), and (0, 1). There are no homogeneous

relations amongst these vertices, so this just corresponds to P2. The corresponding ample line bundle

is O(1).

Here is another version of the above construction which makes sense even for unbounded polytopes

(cf. [Gro11], §3.1.2). Let ∆ ⊆MR be a not necessarily bounded convex integral polytope. Define the

cone over ∆ by:

C(∆) = {(rn, r) ∈MR ⊕ R|n ∈ ∆, r ≥ 0}.

Taking the closure above (denote by the overline) adds the asymptotic (i.e., unbounded) directions:

Asym(∆) := C(∆) ∩ (MR, 0)

C[C(∆)∩ (M ⊕Z)] is graded by deg zm,d := d ∈ Z≥0. Define P∆ := ProjC[C(∆)∩ (M ⊕Z)] (with

respect to the above grading). This is projective over (i.e., fibers are projective) Spec of the degree

0 part, SpecC[Asym(∆) ∩M ]. If ∆ is bounded, this is the same as the above construction. In any

case, P∆ is a toric variety, and the fan can be obtained by any of the below methods.

2.8.1 Recovering the fan from a polytope

Lemma 2.8.1 implicitely suggests another way to recover TV(∆) (without the embedding into pro-

jective space) from ∆: TV(∆) = TV(Σ), where Σ is the fan whose maximal cones are dual to those

generated by the Kp(∆)’s, p a vertex of ∆ (for other cones in Σ, one can use higher dimensional faces

of ∆).
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Example 2.8.4. Check this for the P2 case above.

This Σ can also be constructed as (the negation of) the normal fan of ∆—choose a point in the

interior of ∆ and take rays normal to faces of ∆. This is certainly the fastest way to get Σ from ∆.

Alternatively, if ∆ contains the origin in its interior, one can take ∆◦ and then define Σ to be the

fan consisting of cones over the faces of ∆◦.

Example 2.8.5. Check these for the convex hull of (2,−1), (−1, 2), and (−1,−1), which corresponds

to O(3) on P2.

2.9 Moment maps

2.9.1 General theory of moment maps

We shouldn’t actually need this, and I don’t have much background in it, but it shows up enough to

be worth mentioning.

Let M be a manifold with symplectic form ω. Suppose the Lie group G acts on M by symplecto-

morphisms. ζ ∈ g induces a left invariant vector field L(ζ) on M . The moment map µ : M → g∗ is

defined by

d〈µ(x), ζ〉 = ιL(ζ)xω

for all x ∈M , ζ ∈ g.

If the action is Hamiltonian, meaning that there is a Lie algebra homomorphism ζ 7→ fζ from g to

smooth functions on M (with the Poisson bracket), then we can define µ by:

〈µ(x), ζ〉 = fζ(x).

Theorem 2.9.1 (Atiyah, Guillemin, Sternberg). For Hamiltonian (compact) k-torus actions on closed

symplectic manifolds, the image of the moment map is a convex polytope in Rk.

Theorem 2.9.2. If M is 2k-dimensional and G is a compact k-torus, then the regular fibers of µ are

Lagrangian tori (i.e., they are k-dimensional and ω restricted to them is the 0 form).

2.9.2 Moment maps for toric varieties

Recall that rather than defining the affine toric variety associated to σ to be SpecC[σ∨], we could

have said that it is Homsg(σ
∨,C). We could easily replace C here by any other monoid. For example,

define TV≥(Σ) to be the toric variety constructed using Hom(σ∨,R≥0) for each cone σ. This forms a

closed subspace of TV(Σ). Consider the compact torus SN in TN := N ⊗ C∗ = (C∗)n corresponding

to values of norm 1.

Proposition 2.9.3. The quotient map for the action of SN on TV(Σ) gives a retraction to TV≥(Σ).

Various choices of ω can be used to identify this with a moment map as before. I am taking these

examples from [Rud] but I believe this is not the original source of the examples.

If TV(Σ) is simply (C∗)n, we can take ω = − 1
(2π)2

∑
d log ri∧dθi, and then µ : (C∗)n → Rn is given

by− 1
2π (log |z1|, . . . , log |zn|). The fibers are Lagrangian, and if we take Ω = 1

(2πi)n d log z1∧· · ·∧d log zn,
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then the fibers are actually special Lagrangian (i.e., in addition to ω|L = 0 for each fiber L, we also

have Im(Ω)|L = 0).

Alternatively, suppose we take a rational convex polytope P ⊂MR with m+ 1 lattice points, and

consider the corresponding projective embedding ϕ of the toric variety M into Pm. So lattice points

vi ∈ P are associated with homogeneous coordinates Xi for Pm, and Xi|M = zvi . Then the moment

map is

µ(w) = −
∑
|zvi(w)|2vi∑
|zvi(w)|2

.

(Fulton does not have the minus sign or the squares in either the numerator or the denominator. I

don’t know how much that matters.) The image of this is −P . Removing the minus sign makes it

just P , which is more common, so I’ll pretend we’ve done this.

The preimage of a real k-dimensional face of P is a complex k-dimensional orbit in M , with the

preimage of a point being a real k-dimensional compact torus. Fulton has a couple nice pictures of

this. In particular, the fibers over the interior of P are special Lagrangian tori.

2.10 Toric degenerations

Let ∆ ⊂MR be a lattice polytope. Give ∆ a polyhedral decomposition4 P which is the singular locus

of some convex piecewise-linear function ϕ : ∆→ R with integral slopes. Define a polyhedron5

∆̃ := {(m, r) ∈MR × R|m ∈ ∆, r ≤ ϕ(m)},

and consider C(∆̃). If ∆ was bounded, then Asym(∆̃) = (0,R≤0), and we get that P∆̃ := Proj(C[C(∆̃)∩
(M × Z × Z)]) is projective over A1. In fact, even if ∆ was not bounded, we still have a morphism

f : P∆̃ → A1 coming from realizing C[C(∆̃) ∩ (M × Z× Z)] as a C[t]-algebra by setting t 7→ z(0,−1,0)

(first 0 in the exponent being 0 ∈M and the final 0 being in the last copy of Z).

On the complement of t = 0, we can devide by t, which corresponds to “lifts the top off” of

the polytope ∆̃. One sees from this (since products of polytopes correspond to products of the

corresponding toric varieties) that f−1(A1 \{0}) = P∆×C∗, with the restriction of f being projection

to the second factor.

On the other hand, one can show that f−1(0) is a union of toric diviors of PD̃: the irreducible

components are the toric varieties corresponding to the maximal chambers of the polyhedral decom-

position P, with intersections coming from P as one would expect. See [Gro11] (Example 3.5) or

[GS11b] (§1.2) for more details.

4i.e., a decomposition into a union of polytopes such that the intersection of two polytopes is a face of each and

any face of a polytope is also part of the decomposition. We further assume that each of these polytopes is integral,

meaning that they have lattice points as vertices.
5Warning: People sometimes use r ≥ ϕ(m) instead of ≤, but with our convention of convex meaning negative bending

parameters, we want to look at everything below the graph of ϕ.
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Chapter 3

Motivation from Mirror Symmetry

This chapter is not strictly necessary for the constructions of [GHK11] and [GHKK]. However, it

gives the motivation for much of what goes into those constructions, as well as context for those

constructions.

3.1 Mirror symmetry and T-duality in the complement of an

anticanonical divisor

This section will closely follow Denis Auroux’s paper [Aur]. Let (X,ω, J) denote a smooth compact

Kähler manifold X of complex dimension n. Let Ω be a non-vanishing meromorphic volume form

with D (an anti-canonical divisor) as the divisor of poles of Ω, so Ω|X\D (which we will also denote

by Ω) is a holomorphic volume form on X \D.

3.1.1 Setup

Definition 3.1.1. L ⊂ X \D of real dimension n is special Lagrangian (sLag for short) with phase

φ ∈ R/2π if ω|L = 0 (Lagrangian) and Im(e−iφΩ)|L = 0.

By replacing Ω with e−iφΩ, we will always assume φ = 0.

The main conjecture is:

Conjecture 3.1.2. A “mirror” manifold M may be constructed as the moduli space of sLag tori in

X \ D equipped with a flat U(1)-connection, up to gauge, along with a holomorphic superpotential

W : M → C (the m0 obstruction to Floer homology). Furthermore, fibers1 of W are mirror to D.

The possibility of singular sLag torus fibers prevents this from holding as stated—quantum cor-

rections2 are needed.

1The pair (M,W ) is called a Landau-Ginzburg model.
2i.e., instanton corrections, i.e., wall-crossing formulas, i.e., generalized mutations.
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3.1.2 The tangent space to the moduli space

Let g denote the Kähler metric on X. This induces a volume form volg on L. There exists a function

ψ ∈ C∞(L,R+) such that Re(Ω)|L = ψvolg (for the compact Calabi-Yau situation where D = 0,

ψ = 1).

Definition 3.1.3. α ∈ Ω1(L,R) is ψ-harmonic if dα = d∗(ψα) = 0. Let H1
ψ(L) denote the space of

ψ-harmonic 1-forms on L.

ψ-harmonic 1-forms are a lot like the usual harmonic 1-forms:3

Lemma 3.1.4. Every cohomology class has a unique ψ-harmonic representative.

Proposition 3.1.5. A section of the normal bundle v ∈ C∞(NL) determines a 1-form α := −ιvω
and an (n − 1)-form β := ιvΩ on L satisfying β = ψ ∗g α (∗g the Hodge-star operator with respect

to g) and the infinitesial deformation corresponding to v is sLag iff α and β are both closed (i.e., iff

α ∈ H1
ψ(L)). That is, infinitesimal sLag deformations correspond bijectively to ψ-harmonic 1-forms.

Furthermore, the deformations are unobstructed, meaning that infinitesimal deformations really are

derivatives of actual deformations.

Definition 3.1.6. An integral affine structure4 on an m-dimensional real manifold M is an atlas

with transition functions in GLm(Z) nRm. Equivalently,5 it is a collection of sections of the tangent

bundle which form a full rank lattice Zm in each fiber.

We see that, at least locally, the moduli space B of sLag deformations of L is a smooth manifold

with two affine structures, corresponding to identifying the tangent space with either H1(L,R) or

Hn−1(L,R) and taking the lattices of integral forms, H1(L,Z) or Hn−1(L,Z), respectively.

3.1.3 Constructing M

We are still following [Aur], but in the Calabi-Yau (D = 0) case, the following is due to Hithin

[Hit97]. Let M denote the space of pairs (L,∇) where L ∈ B as above, and ∇ is a flat6 U(1)-

connection on the trivial complex line bundle over L, up to gauge. I.e., ∇ corresponds to an element

hol∇ ∈ Hom(H1(L), U(1)) ∼= H1(L,R)/H1(L,Z), the fibers over B are indeed tori.

We can represent ∇ by d+ iA for some ψ-harmonic 1-form A on L. We can identify T(L,∇)M with

the set of pairs (v, α) ∈ C∞(NL)⊕Ω1(L,R) such that v gives an infinitesimal sLag deformation and

α is (represented by) a ψ-harmonic 1-form, viewed as an infinitesimal deformation of ∇. Mapping

(v, α) 7→ −ιvω+iα identifies T(L,∇)M withH1
ψ⊗C, givingM a complex structure J∨(v, α) = (a,−ιvω),

where a is a normal vector field such that ιaω = α.

3In fact, if n 6= 2, ψ-harmonic for g is the same as harmonic for ψ2/(n−2)g.
4There are different conventions for terminology here. For example, Mark Gross might call this a tropical structure,

and say an affine structure has transition maps in Aff(Rn), and an integral affine structure has them in Aff(Zm).
5Rm contains the lattice Zm which can be identified with a lattice in any tangent space of Rm. Pulling back along

charts gives lattices for the tangent spaces of M which are preserved by the action of the affine group. Conversely,

integrating the 1-forms corresponding to the dual lattice give coordinates for the charts.
6More generally, people consider X with “complexified Kähler structures” ωC = B + iω for some B ∈ H2(X,R),

called the B-field. Then ∇ is required to have curvature −iB.
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Proposition 3.1.7. Let Γ ∈ H2(X,L,Z) be a relative homology class with boundary ∂Γ 6= 0 ∈
H1(L,Z). Then

zΓ := exp(−
∫

Γ

ω) hol∇(∂Γ) : M → C (3.1)

is holomorphic.

Proof. d log zΓ is (v, α) 7→
∫
∂Γ
−ιvω + iα, which is C-linear.

Keeping track of how Γ changes as we vary L, we thus obtain locally well-defined coordinates

zΓ. These may be globally multi-valued if B has non-trivial monodromy. The [GHK11] and [GHKK]

constructions essentially describe how to find sums of zΓ’s which are invariant under the monodromy

action, thus giving well-defined global functions.

Remark 3.1.8. Here is another point of view which may be better for us (cf. [Rud]). To get coordinates

for the affine structures on the base, let {γi} be a basis for H1(L,Z), {γ∗i } the dual basis, Γi ∈
H2(X,L,Z) cylinders (as above) traced out by the γi’s as we move L, and Γ∗i traced out by the γ∗i ’s.

Then we have coordinates for one affine structure given by yi :=
∫

Γi
ω, and for the other given by

ŷi :=
∫

Γ∗i
Im(Ω).

Now, let xi = dyi and x̂i := ∂ŷi . We can view M locally as TB/Λ (where Λ is the lattice of

integral tangent vectors) with complex structure given by zi := xi+ iyi and holomorphic volume form

Ω = dz1 ∧ · · · ∧ dzn. On the other hand, we can view X locally as T ∗B/(Λ∗) with symplectic form

ω = dx̂i ∧ dŷi. The data of a Hessian metric on B allows one to obtain the complimentary data.

The following proposition summarizes the rest of §2 of [Aur]:

Proposition 3.1.9.

ω∨((v1, α1), (v2, α2)) =

∫
L

α2 ∧ ιv1 Im(Ω)− α1 ∧ ιv2 Im(Ω)

defines a Kähler form on M , compatible with J∨, with respect to which the fibers of π : (L,∇) 7→ L

are Lagrangian. If L is a torus, then dimM = dimX = n, and M has a holomorphic volume form

Ω∨((v1, α1), . . . , (vn, αn)) =

∫
L

(ιv1ω + iα1) ∧ · · · ∧ (ιvnω + iαn).

Equivalently, Ω∨ = d log zΓ1 ∧ · · · ∧ d log zΓn for Γi’s constructed from a basis for H1(L,Z) as in

Remark 3.1.8. The fibers of π are now sLag with phase nπ/2.

If ψ-harmonic 1-forms on L have no zeroes (automatic for n ≤ 2), then in a neighborhood of L,

(X,J, ω,Ω) and (M,J∨, ω∨,Ω∨) do indeed admit dual sLag torus fibrations over B.

3.1.4 The Superpotential

Since we are not dealing with a compact Calabi-Yau, we may run into an obstruction when defining

its Fukaya category. Namely, ∂2 might not be 0. On instead uses a “twisted” version of the Fukaya

category. The usual Fukaya category is an A∞ category: that is, rather than just having an associative

multiplication/composition of pairs of morphisms, we have maps mk which “compose” k morphisms.

m1 is the chain map ∂, and the multiplication m2 only associative “up to higher homotopy,” i.e.,

up to higher mk terms. Roughly, mk counts (pseudo-)holomorphic disks with their boundary on
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Lagrangians L0, L1, . . . , Lk. For twisted Fukaya categories, we also have an obstruction term m0 which

counts holomorphic disks with boundary on a single L. This term corresponds to the superpotential

W : M → C on the mirror. If there are no Maslov index7 zero disks,

W (L,∇) :=
∑

β, µ(β)=2

nβ(L)zβ .

Here, the sum is over all classes β ∈ H2(X,L,Z) of Maslov index µ(β) = 2, and zβ is as in Equation

3.1. nβ(L) is a “virtual” count of the number of holomorphic disks of class β whose boundary passes

through a generically specified point of L.

The condition of there being no Maslov index 0 disks is satisfied for toric varieties. However, if

there are Maslov index 0 disks, then W as above isn’t well-defined globally. The issue is that as we

vary L, some “disk bubbling” might occur (roughly, we can glue Maslov index 0 disks to Maslov index

2 disks to get new Maslov index 2 disks). To deal with this, as we cross a “wall” in B where this

gluing happens, we change the zβ ’s according to a “wall-crossing formula.” We’ll see this when we

cover [GHK11].

The theta functions in [GHK11] are, at least heuristically, defined in essentially the same way.

[GHK11] deals with surfaces obtained by blowing up points on the boundary D of a toric variety X.

Let N be the cocharacter lattice for X, ni ∈ N corresponding to a boundary divisor Di ⊂ D. Then

on the mirror we will have theta functions ϑkni which heuristically are given in local coordinates by

ϑkni(L,∇) :=
∑
β

nβ(L)zβ ,

where the sum is over classes β ∈ H2(X,L,Z) satisfying β ·Di = k and β ·Dj = 0 for each component

Dj ⊂ D, j 6= i, and nβ counts curves which hit Di at a single point with full multiplicity k. W then

will be given by
∑
ϑni , where the sum is over the ni such that Dni is a component of D (i.e., over

primitive generators for the rays of the fan for X). The actual definition will use “broken lines” (an

abridged version of tropical curves) in place of actual holomorphic disks.

3.2 The Gross-Siebert Program

This section is mainly based on parts of [Gro13], which gives a nice detailed overview of the Gross-

Siebert program. This program is an approach to SYZ mirror symmetry which replaces the difficult

differential geometry with some more tractable toric and tropical geometry. This section give only a

rough sketch of the program.

3.2.1 Toric Degenerations

For toric varieties, we have seen that finding sLag fibrations is rather easy. However, in general, it

is quite hard, if not impossible. A key idea behind the Gross-Siebert program is to consider large

complex structure limits which are “toric degenerations” of the Calabi-Yau manifold X.8 Roughly,

7One can show that, for L sLag, µ(β) = 2β ·D. I intend to just use this as our definition of Maslov index.
8My understanding is that they more generally use a “log-structure” on X instead of the degeneration data. When

we have a nontrivial anti-canonical divisor D as before, this divisor is used to get at least part of the log structure. I

unfortunately don’t know any details about how this works, but Mark Gross has given me the impression that he knows

how to do things from this perspective in the [GHK11] situations we will see later.
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in mirror symmetry, one expects the “large volume limit” on the symplectic side (corresponding to

letting ω → ∞) to be mirror to the “large complex structure limit” on the complex side.9 A toric

degeneration is essentially a (proper flat) family f : X → D (D an analytic disk) with fibers over

D \ {0} being nice (normal, not too singular) Calabi-Yau varieties, and special fiber X0 over 0 ∈ D
being a union of toric varieties, such that any x ∈ X0 \ Z (Z some locus in X0 of codimension ≥ 2)

has an analytic open neighborhood in X on which the degeneration is isomorphic to an analytic open

subset of a toric degeneration as in 2.10.

Example 3.2.1. Consider the space Xt := {z0z1z2z3 + tf = 0} ⊂ P3 × D, where f is a generic

degree 4 polynomial in the homogoneous coordinates zi i = 0, 1, 2, 3, and t ∈ D. At t = 0, this

becomes just the coordinate hyperplanes in P3, i.e., a union of toric varieties (P2’s). Xt is singular at

{t = f = 0} ∩ Sing(X0), which includes 4 points on each coordinate line, for a total of 24 singular

points forming the set Z.

3.2.2 Constructing B and B̂

The toric degeneration data is then used to construct the affine base B, which we will sometimes

refer to as the tropicalization of X—It is constructed as the dual-intersection complex of X0. That is,

k-dimensional strata10 of X0 correspond to codimension k cells of B, glued in the obvious inclusion-

reversing way. Note that this gives B a polyhedral decomposition P. B has an obvious affine structure

on the interiors of the maximal faces of P, but we still need to extend this over their intersections

(there will be singular points Z we cannot extend over, but this should have codimension ≥ 2). We

do this by assigning a “fan structure” to each vertex of B. Basically, a vertex v ∈ B corresponds to

an irreducible component of X0, and a neighborhood of v in B is identified with a neighborhood of

0 ∈ NR in the fan corresponding to this irreducible component.

If X is equipped with a relatively (i.e., fiberwise) ample line bundle L, we can also get the dual

affine manifold B̂ with polyhedral decomposition P̂. B̂ is constructed as the intersection complex—

k-dimensional strata of X0 correspond to k-dimensional cells σ of B̂ which are equal to the Newton

polytopes associated to L|σ. P̂ is now this decomposition into Newton polytopes. The fan structure

at a vertex v ∈ P̂ comes from the normal fan to the corresonding cell σv in the dual intersection

complex.

The relatively ample line bundle also gives us a “multi-valued” strictly convex piecewise-linear

function ϕ on B. A multi-valued piecewise-linear function may be defined as a section of the sheaf

PL/L, where L is the sheaf of linear functions and PL is the sheaf of piecewise-linear functions. Such

functions are uniquely determined by their bends. If D denotes a divisor of X0 corresponding to L|X0 ,

then the bending parameter of ϕ along a codimension 1 cell τ of P is −D ·Cτ , where Cτ is the curve

associated with τ . Ampleness implies this bend is negative (yielding strict convexity).

The data (B,P, ϕ) is actually sufficient to construct (B̂,P), along with a function ϕ̂ on B̂ which

makes this invertible. This is called the discrete Legendre transform. When dealing with actual SYZ

9Very roughly, a large complex structure limit is a degeneration such that the monodromies of the middle cohomology

around the singular loci are maximally unipotent—see Auroux’s lecture notes for more details. I often just picture them

as toric degenerations, although this is not always accurate. We will see below what approaching this limit means for

the affine base.
10By strata of X 0, I mean intersections of irreducible compoenents. By strata of a polytope, I mean intersections of

collections of faces (e.g., faces, edges, vertices, etc.)

20



fibrations, one uses a non-discrete version of this invloving a “Hessian” metric g on B in place of P
and ϕ (cf. [Gro13] and [Rud]), but we will not need this.

Remark 3.2.2. Before moving on, we clarify that (B∨,P∨, ϕ∨) should correspond to the affine structure

coming from the symplectic form—i.e., affine coordinates should be given by
∫

Γi
ω as in 3.1.8. On

the other hand, the affine coordinates on B should be given by
∫

Γ∗i
Im(Ω). To remember this, note

that we constructed B before specifying a Kähler structure (i.e., an ample line bundle), so clearly the

symplectic structure was not important on this side. Newton polytopes, on the other hand, are bases

for moment maps and are this linked to the symplectic structure.

3.2.3 The Reconstruction Problem

The other key step in the Gross-Siebert program is an algorithm for using the data (B, P̂, ϕ) or

(B̂, P̂, ϕ̂) to actually construct X∨, at least in a formal neighborhood11 of the large complex structure

limit. This was carried out in [GS11a], and is also explained in [Gro11]. The construction can be

quite complicated, particularly in higher dimensions, but the essential ideas are visible in dimension

2. We will soon carry out this procedure for log Calabi-Yau surfaces, following [GHK11].

The main idea is that, by construction, X should at least locally look like a toric degeneration

coming from the data (B∨,P∨, ϕ∨) (I have not totally justified this, but at least recall that our

toric degeneration construction used the Newton polytope of the generic fiber as its base, with cells

of P corresponding to strata of the singular fiber). The mirror should have (B̂, P̂, ϕ̂) as the dual

intersection complex and (B,P, ϕ) as the intersection complex, so it should locally look like a toric

degeneration constructed from the data (B,P, ϕ). Unfortunately, doing this more than just locally

is in general quite difficult, particularly when there are singularities in the affine structure. Dealing

with the singularities requires a structure called a scattering diagram.

Basically, holomorphic curves in X are supposed to map to shapes called “amoebas” in B. As

we approach the large complex structure limit, these amoebas should contract to so-called “tropical

curves.” There are various theorems about the exact correspondence between counts of tropical curves

and counts of holomorphic curves—cf. [Mik05] for toric surfaces and [NS06] for higher dimensional

toric varieties. As we will see in a little more detail soon, a scattering diagram is some combinatorial

data in B which [GPS09] shows in some cases records data about counts of tropical curves, and hence

of holomorphic disks. These disks will correspond to the Maslov index 0 disks that showed up when

we needed to make quantum corrections of the superpotential in §3.1.4. Thus, the scattering diagram

will tell us how to make these quantum corrections.

3.2.4 Tropical Curves

I have mentioned tropical curves a few times without ever saying what they are, so before moving on

I’ll take a quick moment to introduce them via some examples.

Recall the affine manifold B from before. Let ΛB denote the lattice of integer tangent vectors on B.

Then X should locally look like TB/ΛB . Let y1, . . . , yn denote local affine coordinates on B such that

xj := dyj forms a basis for Λ∗B . Then we can write complex coordinates on X as zj := e2πi(xj+iyj).

Taking the large complex structure limit corresponds to replacing Λ with εΛ and letting ε→ 0. With

11See §A.2 for background on formal schemes.
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xj and yj defined with respect to Λ as before, the complex structure for the manifold Xε locally

defined by TB/εΛ is locally given by z
1/ε
j := e2πi(xj+iyj)/ε.

Now recall from §2.9.2 that (C∗)2 has a moment map given (up to a factor of 1
2π which I’ll ignore

for simplicity) by µ : (z1, z2) 7→ −(log |z1|, log |z2|). If we consider the curve C := {z1 = 1} ⊂ (C∗)2,

we see that µ(C) = (0,R), i.e., the y-axis. This is a rather trivial example of a tropical curve. More

generally, any linear subspace of B with rational slope should correspond to some relatively simple

complex submanifold of X (cf. [Gro13], §4, where most of this subsection is coming from). The idea

of tropical geometry is that, as we approach the large complex structure limit, we should be able to

piece together these linear subspaces in a way that gives us more interesting complex submanifolds.

For example,12 consider Cε = {z1/ε
1 + z

1/ε
2 = 1}. If we keep the same moment map µ as before but

express it in terms of the complex coordinates z
1/ε
j , then we get

µ(z
1/ε
1 , z

1/ε
2 ) := −(log |z1|, log |z2|) = −ε(log |z1/ε

1 |, log |z1/ε
2 |).

Suppose we fix, say, −ε log |z1/ε
1 | = a, so −ε log |z1/ε

2 | ∈ [−ε log |1−e−a/ε|,−ε log(1+e−a/ε)]. As ε→ 0+,

one checks that this interval approaches a if a < 0 and 0 if a > 0. Applying similar calculations for a

fixed value of −ε log |z1/ε
2 |, one finds that µ(Cε) is the union of the positive x-axis, the positive y-axis,

and R≥0(−1,−1). This is an example of a tropical curve. In the non-limiting cases, the image is

called an amoeba, and as ε→ 0, we see that µ(CN ) converges to this tropical curve.

Here is another way to get this tropical curve, at least up to a shift. In the equation z1 + z2 − 1,

replace addition with min and multiplication (which we don’t have in this example) with addition, and

replace z1 and z2 with the standard real coordinates y1 and y2 for R2. Then we get a piecewise-linear

function on R2 given by min(−1, y1, y2). The singular locus of this is exactly the tropical curve from

above shifted by the vector (−1,−1) (The shift surprises me, so hopefully I haven’t made a mistake).

More generally, tropical varieties are defined to be the intersections (with some multiplicity recording

changes of slope) of the singular loci of “tropical polynomials,” i.e., those polynomials in the yi’s

over R with multiplication and addition being replaced by addition and min. Many properties of the

varieties can be seen in the corresponding tropical curves

Alternatively, one might define “parametrized tropical curves.” Briefly, if Γ is a weighted graph

with its univalent vertices removed and weight function w : Γ1 → Z≥0, then a weighted tropical curve

in B is a map h : Γ→ B which contracts weight 0 edges, linearly embeds all other edges, and satisfies

the “balancing condition:” if V is a vertex in the edges E1, . . . , Es of Γ and v1, . . . , vs are primitive

generators for the images of the Ei’s, oriented to point away from h(V ), then
∑
w(Ei)vi = 0.

As mentioned above, [Mik05] and [NS06] have theorems relating certain counts of parametrized

tropical curves to actualy counts of holomorphic curves. [GPS09] relates the data of scattering di-

agrams to counts of tropical curves and then uses the results of [NS06] to relate this to counts of

holomorphic curves and then to relative Gromov-Witten invariants.

12I hope I’ve avoided errors in these calculations, but I make no guarantees.

22



Chapter 4

Mirror Symmetry for Log

Calabi-Yau Surfaces

This section is a good warm-up for the cluster situations we will attack later. Log Calabi-Yau surfaces

are essentially (up to codimension 2 issues) the same as the fibers of rank 2 cluster X -varieties (those

for which the skew-form has rank 2). In fact, we will see that the mirror construction of [GHK11]

applied to a fiber U of rank 2 X is really the same as the mirror construction of [GHKK] applied to

the A-space. In either case, the X -space turns out to basically be the mirror (under some affineness

assumption).

4.1 Log Calabi-Yau Surfaces with Maximal Boundary

Definition 4.1.1. Let (Y,D) denote a smooth projective surface Y over C (or more generally, over

an algebraically closed field k with characteristic 0), and a singular nodal anti-canonical divisor D =

D1 + . . .+Ds (Di the irreducible components, cyclically ordered). Denote U := Y \D.

We may call (Y,D) a Looijenga pair, and U a Looijenga interior. Alternatively, we may call U a

log Calabi-Yau surface,1 and (Y,D) a minimal model for U . D will be referred to as the boundary.

We will call a divisor D-ample if it has positive intersection with every irreducible component of D.

Examples 4.1.2.

• Y a complete nonsingular toric surface, D the toric boundary.

• Y ∼= P2, D a nodal cubic.

• Blowups: Given a Looijenga pair (Y ,D), we can take:

– Toric blowups, where Y is the blowup of Y at a nodal point of D and D is the inverse

image of D). Note that toric blowups do not change U .

– Non-toric blowups, where Ỹ is the blowup of Y at a non-nodal point of D, and D̃ is the

proper transform of D.

1[GHK] calls U a log Calabi-Yau surface with maximal boundary, in contrast to the compact Calabi-Yau case where

D = 0. Briefly, maximal boundary means that D has a 0-stratum in a neighborhood of which D is the zero set of a

product of dim(U) local analytic coordinate functions.
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We will allow the term toric blowup to refer to a sequence of toric blowups. A toric model will

mean a sequence of non-toric blowups of a toric variety.

Proposition 4.1.3 ([GHK11], Prop. 1.19). Every Looijenga pair has a toric blowup which admits a

toric model.

4.2 Tropicalizing U

We want to construct a mirror family X to (Y,D). This family will be a “formal” smoothing of

Vn := A2
x1,x2

∪ A2
x2,x3

∪ . . . ∪ A2
xs,x1

⊂ As. If D supports a D-ample divisor, we can actually extend

this to an actual algebraic family containing the original U as a fiber (non-canonically). We can even

partially compactify the mirror so that (Y,D) can be identified with a fiber. Following the Gross-

Siebert perspective, this suggests2 that the base B of the SYZ fibration, together with the polyhedral

decomposition P, should look like the fan for (Y ,D)—i.e., cones for each A2
xi,xi+1

, glued together in

agreement with the intersections. There will, however, be a singular point at the origin.

We now describe the construction of B, together with its affine structure, as carried out in [GHK11].

We will from now on denote B by U trop. U trop will in fact have more than just an affine structure—it

will be an (oriented3) integral linear manifold (with singularity at 0), meaning that transition functions

will be in SLn(Z) (n = 2 for this case).4 It may be helpful to keep in mind that U trop should generalize

NR for (Y,D) and MR for the mirror.

Let (Ỹ , D̃)→ (Y ,D) be a toric model of a toric blowup of (Y,D). Let N be the cocharacter lattice

corresponding to Y , and Σ̃ ⊂ NR := N ⊗ R the corresponding fan. As a topological space, U trop is

canonically identified with NR, but it will have a more interesting linear structure. The fan Σ with

rays corresponding to components of D (rather than components of D or D, as with Σ̃, which is a

refinement of Σ) will play the role of P.5 To simplify notation (i.e., to avoid all the tildes) we will

from now on assume that (Ỹ , D̃) = (Y,D) (i.e., assume that no toric blowups are needed to get a toric

model).

Let ρi denote the ray corresponding to Di, and let σi,i+1 denote the 2-cells corresponding to

Di ∩Di+1. Let vi be primitive generator of ρi. Define6 σi := σi−1,i ∪ σi,i+1.

Now for our charts we can take ψi : σi → R2 defined to be linear on each cell of Σ and satisfying

ψi(vi−1) = (1, 0) ψi(vi) = (0, 1) ψi(vi+1) = (−1,−D̃2
i ).

2As I’ve mentioned before, my understanding is that in the Gross-Siebert perspective, B and P should actually be

constructed using a log structure on U induced by the boundary D. The approach I’m suggesting here is more accurately

a description of how to tropicalize the mirror, which is cheating since a priori we don’t know what the mirror is.
3The orientation is determined by the cyclic ordering of the components of D, so we should note that this ordering

is part of our data. This corresponds to orienting the fibers of the SYZ fibration, or equivalently, to choosing a sign for

the holomorphic volume form Ω.
4More generally, for cluster varieties with rank 2k skew-form, we will actually have transition functions in Sp(2k,Z).

However, in the cluster situations we will typically avoid using this Sp(2k,Z)-structure in favor of a choice of vector

space structure corresponding to some choice of seed.
5Note that the singular point being the vertex of P makes this somewhat different from the situation of §3.2.2.
6We will continue using the notation σi later on, but if (Y,D) does not admit a toric model before taking toric blowups,

then it is possible that s ≤ 2, in which case this definition must be modified. If s = 2 the necessary modifications are

pretty obvious but notationally messy, and for s = 1 a more complicated construction is needed (although [GHK11]

implies that it is still doable).
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In other words, we are modifying the affine structure of NR so that in σi we have

vi−1 +D2
i vi + vi+1 = 0. (4.1)

This is motivated by Corollary 2.7.4, which also shows that if (Y,D) is toric then the linear structure

really is that of NR.

Alternatively, we can say that U trop and NR agree as Σ-piecewise-linear manifolds, and that defin-

ing the linear structure can be done by identifying which piecewise-linear functions are actually linear

functions. Σ-piecewise-linear functions ϕ correspond to Weil divisors Wϕ :=
∑
i ϕ(vi)Di, and the

bending parameter of ϕ along ρi is defined to be Wϕ · Di. In particular, ϕ is linear along ρi if and

only if this intersection is linear. This definition is very nice because it tells us the bending param-

eters of piecewise-linear functions, and because it easily generalizes easily for higher dimensions log

Calabi-Yau varieties.

U trop has a canonical set of integral points U trop(Z) defined by U trop(Z) :=
⋃
i ψ
−1
i (Z2). Alter-

natively, we can simply define U trop(Z) to be the set N viewed as a subset of U trop. We will denote

U trop
0 := U trop \ {0}.

Remarks 4.2.1. • Note that U trop depends only on the intersection matrix (Di ·Dj)ij . Thus, the

choice of toric model is unimportant.

• Toric blowups correspond to refinements of the fan, but do not change the linear structure.

Thus, U trop really depends only on U .

• Points of U trop(Z) correspond to non-negative multiples of boundary divisors on (Y,D) and its

toric blowups, with divisors on different toric blowups identified if they correspond to the same

discrete valuation of the function field.

• Integral linear manifolds come with a flat connection, pulled back from the flat connection on

Rn which is given by identifying Rn with its tangent spaces, with 0 ∈ Rn always identified with

0 in the tangent space. The lattice Λ in TU trop coming from the integral linear structure has

non-trivial monodromy about 0. We can identify cones σ 3 p in U trop with cones in TpU
trop.

This identification takes integer points of U trop to points in Λ and is equivariant under parallel

transport within σ.

Example 4.2.2. When trying to draw U trop, I like to consider the universal cover Ũ trop of U trop
0 , and

draw a linear immersion of a couple sheets of Ũ trop into the plane. This is called the developing map

of U trop. For example, if I have D = D1 + . . .+D5 with each D2
i = −1 (cf. Example 4.3.2 below), I

would draw Figure 4.2.1.

4.3 The Mumford Degeneration

Let P gp be a finite-rank free Abelian group, P gpR := P gp ⊗ R, and P ⊂ P gp a sub-monoid. We say

a function ϕ : U trop → P gpR is integral Σ-piecewise-linear if it is piecewise linear with bends only

along rays of Σ, and ϕ(U trop(Z)) ⊂ P gp. We say it is convex (resp. strictly convex) if the bending

parameters are in P (resp. P \ P×, where P× denotes the invertible elements of P ). Let ϕ be a

multi-valued strictly7 convex integral Σ-piecewise-linear function on U trop. Recall that ϕ is uniquely

determined by its bending parameters.

7Strictness of the convexity is not really necessary for much of what we will say.
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Figure 4.2.1: A developing map of U trop for U = M0,5. ρji denotes the ray corresponding to Di on

the ith sheet of Ũ trop.

Examples 4.3.1.

• We will often take P gp = A1(Y ), P = NE(Y ), ϕNE having bending parameter [Di] along

ρi. However, it is important that P is rational polyhedral. A version of the Cone Theorem

(Theorem 3.7 of [KM98]) implies that if D supports a D-ample divisor, then NE(Y ) is indeed

rational polyhedral. In general, however, it is necessary to take a rational polyhedral cone σ

containing NE(Y ), and define P = σ ∩ A1(Y ). To simplify things, we will assume from now on

that D does support a D-ample divisor, unless otherwise noted.

• Let η : A1(Y ) → P gp be a homomorphism such that η[NE(Y )] ⊂ P . Then take ϕ := η ◦ ϕNE.

For example, we could have P gp = Z, P = Z≤0, η([C]) := −W · [C], where W is the class of

a D-ample divisor on Y . We denote this function by ϕW . From our definition of the integral

linear structure, if W =
∑
aiDi, then ϕW (vi) = −ai. In particular, ϕW can be represetned by

a single-valued function.

From now on, ϕ will be given by some η ◦ ϕNE as above. p : P→ U trop will denote a bundle over

U trop which ϕ may be viewed as a single-valued section of. When viewing ϕ as a section instead of a

P gpR -valued function, we will denote it by ϕ̃ (i.e., ϕ̃ := (Id, ϕ) : U trop → P). [GHK11] constructs such

a bundle, but rather than giving the construction now, I will wait until we move on to the cluster

situation, where we will see that P can be identified with Atrop.

Let ΓR ⊂ P be the graph of ϕ, and Γ := ΓR ∩ [U trop(Z)× P gp]. If (Y,D) is toric (so U trop is non-

singular), then Γ+P is a monoid, and the desired mirror family is X := Spec k[Γ+P ]→ Speck[P ], with

the morphism coming from the inclusion of P 7→ (0, P ) (note that this is just a minor generalization

of the construction from §2.10). The fiber over 0 is just Vn, and the general fiber is just U (which in

this case is (C∗)2).

Unfortunately, the singularity at 0 complicates this in general. Instead, we do a local version of

this construction as follows: For each σ ∈ Σ, we can canonically identify σ×P gpR with a cone in Tv(P)

for any v ∈ p−1(σ). Let σ be any cone (not necessarily top dimensional) in Σ containing ρi. Using

this identification, define a cone

Γρi,σ,R := {x− y ∈ Tϕ̃(vi)(P)|x ∈ ϕ(ρi), y ∈ ϕ(σ)}. (4.2)

Let Γρi,σ denote the integer points. Define Rρi,σ := k[Γρi,σ], Uρi,σ = Spec k[Rρi,σ].

26



Now, we want to glue each Uρi,ρi to Uρi+1,ρi+1 by identifying Uρi,σi,i+1 with Uρi+1,σi,i+1 . Fixing a

representative of ϕ on Ui ∪ Ui+1 and using parallel transport in σi,i+1 to identify tangent spaces, the

naive approach is to note that Γρi,σi,i+1
= Γρi+1,σi,i+1

and then use this obvious identification.

Unfortunately, this does not give a satisfactory mirror. [GHK11] shows that this approach, modulo

some ideal in k[P ], can be used to get a formal smoothing of V0, but this does not extend across the

origin. The issue is essentially that the non-trivial monodromy of Λ around 0 ∈ U trop prevents

functions from patching correctly.8 The solution is to modify the gluing with something called a

scattering diagram.

Example 4.3.2. We have just introduced a lot of notation, so let me work a specific example to help

clarify what is going on. Consider the toric pair (Y ,D) corresponding to the fan with rays generated

by ρ(±1, 0), (0,±1), and (−1,−1). Label the rays ρi, i = 1, . . . , 5, in counterclockwise order, beginning

with ρ1 := R≥0(1, 0). Take one non-toric blowup on D1 and one on D2 to obtain a Looijenga pair

(Y,D) with D2
i = −1 for each i. We can define a chart mapping σ1,2 ∪ σ2,3 to R2 which takes v1 to

(1, 0), v2 to (0, 1), and v3 to (−1, 1) (and similarly for any shift in the indices).

Take W =
∑
Di, so ϕW (vi) = −1 for each i. We can identify P in this case with U trop × R. We

will write down Rρ2,ρ2 explicitely. Using the above chart, τ := (σ1,2 ∪ σ2,3)×R can be identified with

a cone in R3 (i.e., the tangent space to some point in τ) as follows: ϕ̃(v1) = (1, 0, 1), ϕ̃(v2) = (0, 1, 1),

and ϕ(v3) = (−1, 1, 1). Let us denote x := z(1,0,0), y := z(0,1,0), and z(0,0,−1). Then Rρ2,ρ2 :=

kk[xz, yz, x−1yz, z, y−1z−1], with relations coming from the embedding in k(x, y, z). The y−1z−1 is

to take care of the terms we subtract in Equation 4.2. To simplify this, let u := xz, v = x−1yz, and

t = yz. Note that uvt−1 = z, so we can remove this generator, and then we in fact have no relations.

Thus, Rρ2,ρ2 = k[u, v, t±1], and Uρ2,ρ2 := SpecRρ2,ρ2 is (using m Spec) just k2 × k∗. The map to

Speck[P ] = Spec k[z] ∼= A comes from the ring homomorphism z 7→ uvt−1.

Now, Rρ2,σ1,2 = (Rρ2,ρ2)u (i.e., we adjoin u−1), and Spec of this corresponds to taking the comple-

ment of Z(u) (the zero set of u). Note that this ring is canonically equal to Rρ1,σ1,2 . Thus, we have

an obvious canonical way to glue Uρ1,ρ1 to Uρ2,ρ2 along this common open subset. This is what I said

above is the wrong gluing.

4.4 The consistent scattering diagram

When we deal with the general cluster variety situation, I will introduce a more general and precise

description of what a scattering diagram is. For now, let us just say that a scattering diagram d

includes the data of a set of rays in U trop with associated functions which satisfy certain conditions.

These functions are used to define certain ring automorphisms, and for the “consistent” scattering

diagram which we will define, these automorphisms make it possible to construct the scheme we were

after in §4.3.

For a ray ρ ⊂ U trop with rational slope, let Dρ be the corresponding boundary divisor in (Ỹ , D̃)

(some toric blowup π of (Y,D)). Let β ∈ H2(Ỹ ,Z) with kβ := β ·Dρ ∈ Z, and β ·Dρ′ = 0 for ρ 6= ρ′

(in particular, the Maslov index is 2kβ). Let Fρ := D \Dρ, Ỹ
◦
ρ := Ỹ \ Fρ, and D0

ρ := D \ Fρ.
8I am surprised that the gluing morphisms are even compatible in the sense necessary to get a well-defined scheme,

although [GHK11] claims this is “easily checked.” Perhaps modding out by the ideal is what makes it possible?
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Now, define M(Ỹ ◦ρ /D
◦
ρ, β) to be the moduli space of stable relative maps9 of genus 0 curves to

Ỹ ◦ρ , representing the class β and intersecting D◦ρ at one unspecified point with multiplicity kβ . This

moduli space has a virtual fundamental class with virtual dimension 0. Furthermore, M(Ỹ ◦ρ /D
◦
ρ, β)

is proper over Speck (cf. Theorem 4.2 of [GPS09] or Lemma 3.2 of [GHK11]). Thus, we can define

the relative Gromov-Witten invariant Nβ as

Nβ :=

∫
[M(Ỹρ/Dρ,β)]vir

1.

If Nβ 6= 0, we call β an A1-class.

Remark 4.4.1. We of course have not covered enough to necessarily know what all this means. The

point though is that Nβ is a “virtual” count of the number of curves in Ỹ of class β which intersect

D at precisely one point on D◦ρ. We will later see a more combinatorial construction of scattering

diagrams. The purpose of this approach is is to relate the scattering diagram to the to the counts

of holomorphic disks that mirror symmetry tells us to consider, and also to make it clear that the

construction is canonical (it takes some work to see that the combinatorial approach does not depend

on the choice of toric model).

Recall that η denotes a homomorphism from NE(Y ) to P . We now define

fρ := exp

∑
β

kβNβz
η(π∗(β))−ϕ̃(kβvρ)

 ∈ Rρ,ρ.
Here, the sum is over all β ∈ NE(Ỹ ) which have 0 intersection with all boundary divisors except for

Dρ.

Example 4.4.2. Let Y = P2 and let D = D1 +D2 +D3 be a triangle of generic lines in Y . Consider

the pair (Y,D) obtained by preforming a single non-toric blowup at a point on D1. Let β = E1 be the

exceptional divisor. Then Nβ = 1. Due to the stacky nature of M(Yρ/Dρ, β), Nβ might not always

be a positive integer. For example, with Y and β as above, we have Nkβ = (−1)k−1

k2 (see [GPS09],

Proposition 6.1).

These multiple covers of E1 are the only A1 classes for D1, so we can compute fρ1 . Suppose

P gp := A1(Y ) and η := Id. We have

fρ1 = exp

 ∑
k∈Z>0

k

(
(−1)k−1

k2

)
zk[E1]−ϕ(kvρ1 )−kvρ1


= 1 + z[E1]−ϕ(vρ1 )−vρ1 .

More generally, if the only A1-classes hitting Dρ are a set {E1, . . . , Ek} of (−1)-curves, along with

their multiple covers, then

fρ =

k∏
i=1

(
1 + zη(Ei)−ϕ̃(vρ)

)
(4.3)

9For details on relative Gromov-Witten invariants, see [Li02], or see [GPS09] for a treatment of this particular

situation.
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Example 4.4.3. Now consider the situation of Example 4.3.2 above. Here, for each i, there is

exactly one interior (−1)-curve Ei (an exceptional divisor for some toric model) hitting each Di, and

the multiple covers of these are the only A1-classes. So Equation 4.3 applies for each ρi and becomes

the very simple function fρi = 1 + z(−vi,0). I note that the rays of the scattering diagram are exactly

those drawn in Figure 4.2.1, although it is rare for the scattering diagram and the fan to coincide like

this.

4.4.1 Modifying the gluing

Now for the modified gluing, to glue Uρi,σi,i+1 to Uρi+1,σi,i+1 we use the path-ordered product along

a path γ in σi,i+1 from vi to vi+1 which transversely crosses rays in the counterclockwise direction.

That is, whenever γ crosses a scattering ray ρ, apply

zv 7→ zvfnρ(v)
ρ . (4.4)

nρ here is the primitive element of the cotangent space containing ρ in its kernel and taking positive

values on −γ′(t). If ρi is a scattering ray, we have to specify whether or not the scattering automor-

phism for crossing ρi should be applied. I like to use the notation U+
ρi,σ (resp. U−ρi,σ) to indicate that

we view the endpoint of γ on ρi as actually being infitesimally counterclockwise (resp. clockwise) of

ρi when the scattering automorphism for crossing ρi counterclockwise has been applied.

The problem now is that there are often infinitely many scattering rays between ρi and ρi+1. We

can deal with this by working modulo mk. Modulo this ideal, there are only finitely many rays with

non-trivial attached function—this is because there are only finitely many points in P \ kmP , and

A1-classes with non-vanishing contributions live in NE(Y ) \ kmNE(Y ).

Now, gluing all of the U±ρi,σ,k’s as above (using the subscript k to denote that we are working

modulo mk), we construct an infinitesimal deformation X k0 of Vn0 , over the base Speck[P ]/mk. Let

Rk := Γ(X k0 ,OXk0 ). The scattering diagram we have used is “consistent,” as we will explain below,

and [GHK11] shows this implies that

X k := SpecRk

gives an infinitesimal smoothing of Vn, flat over Spec k[P/mk]. Let R̂ := lim←−Rk, and define

X̂ := Spf R̂

(see Appendix A.2 for a brief explanation of formal schemes). [GHK11] shows that this10 yields a flat

formal smoothing of Vn over Spf k[[P ]]. Furthermore, when D supports a D-ample divisor, then this

extends to an algebraic family

X := Spec Γ(X̂ ,OX̂ ),

giving a flat affine smoothing of Vn over Speck[P ].

All of this of course requires that Xk actually has global regular functions, which was not the

typically case before we introduced the scattering diagram. We now describe the theta functions,

which give a canonical basis of such global regular funcitons.

10If NE(Y ) is not rational polyhedral (so in particular, D does not support a D-ample divisor), then [GHK11] actually

requires completing with respect to a slightly different ideal J .
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4.5 Broken Lines and Theta Functions

Before defining the theta functions, we must understand “broken lines,” as these record the monomial

terms in local expressions of the theta functions.

Definitions 4.5.1. Let q ∈ U trop(Z), and Q ∈ U trop
0 . A broken line γ with Ends(γ) = (q,Q) is

the data of a continuous map γ : (−∞, 0] → U trop, values −∞ < t0 < t1 < . . . < ts = 0, and

for each t 6= ti, i = 0, . . . , s, an associated monomial ctz
mt ∈ Rγ(t) := k[Λγ(t)P] with ct ∈ k and

r∗(mt) = −γ′(t), such that:

• γ(0) = Q

• γ0 := γ|(−∞,t0] and γi := γ|[ti−1,ti] are geodesics (i.e., straight lines with constant velocities).

• For all t� t0, γ(t) is in some fixed convex cone σq containing q, and mt = ϕ̃(q) under parallel

transport in σq.

• For all a ∈ (ti−1, ti) (or (−∞, t0) for i = 0) and b ∈ (ti, ti+1), and all relevant Rγ(t)’s identified

using parallel transport along γ, we have that γ(ti) is contained in a scattering ray ρ, and

cbz
mb = (caz

ma)(cρz
mρ)

where cρz
mρ is any term in the formal power series expansion of f

〈nρ,r∗(ma)〉
ρ (so cbz

mb is a

monomial term from the expansion of Equation 4.4).

We are at last ready to define the theta functions. Define ϑ0 := 1. For q 6= 0, define ϑq|Uρ,ρ (maybe

with subscript k and superscript ±) by picking a point Q infinitesimally close11 to ρ and defining

ϑq|Uρ,ρ :=
∑

γ|Ends(γ)=(q,Q)

cγz
mγ (4.5)

where cγz
mγ denotes the monomial attached to the final straight segment of γ.

For this to be well-defined, it must commute with the gluings by path-ordered products. When this

happens, we say the scattering diagram is “consistent.” Much of §3 of [GHK11] is devoted to relating

the scattering diagram we defined above with the scattering diagrams from [GPS09] and using this to

prove consistency. Eventually I’ll give a sketch of how this goes. For now, assuming the consistency

of our scattering diagram, we have:

Theorem 4.5.2.

Γ(X k,OXk) =
⊕

q∈Utrop(Z)

(k[P ]/mk) · ϑq.

If D supports a D-ample divisor, then

Γ(X ,OX ) =
⊕

q∈Utrop(Z)

k[P ] · ϑq.

11When working modulo mk, we just need there to be no scattering rays between Q and ρ. When dealing with X it is

more difficult to state precisely what is meant by “infinitesimally close.” [Manb] gives a precise definition, but it may

be intuitively obvious what is meant by this, and one could also just work modulo mk for each k and take the limit.
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Example 4.5.3. Consider an example with only finitely many scattering rays, each of the from from

Equation 4.3. This is the case in the situation from Examples 4.3.2 and 4.4.3. Here, we can avoid

modding out by the ideals and just work directly with the Rσi,i+1,σi,i+1
’s—if we use the Rρi,ρi ’s, we

actually get a compactification of X , as is apparent already in Example 4.3.2.

In this situation, a broken line which begins in some cone σi,i+1 will never return to σi,i+1 after

leaving it, so for qi ∈ σi,i+1, ϑqi |Uσi,i+1,σi,i+1
= zϕ̃(qi). If we cross into, say, σi+1,i+2, then this

transforms into zϕ̃(qi)f
nρi+1

(qi)
ρi+1 . In the cluster language, zϕ̃(q) is a product of cluster monomials, and

the transformation above is just a mutation.

The definition easily implies the following multiplication formula:

Theorem 4.5.4. Given q1, q2, q ∈ U trop(Z), the ϑq-coefficient of ϑq1 · ϑq2 is given (modulo mk if we

are talking about X k) by ∑
γi, i=1,2

Ends(γi)=(qi,Q)
mγ1+mγ2=q

cγ1cγ2 , (4.6)

where Q is a point infinitesimally close to ρq.

The key to the proof of this is to note that ϑq is the only theta function with a zq term along ρq.

Similar formulas are easy to come up with for products of more than two theta functions. Note that

Theorem 4.5.4 together with Theorem 4.5.2 completely determine X k and X .

Exercise 4.5.5. Here is a fun exercise that offers practice with the multiplication formula 4.6 and also

proves something interesting. Suppose (Y,D) is the cubic surface obtained from (P2, D = D1 +D2 +

D3) by blowing up two points on each Di. Each D2
i = −1, and one easily checks that the monodromy

of U trop is µ = − Id (i.e. for any ray ρ ⊂ U trop, U trop \ ρ can be identified with a half-plane in R2).

The mirror family can be identified with the moduli space of flat SL2(C)-connections on a sphere S2

with 4 punctures. According to [FG06] (cf. §7.2.3), primitive points in U trop(Z) correspond bijectively

with isotopy classes of simple loops γ in S which are not contractible or homotopic to a boundary

loop. The theta function ϑkγ corresponding to kγ, γ primitive and k ∈ Z≥0, should take the value

Tr(holkγ ∇) at the connection ∇ in the moduli space. Assuming this is correct for ϑγ with γ primitive

(this has been proven in [GHK]), prove it for ϑkγ .

Hint: Use Equation 4.6 to write ϑkγ as a polynomial in ϑγ . Only straight lines show up in this

computation, so it is not too difficult. On the other hand, if holγ(∇) has eigenvalues λ1 and λ2, then

Tr(holkγ ∇) = λk1 + λk2 can be written as a polynomial in Tr(holγ ∇) = λ1 + λ2 (since λ1λ2 = 1). The

goal now is to show that these two polynomials are the same. With either approach, one finds that

the coefficient of ϑcγ in ϑkγ should be the number of k-tuples (ε1, . . . , εk) such that each εi = ±1 and∑
εi = c.

4.6 Compactifications

When D supports a D-ample divisor W , we can in fact compactify the mirror family X to get a

family of deformations of the original (Y,D). Here is one way to define this compactification: For

W =
∑
aiDi, let ∆W denote the polytope in U trop containing 0 and bounded by lines denoted Laivi .
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This is the line which goes to infinity parallel to vi with the origin on the left and with “lattice

distance” ai from the origin—i.e., if we parallel transport vi to a point p on the line, then p∧ vi = ai.

Note that the monodromy of U trop might cause this straight line to actually self-intersect. One can

show that D-ampleness of W implies strict convexity of ∆W .

Now, much like in the toric situation, we have a couple ways to define the compactification. One

way is to locally apply the normal fan construction to the polytope ∆̃W := [ϕ̃(∆W ) + P ]. This is

essentially the same as the construction of X , but now with extra affine open subsets (containing the

compactifying divisors) corresponding the the vertical faces of ∆̃W (i.e., the faces living over the faces

of ∆W ).

Alternatively, one can define

XW := Proj
⊕
k∈Z≥0

q∈k∆W

k[P ] · (ϑq, zk)

Multiplication of the (ϑq, t)’s is the usual multiplication of theta functions in the first variable and

is given by the obvious addition of exponents in the second. The grading is of course given by

k. Of course, for this definition to make sense, one much check that if qi ∈ ki∆W , i = 1, 2, then

ϑq1ϑq2 ∈ (k1 + k2)∆W . I proved this in [Manb].

[GHK] shows that (Y,D) can be identified with a fiber of XW (after making certain choices which

they describe).12 This means that we get theta functions on the original space log Calabi-Yau surface!

Furthermore, the line bundle LW corresponding to W has a canonical basis of global sections given

by the ϑq’s with q ∈ ∆W . Thus, ∆W generalizes the “normal polytope” from the toric situation for

LW (since U trop has SL2(Z)-monodromy, we must in general use the parallel polytope rather than the

normal polytope).

4.7 More scattering diagrams

Here we look at scattering diagrams in vector spaces and relate them to the consistent scattering

diagram we saw in §4.4. As before, N and P gp denote free Abelian groups, M := Hom(N,Z), and P

is a finitely generated submonoid of P gp (that is, P = σP ∩ P gp for some convex rational polyhedral

cone σP ⊂ P gpR ). We do not assume that N has rank 2. Consider the ring

R := lim←−
k

(k[N ]⊗ k[P ]/mk),

where m is the maximal ideal of k[P ] generated by all zp with p ∈ P \ P×.

4.7.1 The Tropical Vertex Group

I think we will only use this subsection for one step in the proof of Theorem 4.7.4, which we only

prove in the two-dimensional case anyways. so the reader can get away with skipping this. [I MIGHT

REMOVE THIS AND THE 2D PROOF FROM THE FINAL DRAFT]

12I believe that [GHK]’s proof involves their Torelli theorem for Looijenga pairs from [GHK13b]. In the cases where

Example 4.5.3 applies, this can be checked directly.
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The module of log derivations is defined to be Θ(R) := R ⊗Z M , with action on R give by

(f ⊗m)(zn) = f〈n,m〉zn. 〈·, ·〉 here denotes the dual pairing between N and M . One often denotes

f ⊗m by f∂m.

The commutator makes Θ(R) into a Lie algebra with bracket

[zn1∂m1
, zn2∂m2

] = zn1+n2∂〈n2,m1〉m2−〈n1,m2〉m1
.

Let d : P gp → Z be a linear function which is positive on P \ P× and such that P≤k := {n ∈
P |d(n) ≤ k} is finite for all k. For example, let mP denote the monoid ideal of P generated by all

elements of P \ P×, and let d(p) be the largest value of k such that p ∈ mkP .

Consider the Lie subalgebra (over k) of mΘ(k̂[P ]) defined by

v>k :=
⊕

d(n)>k

zn(k⊗ n⊥).

Let v≤k := v/v>k, and define V≤k := exp(v≤k). The group V := lim←−V≤k ⊂ Aut(k̂[P ]) is called the

tropical vertex group.

Now, suppose MR is equipped with an integral skew-symmetric form {·, ·}. We define Vs similarly

to V, taking an inverse limit of the exponentials of the Lie algebras

v>k,s :=
⊕

d(n)>k

zn(k⊗ {n, ·}).

I might call Vs the skew tropical vertex group.

Example 4.7.1. An element log(f)∂n ∈ lim←− v≤k exponentiates to the automorphism zm 7→ zmf 〈n,m〉.

4.7.2 Scattering Diagrams

Suppose that N is equipped with a skew-symmetric form {·, ·}.

Definition 4.7.2. A wall in NR is the data (d, fd), where

• fd =
∑
k∈Z≥0

ckz
knd ∈ R, where ck ∈ k[P ] and nd is a primitive vector in N . −nd is called the

direction of the wall. Let md := {nd, ·} ∈M . We assume md is primitive.

• d ⊂ m⊥d ⊂ NR is a full-dimensional (in m⊥d ) convex (but not necessarily strictly convex) rational

polyhedral cone spanning a hyperplane j ⊂ m⊥d . We say the wall is incoming if nd ⊂ d, and

outgoing otherwise. d is called the support of the wall.13

• fd ≡ 1 mod m.

We might sometimes denote a wall (d, fd) as just d.

Definition 4.7.3. A scattering diagram D is a set of walls such that for each integer k > 0, there are

only finitely many walls (d, fd) ∈ D with fd 6≡ 1 mod mk.

13We explain some of the terminology. −md is called the direction of the wall because it is the direction in which

broken lines can bend when crossing the wall. In dimension 2, walls are supported on rays or lines containing the origin.

Being outgoing in this case means that the wall is a ray whose direction points away from the origin (outward), while

being incoming means that there is some point at which the direction points towards the origin (inward).
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Let Joints(D) denote the union of all the boundaries of walls of D and all codimension 2 (in NR)

intersections of walls of D. For a path γ not intersecting Joints(D), one may define the path-ordered

product θγ,D just like we did in §4.4.1. Note that by Example 4.7.1 the automorphism for crossing a

wall d is just

exp(log(fd)∂±{nd,·}),

where the sign chosen to make ±{nd,−γ′(t0)} > 0 (t here denotes the time at which γ crosses d).

Thus, these automorphisms live in Vs.
Given a scattering diagram D, we can combine several walls with the same support into one by

multiplying together their attached funcitons—the new scattering diagram is said to be equivalent to

D (similarly in the reverse direction with factoring).

Theorem 4.7.4 ([GS11a],[KS06]). Let D be a scattering diagram with only finitely many walls. Then

there is a scattering diagram S(D) containing D such that S(D)\D consists only of outgoing walls, and

each path-ordered product depends only on the endpoints of the path. S(D) is unique up to equivalence.

Proof. We only give the complete proof in dimension 2, and then comment on the general situation.

We will inductively construct scattering diagrams Dk such that the claim holds modulo mk+1, and

then define S(D) :=
⋃
kDk (note that this is not a disjoint union). Let D0 := D. The claim holds for

k = 0 because all the scattering functions are required to be trivial modulo m. We now describe how

to obtain Dk from Dk−1.

For any joint p ∈ Joints(Dk) (in the 2-dimensional situation, {0} is the only joint), let γp be a

simple closed loop around p which does not contain any other points in Joints(Dk). Then by the

inductive assumption, we have a unique expansion

θγp,Dk
= exp

(
s∑
i=1

ciz
ni∂{ni,·}

)
,

with ci ∈ mk and ni ∈ N \ {0} (this is where we use §4.7.1). Let

Dk[p] := {p+ R≥0ni, 1± cizni},

where the sign is chosen so that the contribution to θγ,Dk
is exp(−cizni∂{ni,·}) (this is determined by

the direction in which γ crosses the wall). Let

Dk := Dk−1

⋃
p∈Joints(Dk−1)

Dk[p].

Since automorphisms coming from Dk[p] are central modulo mk+1, we easily see in dimension 2 that

Dk has the desired properties. In higher dimensions, checking this is significantly more complicated

becuase walls extending from one joint might contain other joints.

In this proof, we followed [GPS09], which was itself following [KS06]. [GS11a] followed this ap-

proach to prove the higher dimensional cases (much more generally). I believe that [GHKK], in

their most recent rewrite, follow the quite different approach of [KS13], with the methods of [GS11a]

appearing in their appendix.
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4.7.3 Relation to the [GHK11] situation

Recall that each toric model π : (Ỹ , D̃) → (Y ,D) induces a linear structure on U trop by identifying

it with NR,Y := NY ⊗ R, where NY is the cocharacter lattice of Y . Let ϕ : NY → A1(Y ,R) be an

integral Σ-piecewise-linear function with bending parameter [Di] along ρi (ϕ exists and is unique up to

a choice of linear function, cf. [GHK11], Lemma 1.13). Let P gp0 := π∗(A1(Y ,Z), and let E ⊂ A1(Y,Z)

be the lattice generated by the exceptional divisors of π. Now P gp := A1(Y,Z) = P gp0 ⊕ E, and

P := π∗(NE(Y ))⊕ E. Define ϕπ : U trop → P gp by ϕπ(u) := (π∗(ϕ(u)), 0).

Suppose that π includes bi non-toric blowups on Dni , with corresponding exceptional divisors Eij ,

j = 1, . . . , bi. Now, let D0 be the scattering diagram in NR with wallsRni,
bi∏
j=1

(
1 + zϕ̃π(ni)−[Eij ]

)∣∣∣∣∣∣ i = 1, . . . , n

 . (4.7)

Now consider D := S(D0). Since all of the rays of D \D0 are outgoing, any broken line crossing these

scattering rays can only bend away from the origin. Thus, it is only broken lines crossing R≥0ni that

can bend towards the origin.

U trop with its canonical integral linear structure now comes from modifying NY ,R so that lines

which take the maximal allowed bend towards the origin are actually straight. Furthermore, if we

break our initial scattering rays up into two outgoing rays by negating the exponents of the R≥0ni

parts of the initial rays, then S(D0) becomes our consistent scattering diagram D in U trop from before.

The interpretation of S(D0) in terms of counts of holomorphic curves is the main result of [GPS09].

Path-ordered products depending only on the endpoints of paths implies consistency of the scattering

diagram by a result in [CPS]. §3 of [GHK11] works through this in detail in order to prove the

consistency of their scattering diagrams.
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Chapter 5

Cluster Algebras and Cluster

Varieties

In this chapter we will define cluster algebras and cluster varieties, and we will give some motivat-

ing examples and applications. For a more combinatorial approach, along with an introduction to

categorification of cluster algebras (which I do not plan to discuss), [Kel12] gives a good survey.

5.1 Some Motivation

Cluster algebras can be somewhat difficult to motivate—the definition appears to be some ugly com-

binatorial formulas that just come from nowhere. As with anything in math, a good motivation is

one that the reader finds interesting or relavent. Since we should by now be familiar with toric mod-

els (recall §4.1), we will use Example 5.1.2 below to try and introduce cluster algebras as a natural

framework for studying varieties with toric models (this is the viewpoint of [GHK13a]).

First, to hopefully convince the reader that cluster algebras are at least worth studying, we touch

on some of the more standard motivation for their study. The original motivation in [FZ02] was to

develop an algebraic framework for understanding Lusztig’s dual canonical bases and total positivity

(cf. [Lus10] and [Lus94]). We will touch slightly on these applications (avoiding quantum groups),

but since we have not covered (and I do not know) the background for this, we will mostly take a more

geometric viewpoint. However, we do begin by briefly mentioning some of the standard motivating

examples.

The basic idea behind the typical algebraic approach is that for each “seed,” we have cluster

variables A1, . . . , As which freely generate a part of the cluster algebra. We can “mutate” the seed

in a combinatorial way to obtain a new seed, with all but one of the cluster variables remaining the

same. The other is replaced by A′i := 1
Ai

(M1 + M2) (called an exchange relation) for M1 and M2

certain monomials in the Aj ’s, j 6= i, specified by the seed data.

Example 5.1.1. SL2(C) admits a natural cluster structure. We view the group as matrices with

entries a, b, c, d ∈ C satisfying ad − bc = 1. We can take one seed to have cluster variables a, b, and

c, and mutate to another seed with cluster variables d, b, and c. The exchange relation is given by

d = 1
a (1 + bc). b and c are called frozen variables since we do not mutate with respect to them.
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Now view SL2(C) as a variety. For each seed, we have an affine open subset SpecC[A±1, b, c] ∼=
C×C2 where A := a or d (we will often invert the frozen variables too so that each seed corresponds

to an algebraic torus, but obtaining partial compactifications by not inverting frozen variables is

common) The first seed (with A = a) misses points where a = 0, while the second misses points where

d = 0. Together, they cover all of SL2(C) except for the codimension 2 subset where a = d = 0 (and so

bc = −1). Missing codimension 2 subsets is common, but not important—we are mainly interested in

the spaces of global sections of line bundles on cluster varieties, and these are not affected by changes

in codimension 2.

We will see that many other well known spaces admit cluster structures like SL2(C). For example,

[FZ02] mentions Grassmanians Gr2,n (generalized to Gr(k, n) in [Sco06]), where certain Plücker coor-

dinates form the cluster variables. They also mention examples of double Bruhat cells of semisimple

complex Lie groups (including 5.1.1), whose cluster structure was described in general in [BFZ05] (we

may cover this application later on).

On the other hand, Fock and Goncharov were motivated in [FG06] and [FG09] by coordinates

on moduli of local systems on punctured Riemann surfaces. In particular, [Pen87] (well before the

invention of cluster algebras) described coordinates called λ-lengths on decorated Teichmüler space,

which may be viewed as a moduli space of (decorated) PSL2(R) local systems. The λ-lengths depend

on a choice of “ideal triangulation” of the punctured Riemann surface, and changing the triangulation

by a “Ptolemy transform” (i.e., taking a quadrilateral in the triangulation and flipping the diagonal

to obtain a new triangulation) produces a new coordinate system. Fock and Goncharov’s cluster

coordinates can be viewed as a complexification (and generalization) of these λ-lengths, with mutation

generalizing the Ptolemy transforms. We will see this in more detail later on.

From the perspective Gross, Hacking, and Keel (cf. [GHK13a]), cluster varieties are essentially

the log Calabi-Yau varieties which admit toric models like those from §4.1 (and thus include all log

Calabi-Yau surfaces by Proposition 4.1.3). This is the viewpoint most useful for us.

Example 5.1.2. Consider a lattice N = Z2, u ∈ N primitive. Let Σ be the fan in N with rays

corresponding to u and −u. Recall from Example 2.4.2 that N → N/〈u〉 induces a P1 fibration π

of TV(Σ) over TV(N/〈u〉) ∼= C∗. Suppose we blow up a point H+ in the boundary divisor Du of

TV(Σ) to obtain a variety U (in higher dimensions H+ will be what we call a hypertorus). Let Ẽ be

the exceptional divisor, and D̃ the proper transform of the toric boundary. Let F be the fiber of π

containing H+. F has self-intersection F 2 = 0, so the proper transform F̃ has F̃ 2 = −1, and can thus

be blown down to a point H− ⊂ D−u. Let E denote the image of Ẽ after the blowdown.

This blowup-blowdown procedure results in a new toric variety TV(Σ′). Restricting to the com-

plement of the boundary divisors, we view this as a birational map µu : (C∗)2 99K (C∗)2. µu tells us

how to glue the two tori along the complement of E and F . The result of this gluing is essentially just

U := U \D̃—I say “essentially” because we are missing the point p := Ẽ∩ F̃ , but this has codimension

2. We can of course repeat this procedure, possibly for other primitive generators of N , to obtain

other non-toric blowups of compactifications of (C∗)2 (up to codimension 2). By Proposition 4.1.3,

all log Calabi-Yau surfaces can be obtained this way.

See Figure 5.1 for an illustration of this. The key observation of [GHK13a] is that all mutations

are given by blowup-blowdown procedures like this µu. Let us use this to motivate the definition of

a seed. The important data is a set of vectors in N telling us which boundary divisors we preform

our blowups on. We may also have other vectors, called frozen vectors, which do not indicate blowups
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Figure 5.1.1: A mutation µu involves blowing up a hyportorus H+ in Du (left arrow) and then

contracting the proper transform F̃ of the fibers F which hit H+ (right arrow), down to a hypertorus

H− in D−u. Ẽ denotes the exceptional divisor, with E being its image after the contraction of F̃ .

The locus p = Ẽ ∩ F̃ has codimension 2 and does not appear in the cluster variety.

(they might, for example, indicate some boundary divisors with which we compactify U). Together,

all these vectors are called seed vectors. In Definition 5.2.1 below, N can be thought of as the lattice

freely generated by these seed vectors in N .

Suppose in this two-dimensional example that we fix an orientation on N and take the correspond-

ing standard symplectic form · ∧ ·. The data of a seed will include the skew form 〈·, ·〉 on N induced

by · ∧ ·. µu as above decreases D2
u by 1 and increases D2

−u by 1. By Corollary 2.7.4, and in particular

by the formula vi+1 = −vi−1 −D2
i vi which we used when defining U trop (Equation 4.1), we can see

that the tropicalization of µu (i.e., the induced map on N) can be given by

v 7→ v + max(0, v ∧ u)u. (5.1)

A version of this formula will tell us how mutation changes our seed. Seeds will include one other

piece of data—a set of “multipliers” di ∈ Q>0—which may be viewed as allowing us to deal with

non-primitive u ∈ N , or blowups along non-reduced loci H+ ⊂ Du.

5.2 Basic Definitions

[MUCH OF THIS SECTION HAS BEEN COPY-AND-PASTED FROM ONE OF MY PAPERS

AND HAS SO FAR ONLY BEEN PARTIALLY EDITTED FOR OUR PURPOSES]

Definition 5.2.1. A seed is a collection of data

S = (N, I,E := {ei}i∈I , F, 〈·, ·〉, {di}i∈I),

where N is a finitely generated free Abelian group, I is a finite index set, E is a basis for N indexed

by I, F is a subset of I, 〈·, ·〉 is a skew-symmetric Q-valued bilinear form, and the di’s are positive
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rational numbers called multipliers. We call ei a frozen vector if i ∈ F . The rank of a seed or of a

cluster variety will mean the rank of 〈·, ·〉.
We define another bilinear form on N by

(ei, ej) := εij := dj〈ei, ej〉,

and we require that εij ∈ Z for all1 i, j ∈ I. Let M = N∗. Define

p∗1 : N →M, v 7→ (v, ·), p∗2 : N →M, v 7→ (·, v).

Let Ki := ker(p∗i ), Ni := im(p∗i ) ⊆ M , ei := p∗1(ei), and vi := p∗2(ei). For each i ∈ I, we define a

“modified multiplier” d′i by saying that vi is d′i times a primitive vector in M .

Remark 5.2.2. Given only the matrix (ei, ej) and the set F , we can recover the rest of the data, up

to a rescaling of 〈·, ·〉 and a corresponding rescaling of the di’s. This rescaling does not affect the

constructions below, and it is common take the scaling out of the picture by assuming that the di’s

are relatively prime integers—I personally prefer not making this assumption so we do not get caught

up in irrelevant arithmetic issues. Also, notice that 〈·, ·〉 and {d′i} together determine {di}, so when

describing a seed we may at times give {d′i} instead of {di}.

Remark 5.2.3. By Remark 5.2.2 above, a seed is essentially just the data of a skew-symmetrizable

matrix. Alternatively, a seed can be viewed as the data of a decorated quiver as follows: Each seed

vector ei corresponds to a vertex Vi of the quiver. The number of arrows from Vi to Vj is equal to

〈ei, ej〉, with a negative sign meaning that the arrows actually go from Vj to Vi (we may have to

rescale to make sure these 〈ei, ej〉’s are integers). Each vertex Vi is decorated with the number di.

Furthermore, the vertices corresponding to frozen vectors are boxed. Observe that all the data of the

seed can be recovered from this quiver.

A seed is called acyclic if the corresponding quiver contains no directed paths that do not pass

through any frozen (boxed) vertices. A cluster variety will be called acyclic if any of the corresponding

seeds are acyclic.

For a ∈ R, define [a]+ := max(a, 0) and [a]− := min(a, 0). Given a seed S as above and a choice

of j ∈ I \ F , we can use a mutation to define a new seed µj(S) := (N, I,E′ = {e′i}i∈I , F, 〈·, ·〉, {di}),
where the (e′i)’s are defined by

e′i = µj(ei) :=

{
ei + [εij ]+ej if i 6= j

−ej if i = j
(5.2)

Note the resemblance to Equation 5.1, which should be viewed as the induced map on N2 (except for

the negation of ej). We also note the dual equation on M :

µj(e
∗
i ) :=

{
−e∗i +

∑
k∈I [εkj ]+e

∗
k if i = j

ej if i 6= j
(5.3)

1The construction of cluster varieties does not depend on the values of 〈ei, ej〉 or εij for i, j ∈ F , and so it is common

to not include these coefficients in the data. When they are included in the data, as in [FG09] and [GHK13a], they are

not typically required to be integers. However, as [GHK13a] points out, if these are not integers, then the image of p∗i is

not contained in M . [GHK13a] takes a slightly different fix to this (in which the εij with i, j ∈ F are again irrelevant),

but it is essentially equivalent to our fix if we dropped the requirement that 〈ei, ej〉 = −〈ej , ei〉 when i, j ∈ F .
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Corresponding to a seed S, we can define a so-called seed X -torus XS := TM = Spec k[N ],

and a seed A-torus AS := TN = Spec k[M ]. We define cluster monomials Xi := zei ∈ k[N ] and

Ai := ze
∗
i ∈ k[M ], where {e∗i }i∈I is the dual basis to E. We may also write Xv := zv for any v ∈ N ,

and similarly Au := zu for any u ∈M .

Remark 5.2.4. We are departing somewhat from a common convention. In place of M , other authors

typically use the superlattice (M)◦ ⊂ M ⊗ Q spanned over Z by vectors fi := d−1
i e∗i . They then

take Ai := (zfi) ∈ k[M◦]. It seems to me that this significantly complicates the exposition and the

formulas that follow, with little benefit, and so we do not follow this convention.

For any j ∈ I, we have a birational morphism µXj : XS → Xµj(S) (called a cluster X -mutation)

defined by

(µXj )∗X ′i = Xi

(
1 +X

sign(−εij)
j

)−εij
for i 6= j; (µXj )∗X ′j = X−1

j . (5.4)

Similarly, we can define a cluster A-mutation µAj : AS → Aµj(S),

Aj(µ
A
j )∗A′j =

∏
i:εji>0

A
εji
i +

∏
i:εji<0

A
−εji
i ; (µAj )∗A′i = Ai for i 6= j. (5.5)

Now, the cluster X -variety X is defined by using compositions of X -mutations to glue XS′ to XS for

every seed S′ which is related to S by some sequence of mutations. Similarly for the cluster A-variety

A, with A-tori and A-mutations. The cluster algebra is the subalgebra of k[M ] generated by the the

cluster variables Ai of every seed that we can get to by some sequence of mutations. In this context,

the well-known Laurent phenomenon simply says that all the cluster variables are regular functions

on A. The ring of all global regular functions on A is called the upper cluster algebra.

On the other hand, the Xi’s do not always extend to global functions on X . When a monomial on

a seed torus (i.e., a monomial in the Xi’s for a fixed seed) does extend to a global function on X , we

call it a global monomial, as in [GHK13a].

5.2.1 The Interpretation in Terms of Toric Models

As in [GHK13a], for a lattice L with dual L∗ and with u ∈ L, ψ ∈ L∗, and ψ(u) = 0, define

mu,ψ,L : TL 99K TL (5.6)

m∗u,ψ,L(zϕ) = zϕ(1 + zψ)−ϕ(u) for ϕ ∈ L∗. (5.7)

One can check that the mutations above satisfy

(µXj )∗ = m∗(·,ej),ej ,M : zv 7→ zv(1 + zej )−(v,ej) (5.8)

(µAj )∗ = m∗ej ,(ej ,·),N : zγ 7→ zγ(1 + z(ej ,·))−γ(ej). (5.9)

The following Lemma, compiled from §3 of [GHK13a], is what leads to the nice geometric inter-

pretations of mutations and cluster varieties.

Lemma 5.2.5 ([GHK13a]). Suppose that u is primitive in a lattice L. Let Σ be a fan in L with rays

corresponding to u and −u. Recall that the toric variety TV (Σ) admits a P1 fibration π with Du and

D−u as sections, corresponding to the projection L→ L/Z〈u〉.
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The mutation µu,ψ,L is the birational map on TL ⊂ TV (Σ) coming from blowing up the set

H+ := {1 + zψ = 0} ∩Du

and then contracting the proper transforms of the fibers F of π which intersect this hypertorus. Fur-

thermore, µXj preserve the centers of the blowups corresponding to µXi for each i 6= j. The same is

true of µAi if S is “totally coprime,” which in particular holds if 〈·, ·〉 is non-degenerate.

Definition 5.2.6. We call a set of the form {a+ zψ = 0} ∩Du, a ∈ C∗, a hypertorus. An irreducible

hypertorus is one for which ψ is primitive.

Thus, a cluster X -mutation (µXj )∗ corresponds to blowing up {Xj = −1} ∩ D(·,ej), followed by

blowing down some fibers of a certain P1 fibration, and repeating for a total of d′j times (since (·, ej) is

d′j times a primitive vector, and m(·,ej),ej ,M = [m(·,ej)/d′j ,ej ,M ]d
′
j ). The new seed torus is only different

from the old one in that it is missing the blown-down fibers of the initial P1 fibration, but has gained

the exceptional divisor from the final blowup (except for the lower-dimensional set of points where

this exceptional divisor intersects a blown-down fiber, represented by p in Figure 5.1.1).

Since the centers of the blowups corresponding to the other mutations have not changed, this

shows that the cluster X -variety can be constructed (up to codimension 2) as follows: For any seed

S, take a fan in M with rays generated by ±(·, ei) for each i, and consider the corresponding toric

variety. For each i ∈ I \ F , blow up the hypertorus {Xi = −1} ∩ D(·,ei) d
′
i times, and then remove

the first (d′i − 1) exceptional divisors. The cluster X variety is then the complement of the proper

transform of the toric boundary.

Remark 5.2.7. In this construction of X , the centers for the hypertori we blow up may intersect if

(·, ei) = (·, ej) for some i 6= j, so some care must be taken regarding the ordering of the blowups.

Fortunately, this issue only matters in codimension at least 2 (cf. [GHK13a] for more details). How-

ever, when we consider fibers of X below, it is possible that some special fibers will have discrepencies

in codimension 1. We will use the notation X ft to denote that we are restricting to the variety con-

structed as above for some fixed ordering of the blowups, and keep in mind that while X \ X ft is

codimension 2 in X , there may be special fibers of X whose intersection with X \ X ft is codimension

1 in the fiber. As we will see below, A is a torsor over what is perhaps the “most special” fiber of X .

The failure of mutations to preserve the centers of blowups for A may be viewed as a consequence of

such codimension 1 discrepancies in the special fiber.

We will similarly write Aft and U ft (U a symplectic leaf of X as we explain below) to denote the

subvarieties of A and U obtained by preforming only one blowup for each non-frozen seed vector.

Remark 5.2.8. We have seen that codimension 2 issues arise as a result of missing points like p

in Figure 5.1.1, and also as a result of reordering the blowups. There are also missing contractible

complete subvarieties—the (d′j−1) exceptional divisors we remove when applying (µXj )∗. These issues

are relatively unimportant, since they do not affect the sheaf of regular functions on X . When we are

interested in X or its fibers up to these issues, we will say “up to irrelevant loci.”

5.2.2 Langland’s dual seeds

Observations 5.2.9.
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• K1 is also equal to ker (v 7→ 〈v, ·〉), so 〈·, ·〉 induces non-degenerate skew-symmetric form on N1.

This also means that we could have equivalently defined the rank to be that of (·, ·).

• Define another skew-symmetric bilinear form on N by [ei, ej ] := didj〈ei, ej〉. Then K2 =

ker (v 7→ [·, v]), so [ei, ej ] induces a non-degenerate skew-symmetric form on N2. We can ex-

tend this to N2
sat

(the saturation in M of N2), and after possibly rescaling [·, ·] (and adjusting

the di’s accordingly) we can identify this with the standard skew-symmetric form on N2
sat

with

the induced orientation. We will denote this form and the induced symplectic form on N2,R by

(· ∧ ·).

• Since (·, ei) = −di〈ei, ·〉, we see that im(p∗2) and im(v 7→ 〈v, ·〉) span the same subspace of MR.

Thus, there is a canonical isomorphism N2,R ∼= N1,R. We easily see that this is a symplectomor-

phism with respect to the symplectic forms induced by [·, ·] and 〈·, ·〉.

Definition 5.2.10. The seed obtained from S by replacing 〈·, ·〉 with the form [·, ·] defined above

and di with d−1
i produces the Langland’s dual seed S∨ described in [FG09]. Note that ε∨ij = −εji. So

switching to S∨ essentially has the effect of switching the roles of (and negating) p∗1 and p∗2.

Note that although E changes under mutation, the form 〈·, ·〉 does not, so K1 and N
sat

1 are invariant

under mutation. The same is true for K2 and N2
sat

, as can similarly be seen using the Langland’s dual

seed and [·, ·]—one can check that the procedure for obtaining S∨ from S commutes with mutation.

5.3 Other Structures on Cluster Varieties

5.3.1 Skew-forms and Poisson structures

For this section I believe we do have to make the assumption that the di’s are relatively prime integers.

Each seed X -torus carries a Poisson structure defined by XS by

{Xv, Xw} = 〈v, w〉XvXw.

In fact, this commutes with mutations to give a Poisson structure on X .

Similarly, A carries a closed 2-form Ω̃ given on a seed A-torus AS by∑
i,j∈I

[ei, ej ]d logAi ∧ d logAj .

This can be viewed as an analog of the Weil-Petersson form on Teichmüller space.

5.3.2 An Exact Sequence of Cluster Varieties

Observe that for each seed S, there is a not necessarily exact sequence

0→ K2 → N
p∗2→M → K∗1 → 0.

Here, M → K∗1 is the map dual to the inclusion K1 ↪→ N . Tensoring with k∗ yields an exact sequence,

and one can check (cf. Lemma 2.10 of [FG09]) that this sequence commutes with mutation. Thus,

one obtains the exact sequence

1→ TK2
→ A p2→ X λ→ TK∗1 → 1. (5.10)
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One can check that the fibers of λ are symplectic leaves of the Poisson structure on X . Let

U := p2(A) ⊂ X . The symplectic form Ω on U induced by the Poisson structure of X is the same as

the one induced by the 2-form Ω̃ on A (p2 is the null-foliation of Ω̃).

The sequence 1→ TK2
→ A→ U → 1 should be viewed as a generalization of the construction of

toric varieties as quotients from §2.5, with U being the generalization of the toric variety.2

Lemma 5.3.1. The sets of the form {1 + Xj = 0} ∩ D(·,vj) ∩ λ−1(φ), φ ∈ TK∗1 , are unions of k

irreducible hypertori, where k is the index of p1(ej) in N1.

Proof. The argument is the same as that of Lemma 5.1 in [GHK13a]. Briefly, we choose a splitting

N ∼= N1⊕K1, and decompose ej = (e′j , e
′′
j ) with respect to this splitting. Then zej |λ−1(φ) = ze

′′
j (φ)ze

′
j ,

so the degree of this restriction is indeed the index of e′j = p1(ej) in N1.

Example 5.3.2. Consider the case where Y is a cubic surface, obtained by blowing up 2 points on

each boundary divisor of (Y ∼= P2, D = D1 +D2 +D3). We can take

E = {(1, 0), (1, 0), (0, 1), (0, 1), (−1,−1), (−1,−1)},

with each di = d′i = 1 and F empty. Then the fibers of the resulting X -variety X1 correspond to

the different possible choices of blowup points on the Di’s. The fiber U is very special, having four

(−2)-curves. If we instead take E = {(1, 0), (0, 1), (−1,−1)} with 〈·, ·〉 given by

 0 1 −1

−1 0 1

1 −1 0

, and

each di = d′i = 2, then the fibers of the resulting X -variety X2 include only the surfaces constructed

by blowing up the same point twice on each Di and then removing the three resulting (−2)-curves.

U is the fiber where the blowup points are colinear and so there is one remaining (−2)-curve.

The deformation type of the fibers of X ft has only changed by the removal of certain (−2)-curves,

i.e., by some irrelevant loci. Note that X ft
2 = X2, and that X2 can be identified (after filling in

the removed (−2)-curves) with a subfamily of X ft
1 whose fibers do not agree with those of X1 in

codimension 1.

These examples are well-known: we will see that the former corresponds to a moduli space of flat

PGL2(C)-connections on a four-punctured sphere, while the latter corresponds to the analogous space

for the once-punctured torus (cf. §2.7 of [FG09] or Exercise 7.2.11).

5.3.3 Semifield-valued points and tropicalizations of cluster varieties

Note that the formulas for mutations of cluster variables are always rational functions which can

be expressed as quotients of two polynomials with only positive integral coefficients. A space with

such an atlas is called a positive space. For any positive space, it makes sense to talk about the

F-valued points for any semifield F (see §1.1 of [FG09] for more details). Here, a semifield is a set P

with two operations addition and multiplication such that addition is commutative and associative,

multiplication makes P into an Abelian group, and multiplication distributes over addition.

For each seed S, AS(F) := N ⊗Z F ∼= Fn, where n := dimN , and the Abelian group structure on

F is the one given by the semifield multiplication. Similarly, XS(F) := M ⊗Z F ∼= Fn. Mutation acts

2This sequence really only generalizes the construction for toric varieties without boundary (i.e., just algebraic tori),

but I believe it can be modified using frozen vectors to also deal with cases with boundary.
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on the F-valued points by interpreting the addition and multiplication in the definitions of mutation

as addition and multiplication in the semifield. In fact, mutations act bijectively on these sets of

F-valued points, so we actually have identifications A(F) ∼= Fn and X ∼= Fn. Keep in mind, however,

that the identifications depends on the choice of seed—we will use the subscript S to indicate that we

have chosen the identification corresponding to S.

Examples 5.3.3.

• The tropical real numbers Rt with multiplication defined to be the usual addition, and addition

and defined to be min, form a semifield. Similarly for Zt and Qt. When Fock and Goncharov

talk about the tropicalizations of A and X , they usually view these as A(Rt) and X (Rt) (with

Zt and Qt valued points giving the usual integral and rational points of the tropicalizations).

We will not worry about this point of view since it is conceptually easier to just identify these

spaces (as piecewise-linear manifolds) with NR and MR.

• The positive real numbers R>0 with the usual multiplication and addition form a semifield.

We will often be interested in the tropical points of A and X . We will usually fix a base seed so

that we can simply view A(Rt) (R = R,Q, or Z) as N ⊗R and X (Rt) as M ⊗R. The identifications

µA
t

j : AS(Rt) :→ Aµj(S)(Rt) and µX
t

j : XS(Rt)→ Xµj(S)(Rt) can be described as follows: tropicalizing

Equation 5.6 yields (mt
u,ψ,L)∗(ϕ) = ϕ−ϕ(u) min(0, ψ), where ϕ,ψ ∈ L∗ are viewed as coordinates on

L⊗ R. Dualizing yields mt
u,ψ,L(x) = x− [ψ(x)]−u (i.e., [(mt

u,ψ,L)∗(ϕ)](x) = ϕ(mt
u,ψ,L(x))).

In particular, we have:

µA
t

j (n) = n− [(ej , n)]−ej

µX
t

j (m) = m− [m(ej)]−(·, ej).

Since −[a]− = [−a]+, we see that µA
t

j is the same as the seed mutation formula from Equation 5.2

without the negation of ej if we replace εij with −εji. In other words:

Proposition 5.3.4. Aside from the negation of ej, the seed mutation µj is the tropicalization of the

Langland’s dual3 cluster mutation µ
(A∨)t

j .

Similarly, letting vi := (·, ei), we have µX
t

j (vi) = vi + [εij∨ ]+vj , so the action of mutation on the

vi’s is just the one induced by p∗2 and the action on the ei’s.

We will also be interested in the fibers U of λ and their tropicalizations. For each seed S, we can

canonically identify U(Zt) 4 with N2
sat

= p∗2(A(Zt))sat ⊂ X (Zt). Since N2 is the span of the vi’s, the

above shows that as an identification of sets this is independent of the choice of seed.

In particular, if U ft is a log Calabi-Yau surface, then U(Zt) as defined here is the same (as a

piecewise-linear manifold) as U trop(Z) as defined in §4.2. In §4.7.3, we saw that a toric model π :

(Y,D) → (Y ,D) for a minimal model (Y,D) of U determines an identification of U trop(Z) with NY .

If pi is the toric model corresponding to a seed S, then U(Zt)S = NY as lattices (see Construction

2.11 of [Mana] for more details).

3[GHK13a] does not seem to observe the apparence of Langland’s duality here. Using the conventions mentioned in

Remark 5.2.4, A(Zt) is actually identified with a sublattice N◦ ⊂ N , and then µ∗j is (ignoring ej) the piecewise-linear

map on N induced by µA
t

j , with no mention of Langland’s duality necessary. However, since vectors in E correspond

to cluster monomials on X , our perspective is consistent with the viewpoint of Fock and Goncharov’s Conjecture 6.1.1.
4Another perspective which might be worth exploring would be to identify the tropicalizations of different fibers of

λ with different fibers of λ∗, with only λe corresponding to what we call U(Zt) here.
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5.3.4 Integral linear structures in general

We note that just as in the two-dimensional situation, we can always view points in ∗(Zt) (∗ denoting

X , A, or U) as divisorial valuations on the function field of ∗. The construction of the integral linear

structure from §4.2 also generalizes. Namely, let U be any log Calabi-Yau variety5 and choose a

minimal model (Y,D) for U . (Y,D) induces6 an integral linear structure on U trop, which we call the

GHK integral linear structure (it has previously been observed by Gross, Hacking, and Keel).

As a piecewise-linear manifold, U trop can be canonically identified with the real cone over the dual

complex B of D. Here, B consists of a real k-cell for each (n − k) stratum of D. U trop(Z) similarly

corresponds to the integer points of the cone over B. Note that B naturally induces a complete fan

structure Σ on the cone over B. If U is a fiber of some X , then this can be identified as a topological

space with U trop := p∗2(Atrop) ⊂ X trop (or with any fiber of X trop).

We now define integral linear charts on U trop as follows: let σ0, σ1 be two maximal dimensional cells

of Σ intersecting along some nonempty codimension 1 cell ρ. Let v2, . . . , vn be primitive generators of

the boundary rays of ρ, and let v0, v1 be the primitive generators for the additional boundary rays of

σ0 and σ1, respectively. Let Dvi denote the boundary component corresponding to vi, and Cρ the 1-

stratum of D corresponding to ρ. Then we define a chart ϕ : σ1∪σ2 → Rn which is linear on the cones

of Σ, which takes vi, i 6= 0, to the standard basis vector ei, and takes v0 to −e1 −
∑n
i=2(Cρ ·Dvi)vi.

This defines a (non-oriented) integral linear structure without singularities on the complement of the

codimension 2 cells of Σ. We may be able to extend smoothly over some codimension 2 strata, but in

general these will be singular loci. If we fix an orientation of B or U trop (for example, using the skew-

pairing coming from the cluster structure) and restrict to charts which agree with this orientation, we

obtain an oriented integral linear structure.

This definition in terms of charts is equivalent to saying that an integral piecewise-linear function

f taking values ai along vi is linear across a codimension 1 cell ρ if and only if the Weil divisor

Wf :=
∑
aiDvi satsfies Wf · Cρ = 0, where Cρ is the 1-stratum of D corresponding to ρ.

5.3.5 The Cluster Modular Group

A seed isomorphism h : S → S′ is an isomorphism of the underlying lattices which respects all the

seed data in the obvious way—that is, it takes (frozen) seed vectors to (frozen) seed vectors (thus

inducing a bijection h : I → I ′ taking F to F ′), such that di = dh(i) and 〈ei, ej〉 = 〈h(ei), h(ej)〉′. Note

that although we typically write I as {1, . . . , n}, this ordering need not be preserved. h then induces

a cluster isomorphism h : X → X ′ and h : A → A′ given by h∗X ′h(ei)
= Xi and h∗A′h(ei)

= Ai. A seed

transformation is a composition of seed mutations and seed isomorphisms, and a cluster transformation

is a composition of cluster mutations and cluster isomorphisms (i.e., the corresponding maps on the

varieties). [FG09] defines the cluster modular group Γ to be the group of cluster automorphisms of a

base seed S, modulo trivial cluster automorphisms (those which are the identity on both A and X ).

Example 5.3.5. For any finite type seed, Γ is a finite group. For example, for the A2 quiver • → •,
all seeds are isomorphic, and there are 5 distinct seeds, so Γ ∼= Z/5Z. We revisit this in Example 5.3.8

below.

5We will particularly care about when U is a fiber of X ft, but we could also take U = X ft or U = Aft.
6Unlike the two-dimensional situation, the integral linear structure will typically depend on the choice of minimal

model.
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5.3.6 The Cluster Complex

Definition 5.3.6. A seed S with seed vectors e1, . . . , en determines a cone CS ⊂ X trop
S := MS,R given

by

CS := {m ∈MS,R|ei(m) ≥ 0 for all i ∈ I \ F}.

The collection of all such cones in X for every seed mutation equivalent to S is called the cluster

complex C.

Recall that U trop
S := N2,R,S has a natural symplectic structure induced by [·, ·].

Proposition 5.3.7. For a fixed base seed S and two mutation equivalent seeds S1 and S2, let

gl : MS,R → MSi,R, l = 1, 2, be vector space isomorphisms which identify CS with CSl and re-

strict to symplectomorphisms U trop
S → U trop

Sl
taking vi,S to vσl(i),Sl for some permutation σ of I. As

automorphisms of X trop, these gl’s preserve C. Consequently, there is a seed S3 such that g1 ◦ g2 has

the above form for S3. Composition thus gives a group structure to these automorphisms of X trop,

and this group is canonically identified with the cluster modular group Γ.

Proof. We first describe the bijection with Γ as sets. Let Wi,S denote the wall of CS contained in e⊥i .

Then if gl : Wi,S = Wj,Sl , the element of Γ corresponding to gl is the seed isomorphism from S to Sl

taking ei ∈ ES to ej ∈ ESl (or rather, this composed with the chain of mutation we take to see that

Sl is mutation equivalent to S). We note that we could choose σl so that σl(i) = j. The condition

that g|Utrop gives a symplectomorphism means that it preserves the pairing [·, ·]. This together with

the d′i’s being preserved (which follows from the vi’s being preserved) implies that 〈·, ·〉 and {di} are

preserved (up to the usual rescaling issues). The condition of taking CS to CSl tells us that F is

preserved, since the walls corresponding to F are the unbounded ones.

We thus see that gl does give an element of Γ. Since Γ is the group of automorphisms of A and

X preserving the cluster structure, it must also preserve the cluster complex. This gives the claim

about compositions. It remains to check that trivial automorphisms of X trop correspond to trivial

seed transformations. This will be an immediate consequence of Lemma 6.2.3.

Example 5.3.8. For the A2 quiver (recall this corresponds to theM0,5 example), the cluster complex

consists of 5 chambers in X trop. These are exactly the chambers of the scattering diagram for this log

Calabi-Yau variety. We will see that this is always the case for finite-type cluster varieties. In general,

the cluster complex can be viewed as a subset of the corresponding scattering diagram.

5.4 Cluster varieties with principal coefficients

Consider a seed S = {N, I,E, F, 〈·, ·〉, {di}} for the cluster varieties to A and X . In the next chapter,

it will be useful to use certain enlargements of A and X called Aprin and X prin, respectively.

Definition 5.4.1. Aprin and X prin are the A and X -spaces corresponding to the seed Sprin defined

as follows:

• NSprin := N ⊕M .

• ISprin is the disjoint union of two copies of I. We will call them I1 and I2 to distinguish between

them.
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Figure 5.3.2: The cluster complex in X trop
S for the A2-quiver. Note that these are exactly the cones of

the scattering diagram from Example 4.4.3—This figure only looks different from Figure 4.2.1 because

we here we are using the vector space structure on X trop corresponding to the seed S, wheras before

we used a developing map for U trop = X trop.

• ESprin := {(ei, 0)|i ∈ I1} ∪ {(0, e∗i )|i ∈ I2}
• FSprin := F1 ∪ I2, where F1 is simply F viewed as a subset of I1.

• 〈(n1,m1), (n2,m2)〉Sprin := 〈n1, n2〉S +m2(n1)−m1(n2).

• The di’s are the same as before (viewing i as an element of I).

Remark 5.4.2. As a quiver, this is quite easy to describe. Let Q be the quiver corresponding to S.

For each vertex ei ∈ Q we add a new frozen vertex ei along with an arrow from ei to e′i. We give e′i
the same multiplier as ei. This gives the quiver corresponding to Sprin.

Lemma 5.4.3. 〈·, ·〉Sprin is unimodular. Also, (Sprin)∨ = (S∨)prin.

Proof. Let B denote the skew-symmetric matrix corresponding to S. Then the skew-symmetric matrix

for Sprin is Bprin :=

(
B Id

− Id 0

)
, and this has determinant 1. The second statement is also easy to

check using this form for Bprin.

Recall that A is a TK2 -torsor over the special fiber U := p2(A) ⊂ X . Aprin serves to extend this

to the whole X -space, as made precise in the following proposition:

Proposition 5.4.4. We have the following maps:

TN ⊂

ι
- Aprin

p̃
-- X

TK2
⊂ - TN

Id

?

ε
- TM

π

?

l
-- TK∗1

λ

?

(5.11)

• π : Aprin → TM given on the cocharacter lattice corresponding to a seed by (n,m) 7→ m.

• p̃ : Aprin → X given on cocharacter lattices by (n,m) 7→ m− p∗2(n).

• ι : TN ↪→ Aprin given on cocharacter lattices by n 7→ (n, p∗2(n)).

• l : TM → TK∗1 defined by the dual to K1 ↪→ N , just as λ was defined in §5.3.2.
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• ε : TN → TM induced by p∗2.

These maps satisfy the following:

• The rows are exact. In particular, p̃ realizes Aprin as a TN -torsor over X .

• For t ∈ TM , p̃ restricts to a map pt : π−1(t)→ λ−1(l(t)).

• TN acts equivariantly with respect to π. Since ε(TN ) is the kernel of l, we have pt1(At1) =

pt2(At2) if and only if t1 and t2 are in the same orbit of the ε(TN )-action on TM .

Proof. See §2 of [GHK13a] or Appendix B of [GHKK] for the proof and many more details. For

statements involving l, these sources require that there are no frozen vectors, but this assumption can

be easily removed with our setup (because we have defined (·, ·) to be Z-valued for frozen vectors, and

we use this pairing when defining p∗2).

As an application, we show how [GHK13a] gives a short proof of the Laurent phenomenon (a

special case of their Corollary 3.11):

Theorem 5.4.5 (The Laurent phenomenon). Any cluster monomial Ai := ze
∗
i , for any seed S, can be

expressed as a Laurent polynomial in the cluster monomials of any other seed. In other words, every

Ai (and hence the entire cluster algebra) is contained in the upper cluster algebra Γ(A,OA).

Proof. It is immediate from the definition in Equation 5.5 that Ai is a Laurent polynomial in the

cluster variables of any mutation adjacent seed. By Lemma 5.2.5, Aprin is covered, up to codimension

2, by the seed torus AS along with the seed tori AS′ for all S′ mutation adjacent to S. Thus, the

claim holds for Aprin. A is the subvariety of Aprin obtained by setting z(0,e∗i ) = 1 for each i ∈ I2, with

ze
∗
i being the restriction of z(ei,0)∗ , so the claim for A follows.
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Chapter 6

Canonical Bases and Cluster

Varieties

In this chapter we at last explain how to get canonical bases for the rings of global sections of cluster

varieties.

6.1 The Fock-Goncharov Conjecture

Recall that for each seed S = {N, I,E, F, 〈·, ·〉, {di}i∈I}, we have an identification of Atrop(Z) with N

and of X trop(Z) with M = Hom(N,Z) (and for the rational or real tropical points, we tensor with Q or

R, respectively). Points in N correspond to monomials on the torus XS , and points in M correspond

to monomials on the torus AS . In fact, these monomials form C-module bases for the rings of regular

functions on these tori. However, “most” of these monomials do not extend to global functions. Fock

and Goncharov conjecture the following:

Conjecture 6.1.1 (Fock-Goncharov Dual Basis Conjecture). There is a canonical basis for Γ(X∨,OX∨)

indexed in a natural way by Atrop(Z), and similarly, there is a canonical basis for Γ(A,OA) indexed

by (X∨)trop(Z).1

They also conjecture many propeties that they expect these dual bases to satisfy (cf. [FG09],

Conjecture 4.1), but I will not take the time to list these.

[GHK13a] shows that the Fock-Goncharov conjecture, as stated above, is false. This is already

easy for us to see using the ideas of Chapter 5. Consider, for exaple, a Looijenga pair (Y,D) obtained

by taking 4 non-toric blowups on each boundary divisor of the toric pair (P2, D = D1 + D2 + D3).

Then D does not support an ample divisor. In fact, the intersection matrix (Di ·Dj) being negative

definite implies that D can be contracted to a point p (a cusp singularity). Since the complement of

this point is the same as U = Y \D, we see that U is equal to a compact variety up to codimension

2. Thus, Hartog’s theorem tells us that U has no nonconstant global regular functions.

1In our setup, Atrop and (A∨)trop are the same set, as are X trop and (X∨)trop, so taking Langland’s duals may

appear somewhat meaningless. See Remark 6.2.1 for an explanation of the sense in which the Langland’s dual geometry

really is what controls the theta functions.
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However, we saw in Chapter 5 that a generic such U will appear (up to codimension 2) as a fiber

of some λ : X → TK∗1 (e.g., if we take εij =

 0 4 −4

−4 0 4

4 −4 0

, then some deformations of U appear as

fibers, up to codimension 2 and the removal of (−2) curves which do not affect the global sections).

Let r = rank(K1), so rank(N) = 2 + r. Conjecture 6.1.1 then says that Atrop(Z) parametrizes global

sections of X , but since fibers are deformations of U and thus have no non-constant global sections,

the only global sections of X are those pulled back from TK∗1 . These are of course parametrized by

K1, which is a proper subset of Atrop(Z), so the conjecture fails here.

In the other direction, [GHK13a] shows that the upper cluster algebra Γ(A,OA) is often not be

finitely generated (in fact, [Spe13] had previously shown this for the case with εij =

 0 3 −3

−3 0 3

3 −3 0

).

They suggest that the failure of the upper cluster algebra to be finitely generated is related (perhaps

equivalent) to the failure above of the affineness condition needed for Conjecture 6.1.1 to hold. As far

as I know this is not yet completely understood.

Fortunately, as we will see, the conjecture does hold in many cases, and a formal version holds in

general.

6.2 The Naive Initial Scattering Diagrams

The main ideas behind the construction of the canonical bases in [GHKK] are essentially the same as

those in [GHK11] (i.e., what we saw in Chapter 4), although we will see that some interesting tricks

have to be used to get around certain technical difficulties. That is, we will define initial scatterings

diagrams D0
X in Atrop and D0

A∨ in X trop, hope that we can extend these to consistent scattering

diagrams DA and DX∨ via Theorem 4.7.4, and then define the theta functions using borken lines with

respect to these scattering diagrams.

For a given choice of base seed S, we try the initial scattering diagrams:

D0
X ,S := {e⊥i , 1 + z(·,ei)|i ∈ I \ F} ⊂ X trop

S (6.1)

D0
A,S := {(ei, ·)⊥, (1 + zei)indM ((ei,·))|i ∈ I \ F} ⊂ Atrop

S . (6.2)

Here, indM ((ei, ·)) is the index of (ei, ·) in M (so if N1 is saturated in M , this agrees with the index

used in 5.3.1). Comparing to Equation 5.8 and using that (·, ei) = (ei, ·)∨, we see that D0
X ,S is defined

so that the wall-crossing automorphism corresponding to crossing from ei > 0 to ei < 0 corresponds

to applying the mutation µi to AS∨ . Similarly for D0
A,S , crossing from vi > 0 to vi < 0 and applying

µi to XS∨ .

Remark 6.2.1. We of course could have used 1 + z(ei,·) for D0
X ,S above and used ind((·, ei)) in the

exponent for the definition of D0
A,S , so it may seem silly to make these changes that force us to

consider the Langland’s dual seeds. However, the scattering diagrams 6.1 above really do record

geometric information corresponding to S, rather than its Langland’s dual. the geometry of the X
and A-spaces, respectively. For example, recall from §5.2.1 that the mutation µXi corresponds to

blowing up some locus on the boundary divisor D(·,ei) of X . In a rough analogy with Equation 4.7,

this suggests that we should indeed have 1 + z(·,ei) as the corresponding scattering function in D0
X ,S .
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Similarly, for the A-space, the blowup corresponding to µi is along Dej intersecting with the locus

{1 + z(ej ,·) = 0}, and thus includes ind((ej , ·)) irreducible hypertori. This accounts for the ind(ei, ·)
in the exponents. See §6.3 for another geometric interpretation of D0

A,S .

6.2.1 The naive A-scattering diagram

A0
X ,S is indeed a well-defined scattering diagram in the sense of §4.7. The lattice N in §4.7 is actually

just the 0-dimensional lattice here, and P gp from §4.7 is the lattice N here. We can take the monoid

P from §4.7 to be the one spanned by the ei’s, i ∈ I \ F . The skew-form {·, ·} in §4.7 is of course

the form 〈·, ·〉 from the seed data. One easily checks now that D0
X ,S satisfies the conditions needed to

apply Theorem 4.7.4. We thus obtain a consistent scattering diagram DX ,S ⊂ N , as desired. One can

now construct the mirror to A as in §4.4.1, equipped with theta functions constructed as in §4.5.

We expect that there is some degeneration of X∨ such that the mirror family can be identified

with a formal neighborhood of the degenerate fiber. Under certain conditions (like D supporting a

D-ample divisor, where D is the boundary divisor of a minimal model of a generic fiber U ⊂ X ), we

expect that this formal family can be extended to include all of X∨. This is indeed the case. The

only problem with our current construction is that this is quite difficult to see. We will therefore use

a slightly different version of this later on.

6.2.2 The naive X -scattering diagram

Now consider D0
X ,S . We would like to take the lattice N from §4.7 to be trivial, P gp to be M , and P to

contain the span of the vi’s. The problem is that the vi’s often do not live in any strictly convex cone.

In fact, one can easily see that they are contained in a convex cone if and only if S is acyclic (this

cone may not be strictly convex, but it can be made strictly convex by some sequence of mutations).

We will therefore need a trick in order to deal with the non-acyclic cluster varieties.

Let us first look at the acyclic situation and consider how things work out here. In fact, let us

make the stronger assumption that p∗2 restricted to the lattice Nuf of non-frozen vectors is injective.

We state the next lemma very vaguely and refer to Theorem 1.33 of [GHKK] for the precise statement.

Let DX,S := S(D0
X ,S).

Lemma 6.2.2 ([GHKK], Theorem 1.33). If p∗2|Nuf is injective, then DX,S is mutation invariant.

That is, µj acts on the scattering diagram in a way that takes DX,S to DX,µj(S).

Lemma 6.2.3 ([GHKK], Construction 1.38 and Lemma 2.9). DX ,S contains the Langland’s dual

cluster complex C∨ (in the sense that the walls of DX ,S cut out the chambers of C). Furthermore, C∨

forms a simplicial fan.

Proof. Note that D0
X,S cuts out the cone CS ⊂ C. The mutation invariance of Lemma 6.2.2 thus

implies that every CS′ is cut out by some walls of DX,S . This gives the first claim. We refer to

[GHKK] for the second claim.

We now have that seeds for A∨ correspond certain cells in DX ,S . The wall-crossing formula for

passing between the cells is exactly the mutation formula for the corresponding seed tori. Thus,

applying the construction of §4.4.1 to the cells of C∨ (with no need for modding out by any ideals)
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produces exactly A∨. To define the theta functions, we can pick a point Q in the interior of C∨S for

some seed S for A∨, and then as in 4.5 we define

ϑq|A∨S :=
∑

γ|Ends(γ)=(q,Q)

cγz
mγ .

Unfortunately, there is no guarantee that ϑq will be a Laurent polynomial (as opposed to some

infinite sum). We can deal with this by introducing a formal version of A∨ where infinite sums

are allowed. Alternatively we can define can(A∨) to be the submodule of up(A∨) := Γ(A∨,OA∨)

generated by the theta functions which are in fact Laurent polynomials. [GHKK] shows that can(A∨)

is in fact closed under multiplication, thus defining an algebra mid(A∨).

mid(A∨) always contains the cluster algebra and is contained in the upper cluster algebra (hence

the name), and quite often it does equal the entire upper cluster algebra (in particular in all acyclic

cases, since here the lower and upper cluster algebras are known to be equal).

Conjecture 6.2.4. mid(A∨) = up(A∨) if and only if the up(A∨) is finitely generated.

6.3 The relation to the log Calabi-Yau surface constructions

Since we have seen that log Calabi-Yau surfaces U appear as fibers of cluster X -varieties, it is natural

to wonder what exactly the construction from Chapter 4 has to do with the cluster situation. We will

explain this now, in arbitrary dimension.

6.3.1 The scattering diagram in U trop

We first directly generalize the construction from §4.7.3 to our current situation. We choose a smooth

compactification (Y,D) of U ft with boundary divisors corresponding to points in U(Zt). By a smooth

compactification, I mean that D contains no singular points of Y , but U is allowed singularities.

Assume the compactification is such that we have a toric model π : (Y,D)→ (Y ,D), with blowups

being those corresponding to the non-frozen seed vectors—that is, Y has US(Zt) as its cocharacter

lattice, and the fan Σ includes the rays generated by vectors (·, ei), i ∈ I \F . Note that Y is smooth.

If we let (Ŷ , D̂) be the compactification of X corresponding to this fan, then the blowups are along

the loci Hi,Y := {1 + zei = 0} ∩ D̂(·,ei) ∩ Y . Recall that these blowups are repeated d′i times, and we

keep only the last exceptional divisor, contracting the others to a singular locus. Also recall that Hi,Y

is a union of indN1
(ei, ·) irreducible hypertori.

Now, as in §4.7.3, we define ϕ : U(Rt) → A1(Y ,Z) to be an integral Σ-piecewise linear function

with bending parameter [Cρ] along each codimension one wall ρ (Cρ here is the curve corresponding to

ρ). We define P gp0 = π∗(A1(Y ,Z)), so P gp := A1(Y,Z) = P gp0 ⊕ E , with E being the lattice generated

by the exceptional curves (i.e., including a curve Ei for each i ∈ I \ F equal to the exceptional curve

over one of the points blown up by µi). Take P := π∗(NE(Y )) ⊕ E . Define ϕπ : U trop → P gp by

ϕπ(u) := (π∗(ϕ(u)), 0).

Generalizing Equation 4.7, we now define our initial scattering diagram D0
U,S to be the scattering

diagram in MS,R with walls{
e⊥i , (1 + zϕ̃π(vi)−d′i[Ei])indN1

((ei,·))
∣∣∣ i ∈ I \ F} . (6.3)
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The ind((ei, ·))-term is to account for the number of irreducible hypertori being blown up in D(·,ei)∩Y .

We will think of D0
U as living in U(Rt)⊕ P gpR , rather than just living in U(Rt) with some exponents

in P gp. Here, we replace walls with their preimages under the projection, which we will identify with

p∗2.2 Our goal is to show that D0
U,S = D0

A,S . This means that the construction of the mirror to A is a

direct generalization of the mirror constructions of Chapter 4!

Remark 6.3.1. Note that if we do not intersect e⊥i with U(Rt) above, this also defines a scattering

diagram in X (Rt) which this time does satisfy the convexity condition. Setting zϕ(vi)−d′i[Ei] = 1 for

each i ∈ I \ F recovers the naive D0
X ,S from Equation 6.1.

6.3.2 K2
∼= A1(Y,Z)

Let U be a fiber of some X ft, up to irrelevant loci. Let S be a seed for X , and let F := {fi := p∗2(ei)}i∈F .

Assume the fi’s are primitive and distinct.3 Let (Y,D) be a partial minimal model for U such that

each Di equals some Dfi , and conversely each Dfi ⊂ D. Let (Ỹ , D̃) be a further compactification

which is compact, nonsingular, and admits a toric model π : (Ỹ , D̃)→ (Y ,D) corresponding to S, as

in the previous subsection. Let (D̃ \D)⊥ ⊆ A1(Y,Z) be the sublattice generated by classes of curves

C such that [C] · [D̃k] = 0 for all Dk ⊆ D̃ \D (note that this does not depend on the choice of (Ỹ , D̃)).

For each i ∈ I \ F , let Ei := π−1(xi) for some generic point xi ∈ Hi. Let E ⊂ A1(Y,Z) denote the

sublattice generated by the d′i[Ei]’s.

Proposition 6.3.2. S determines an injection κ : K2 ↪→ A1(Y,Z) with image (π∗(A1(Y ,Z))⊕ E) ∩
(D̃ \ D)⊥. In particular, if Y is compact and smooth (so each d′i = 1), then κ is an isomorphism.

Dropping compactness, it is (D̃ \D)⊥.4

Proof. An element r ∈ K2 corresponds to a relation
∑
i∈I aivi = 0 ∈ U trop

S (Z), which corresponds to

a the curve class [Cr] ∈ A1(Y ,Z) such that [Cr] · [Dρ] =
∑
d′jaj , where the sum is over all j such that

vj ∈ ρ. Assume U is generic. Define the map

κ : r 7→ π∗[Cr]−
∑
i∈I\F

aid
′
i[Ei]. (6.4)

We easily see that this is indeed in (π∗(A1(Y ,Z))⊕ E) ∩ (D̃ \D)⊥. For the inverse, the coefficient of

ei in κ−1([C]) is

ai = [C] · [Dvi ] (6.5)

for i ∈ F and is determined by the intersection with π−1(Hi) for i ∈ I \ F .

If U is not generic (i.e., if two different Hi’s coincide), the map can be obtained by using the

Gauss-Manin connection to parallel transport κ(r) from a nearby fiber of λ.

Definition 6.3.3. We take P gp to be the image of κ.

2This does introduce more integral points, but the theta functions corresponding to two integral points in the same

fiber will only differ by the pullback of a monomial on the base of the mirror family.
3It may be a good idea to try and avoid this assumption, but several formulas would get more complicated, and I

do not know of any geometric reason to study cases where this assumption fails. The [GHKK] construction does apply

without this assumption, but it does not use our geometric motivation.
4Our argument is a generalization of the one in [GHK13a] for the two-dimensional case with no frozen vectors (their

Theorem 5.5). The case with no frozen vectors is also closely related to their Theorem 4.1.
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Example 6.3.4. Suppose Y is compact and smooth. Consider ei, ej ∈ E with i ∈ I \ F , j ∈ F ,

p2 ∗ (ei) = d′ifj , where fj = p∗2(ej) is primitive. Then d′i[Ei] = κ(d′iej − ei).

6.3.3 Atrop
S as U trop

S ⊕ P gp
R

We now have that Atrop is an P gp-torsor over U trop. Choose an integral linear section s : N2⊗R→ NR

of p∗2. This determines an identification Atrop
S
∼= U trop

S ⊕ P gpR .

We now return to the assumptions of §4.7.3 about (Y,D) being a smooth compactification (at

least smooth at points on the boundary) which admits a toric model corresponding to S. We want

to describe a section ϕ : U trop
S → Atrop

S which agrees with the map ϕπ from before. First note that if

we view ϕπ as a function to P gpR , the choice of s only changes ϕ by a linear function, so the bending

parameters (which are all we care about) are unchanged.

We must assume that every wall of D0
U,S is a union of cones of Σ.5 We define

ϕ(fi) = ei,

and we extend linearly over the maximal cones of Σ.

Lemma 6.3.5. Let ρ be a codimension 1 wall of Σ, corresponding to a curve class [C] ∈ A1(Y ,Z).

Then ϕ has bending parameter π∗([C]) along ρ.

Proof. Let f0, . . . , fn−1 denote the primitive vectors generating ρ, cyclically ordered respecting to the

orientation of U trop. Let σ0, σn denote the two maximal cones containing ρ (recall that Y smooth

implies each maximal cone is generated by a basis), and let f0, fn, denote the other generators of these

two cones, respectively. Assume the indexing is chosen so that the ordering respects the orientation.

By Proposition 2.7.5, fn = −f0 −
∑n−1
i=1 ([C] ·Dfi)fi.

Recall Equation 2.1 defining the bending parameter bρ:

bρmρ = ϕtrop|σn − ϕtrop|σ0
,

where mρ is a primitive element of the dual space 0 along ρ and positive on σn, and by restriction,

we really mean the linear extension of the restriction. Evaluating both sides at fn, we have

bρ = (en −
∑
j

enj) + (e0 −
∑
j

e0j) +

n−1∑
i=1

([C] ·Dfi)(ei)

=
∑
i∈F

([C] ·Dfi)ei.

Now applying the map κ from Equation 6.4, this clearly becomes bρ = π∗([C]), as desired.

Remark 6.3.6. We note that if one equips U trop with the GHK integral linear structure, then the

argument above shows that the bending parameter corresponding to ρ is the class of the curve corre-

sponding to ρ in Y , rather than the pullback of the one in Y . This is consistent with the definition

of ϕNE(Y ) in §4.3. I do not take this approach because it is not clear how to define the scattering

diagram for this integral linear structure.

5I suspect that this can be avoided if we correctly specify an integral linear structure on A(Rt), but I have not yet

figured this out. The assumption will not really limit us though, since we can always add frozen vectors to make the

assumption satisfied and then remove them later on.
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Theorem 6.3.7. Using the above identification of Atrop
S with U trop

S × (π∗(A1(Y ,Z)) ⊕ E), we have

D0
U,S = D0

A,S. Consequently, the [GHKK] construction of the mirror to A generalizes the [GHK11]

construction of the mirror to (Y,D). In particular, the mirror to (Y,D) is X∨.

Proof. First recall the definitions of the scattering diagrams:

D0
U,S =

{
e⊥i , (1 + zϕ̃π(vi)−d′i[Ei])indN1

((ei,·))
∣∣∣ i ∈ I \ F}

D0
A,S := {(ei, ·)⊥, (1 + zei)indM ((ei,·))|i ∈ I \ F} ⊂ Atrop

S .

Also, recall that {vi}i∈F is are assumed to be a spanning set of primitive vectors in U trop
S (Z). For · ∧ ·

the standard wedge form on U trop(Z), we can assume we have scaled so that [ei, ej ] = didj(vi ∧ vj),
and so 〈ei, ej〉 = vi ∧ vj . Consequently, {p∗1(ei)}i∈F consists of primitive vectors spanning N

sat

1 ⊂M ,

and so N1 = N
sat

1 . Hence, indM ((ei, ·)) = indN1
((ei, ·)).

Since p∗2(a) ∈ e⊥i means exactly that (ei, a) = 0, we see that (p∗2)−1(e⊥i ) is exactly (ei, ·)⊥, so the

supports of the walls of the two scattering diagrams agree. Now it remains to check that κ(ei) =

ϕ̃π(vi) − [Ei]. [THIS ϕ̃π IS ϕ FROM BEFORE]. Lemma 6.3.5 tells us that for p∗2(ei) = d′ip
∗
2(ej),

i ∈ I \F , j ∈ F , we have ϕ̃π(vi) = d′iej . Now applying Example 6.3.4, we get d′iej − κ−1(d′i[Ei]) = ei,

as desired.

6.3.4 The Relative Torus Action and Removing Frozen Vectors

For the constructions above, one often has to include extra frozen vectors in the seed data in order to

satisfy the assumptions. Of course, if we want to remove the frozen vector ej , j ∈ F , we can simply

take the subspace (e∗j )
⊥ ⊂ Atrop

S , and also take the obvious intersection of D0
A,S with this subspace.

This clearly recovers D0
Aj ,Sj , where we use the subscript j to indicate that we have removed ej from

the seed data.

Geometrically, we can interpret this removal frozen vectors as taking the quotient of the mirror

family X∨ → TK∗2 (or possibly a compactification, infinitesimal, or formal version of this) by the

“relative torus action” defined in §5 of [GHK11].6 This means that for j ∈ F , we consider the action

of the one parameter family T〈Dj〉 ⊂ TPic(Y ) on the mirror family. For a :=
∑
aiei ∈ K2, za is an

eigenfunction for the action of T〈Dj〉 with eigenvalue κ(a) ·Dj , which by Equation 6.5 is equal to aj .

Thus, monomials corresponding to points in (e∗j )
⊥ ∩K2 give the ring of invariants for the action on

TK∗2 . Noting that the scattering automorphisms do not affect the value of e∗j on the exponents of the

monomials (because frozen vectors do not appear in the scattering functions), we get the equivariance

of the action, and we also see that the theta functions are eigenfunctions for the action of T〈Dj〉 with

ϑq having eigenvalue (e∗j )(q). In summary:

Theorem 6.3.8. Let X∨ → B be the mirror family to A corresponding to the seed S (B being TK∗2
or whatever compactified, infinitesimal, or formal subspace is appropriate). For any j ∈ F , the one

parameter family T〈Dj〉 corresponding to the inclusion of Dj := Dp∗2(ej) into K∗2 acts equivariantly on

X∨ → B. The theta functions are eigenfunctions with the eigenvalue of ϑq being (e∗j )(q) (interpreted

with respect to the seed S). The quotient is the mirror to the cluster variety obtained by removing the

frozen vector ej from S to obtain a seed we call Sj. DAj ,Sj is obtained from DA,S by intersecting with

(e∗j )
⊥

6The relative torus action in [GHK11] is the one generated by our T〈Dj〉’s for all Dj ⊂ D. Thus, the quotient by

their relative torus action actually corresponds to removing all the frozen vectors.
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6.4 Using Principal Coefficients

To get the mirror to X , we could use the scattering diagram described above in Remark 6.3.1. We

will see that the scattering diagram for X prin is an extension of this, and then, as in [GHKK], we will

use the scattering diagrams in (X prin)trop and (Aprin)trop to better understand the mirrors to X and

A respectively. In particular, we will be able to see that the mirror to A (resp. X ) is in fact X∨ (resp.

A∨) as desired.

By Lemma 5.2.5, since 〈·, ·〉Sprin is non-degenerate, each µAj preserves the centers of the other

blowups. Thus, up to codimension 2, we
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Chapter 7

Examples and Applications of

Cluster Algebras

In this chapter we will briefly look at some applications of cluster algebras. This is a very small sample

of the known applications, and even for these cases we do not go into much detail. The goal is simply

to help motivate the study of cluster algebras and to give the interested reader some ideas of where

to go with the theory.

7.1 Cluster structures on double Bruhat cells of semisimple

groups

7.2 Cluster varieties and surfaces

This section is based closely on [FG06].

Let S be a closed oriented surface of genus g with non-intersecting open discs D1, . . . , Dn. S :=

S \
⋃
Di. Let Ŝ denote the data of S along with a finite (possibly empty) set of distinct marked

boundary points {x1, . . . , xk}, considered up to isotopy. Let ∂Ŝ denote the boundary of S, minus

the marked points. Let N be the number of connected components of ∂Ŝ. We assume that Ŝ is

hyperbolic, meaning that either g > 1, or g = 1 with N ≥ 1, or g = 0 with N ≥ 3. Furthermore, we

assume N > 0.

Let G be a group. A G-local system is the data of a G-principal bundle along with a flat connection.

It is a standard fact that the moduli space LG,S of G-local systems on S can be identified with

Hom(π1(S), G) //G, where the quotient is by the conjugation action of G (this is a GIT quotient, and

the result is an algebraic stack).

Let B be the flag variety parametrizing Borel subgroups of G (for G a subgroup of GLn(C), these

are the subgroups which are isomorphic to the subgroup of upper-triangular matrices in some basis).

If we choose a Borel subgroup B, we can identify B = G/B. Let U := [B,B] be the corresponding

maximal unipotent subgroup (i.e., strictly upper-triangular matrices).

For a G-local system L on S, G acting on the right, one defines the associated flag bundle LB and

57



principal affine bundle LA by

LB := L ×G B = L/B,

LA := L/U.

Definition 7.2.1. Let G be a split reductive group (usually with trivial center). A framed G-local

system on Ŝ is a pair (L, β) where L is a G-local system on S and β is a flat section of LB|∂Ŝ . XG,Ŝ
is the moduli space of framed G-local systems on Ŝ.

Choose a point yi on each component of ∂Ŝ. β may be viewed as a choice of flag Fyi in Lyi for

each i. If the component Ci containing yi is a circle (i.e., a boundary component of S with no marked

points), then Fyi must be monodromy invariant about this circle.

Example 7.2.2. Let Ŝ be a disk with k ≥ 3 marked points on the boundary. Since S is simply

connected, any G-local system L on S is trivial. XG,Ŝ can then be identified with the space of

ordered sets of k not necessarily distinct flags in G—i.e., XG,Ŝ ∼= G\Bk, where G acts diagonally by

conjugation. Note that the cyclic ordering of the k flags is part of the data of XG,Ŝ , but extending

this cyclic ordering to an actual ordering requires a choice. Similarly, if sG = Id (e.g. if |G| has odd

order) then AG,Ŝ ∼= G\Ak, where A := G/U is the principal affine space of G.

For example, if G = PGL2(C), then B ∼= P1, and XG,Ŝ is a compactification of the moduli space

M0,k of k distinct ordered marked points on P1, up to an automorphism of P1. The corresponding

cluster variety we will construct can be identified with a compactificationMcyc
0,k ofM0,k which is very

closely related to the usual Deligne-Mumford compactification M0,k (see [FG11] for the details).

The definition of the A-space is similar (using LA in place of LB), but with a complication involving

keeping track of certain “twisting” data. If the center of G has odd order, this twisting goes away,

and we can state the definition as follows:

Definition 7.2.3. Let G be a split simply connected semisimple algebraic group of odd order (i.e.,

type A2k, E6, E8, F4, G2). A decorated G-local system on Ŝ is a pair (L, α) where L is a G-local system

on S and α is a flat section of LA|∂Ŝ . AG,Ŝ is the moduli space of decorated G-local systems on Ŝ.

If the order of the center is not odd, we must instead use decorated twisted G-local systems. Very

briefly (cf. [FG06] §2 for more details), let w0 be the longest element of the Weyl group of G. This

admits a natural lift w0 to G [I THINK I WILL NEED THIS FOR THE DOUBLE BRUHAT CELL

STUFF, SO MAYBE I SHOULD INCLUDE MORE DETAIL]. Let sG := w0
2. sG is central and

s2
G = 1. For example, if G = SLm, then sG = (−1)m−1 Id.

Now let T ′S be the punctured tangent bundle of S: i.e., the tangent bundle minus the 0-section.

Let γ denote a curve in a fiber of T ′S generating the fundamental group of the fiber. Let σS denote

the corresponding class in π1(T ′S). Let Ci denote a small annulus in S with one of its boundary

circles being a boundary circle Ci of S. Let C ′i be the complement of the marked points in Ci. View

Ci as Ci × [0, 1], and let C′i = C ′i × {1} ⊂ Ci. We use a nonvanishing section of TCi × {1} ⊂ TS to

view C′i as living in T ′S.

Definition 7.2.4. Let G be a split simply connected semisimple algebraic group. A twisted G-local

system on S is a G-local system on T ′S with monodromy sG about σS . A decorated twisted G-local

system on S is a twisted G-local system represented by L on T ′S along with a choice of locally constant

section α of LA|⋃C′i
. AG,Ŝ is the moduli space of decorated twisted G-local systems (L, α) on Ŝ.
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7.2.1 Cluster structures

[FG06] describe cluster structures on ASLm,Ŝ
and XPGLm,Ŝ

. They claim that cluster structures can

be put on these spaces for other groups, but from what I understand there are still details that need

worked out. The main ideas are supposed to be already captured in the relatively simple SL2 and

PGL2 examples, so we will just cover these.

Definition 7.2.5. Choose a single distinguished point on each connected component of ∂Ŝ. An ideal

triangulation T of Ŝ is a triangulation of S with all vertices at these distinguished points. We view

boundary disks without marked points as punctures in S, so the distinguished point on such a disk

can instead be viewed as the point removed when making the puncture. Also, we allow degenerate

triangles where an edge appears twice. An edge of T is called internal if it is not contained in ∂S

(boundary curves connect two distinct distinguished points on the same boundary component—in

particular, edges cannot be contained in punctures).

Note that a point z ∈ XPGL2(C) determines a flag (in this case, a point in P1) at each vertex of T .

Let e be an internal edge of T , contained in a quadrilateral Qe. Let x1, x2, x3, x4 be the four vertices

of Qe, clockwise ordered, with x1 being a vertex of e (it does not matter which vertex). Let p1, . . . , p4

be the corresponding points in P1 determined by a choice of z ∈ XPGL2(C)—we can view them as

living in the same P1 using parallel transport in Q with respect to the flat connection corresponding

to z. We have a cluster variable Xe : XPGL2(C),Ŝ → C∗ corresponding to e defined as the cross-ratio

Xe(z) = − (p4−p1)(p2−p3)
(p4−p3)(p2−p1) (i.e., (p1, p2, p3, p4) can be identified with (0,−1,∞, Xe(z))).

Each choice of T corresponds to a seed for XPGL2(C),Ŝ (viewed as a cluster X -variety)—the cluster

variables for the corresponding seed are the Xe’s as above for the internal edges e. If E is the set of

internal edges, then in the corresponding seed, 〈e1, e2〉 is the number of triangles in T containing e1

and e2 with e2 following e1 in the counterclockwise order, minus the number of such triangles with

e1 following e2 in the counterclockwise order (so this pairing is always an integer in [−2, 2]). In other

words, we can view each internal edge as a vertex of the corresponding quiver with arrows going

counterclockwise through the triangles. A mutation with respect to an edge e then corresponds to

replacing e with the other diagonal of Qe.

We thus obtain a cluster X -variety equal to the subset of XPGL2(C),Ŝ where all the Xe’s for some

triangulation T are C∗-valued.

We can similarly give a nice geometric interpretation of the corresponding A-coordinates which

realizes the corresponding cluster A-variety as a subspace of ASL2(C),Ŝ . Namely, a point w ∈ ASL2(C),Ŝ

determines a vector vi ∈ SL2(C)/U ∼= C2 at each vertex xi of T . For an internal edge e of T with

vertices x1, x2, we associate the coordinate Ae := v1 ∧ v2. To compute this wedge product, we

can parallel transport v1 to x2 along a path following the edges of Qe in the clockwise direction.

Suppose we were to instead define A′e := v2 ∧ v1 with v2 parallel transported to x1 along Qe in the

clockwise direction. It appears at first that this A′e = −Ae, but this is where the twisting comes in:

to define Ae, we could have instead parallel transported v2 to x1 counterclockwise along Qe. Let σ

be the monodromy action on SL2(C)/U corresponding to parallel transporting along a path following

the edges of Qe in the clockwise direction. Since this path is contrctible, the contribution to the

monodromy only comes from the fact that the path goes around the puncture (the removed 0-section)

once when lefted to T ′S. Thus, σ = − Id, and so A′e = σ(v2) ∧ v1 = v1 ∧ v2. So the A-monomials are

indeed well-defined.
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Example 7.2.6. For the situations from Example 7.2.2, triangulations include k−3 edges. Choosing

a “zig-zag” triangulation results in a type Ak−3-quiver.

Remark 7.2.7. We note without proof that the action of the mapping class group ΓŜ of Ŝ on A and

X gives an embedding of ΓŜ into the cluster modular group of A and X .

7.2.2 Positive real points and the relation to Teichmüller spaces

Recall the notion of semifield-valued points from §5.3.3. The R>0-valued points tend to have interesting

geometric interpretations. We explore some of these here:

Example 7.2.8. Suppose Ŝ has no marked boundary points and n > 0 holes, so we can say Ŝ = S.

Theorem 1.7 of [FG06] says

• ASL2(C),S(R>0) is equal to Penner’s decorated Teichmüller space T dS .

• Let T +
S be the finite (2n : 1) cover of the classical Teichmüller space TS consisting of points

p ∈ TS together with a choice of orientation for each boundary component of S (technically, a

choice of orientation for each boundary component which is non-cuspidal with respect to the

hyperbolic structure corresponding to p—this cover is ramified on the boundary of TS). Then

XPGL2(C),S(R>0) = T +
S .

• Recall that we have a forgetful map π : XG,S ↪→ LG,S . [FG06] defines LG,S(R>0) to be the

image of π|XG,S(R>0), and they identify LPGL2(C),S(R>0) with TS .

The forgetful map π : XPGL2(C),S → LPGL2(C),S is also generically 2n : 1. For a generic point x in

LPGL2(C),S , the corresponding monodromy action on G/B ∼= P1 has two invariant points (because a

generic linear map on C2 has two eigenspaces) and the fiber over x is the set of choices of such an

invariant point for each hole. The map is ramified when the monodromy around a hole is unipotent

(which for positive real points does indeed correspond to the hole being cuspidal).

The space LG,S has a Poisson structure where symplectic leaves correspond to specifying the traces

of the monodromies around the holes. We have seen that X -spaces also have a Poisson structure. The

map π is Poisson.

The 2-form Ω̃ on A generalizes the Weil-Petersson 2-form on decorated Teichmüller space. The

image of the map A → X is equal to the quotient of A by the null-foliation of Ω̃. It is also equal to

the subset of X where all monodromies are unipotent (i.e., the ramification locus of π).

[FG11] also describes how to compactify the X -space and X (R>0), and they relate this to Thurston’s

compactification of Teichmüller space. I don’t plan to say any more about this.

Example 7.2.9. Let X be the X -space corresponding to the situation from Example 7.2.2 (k marked

points on the boundary of a disk). Then X (R>0) can be identified with the subspace ofM0,k consisting

of points in P1(R) ∼= S1 whose cyclic ordering with respect to the orientation of P1(R) agrees with

that of the corresponding components of ∂Ŝ.

7.2.3 Laminations and Canonical Coordinates

§12 of [FG06] identifies ASL2(C),S(Qt) with set of “rational A-laminations” of S, and XPSL2(C),S(Zt)
with the set of “integral X -laminations.” These are defined as follows:
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Definition 7.2.10. A rational (resp., integral) A-lamination is a homotopy class of a finite collection

of disjoint simple unoriented closed curves with rational (resp., integral) weights. The weights must be

positive unless the curve surrounds a hole. Ignoring weight 0 curves or combining homotopic curves

(adding their weights) produces equivalent laminations.

A rational (resp., integral) X -lamination is a homotopy class of a finite collection of non-self-

intersecting and pairwise non-intersecting curves which are either closed or connect two (not necessarily

distinct) boundary components of S, along with positive rational (resp., integral) weights and a choice

of orientation for any boundary component intersecting at least one of the curves. Curves retracting

to boundary components can be removed, and homotopic curves can be combined as before.

[FG06] also shows that ASL2(C),S(Zt) can be identified with the half-integral A-laminations (those

where each weight is in 1
2Z) which satisfy a certain parity condition (in particular including all integral

A-laminations).

Fock and Goncharov then describe the theta functions on ASL2(C),S and XPSL2(C),S (up to a sign,

which can be determined by imposing positivity) corresponding to these laminations as follows:

• Suppose q is a loop with weight k not surrounding a puncture.

– Viewed as an A-lamination, the corresponding ϑq : XPSL2(C),S → C is given by taking the

trace of the kth power of the monodromy around q.

– Viewed as an X -lamination, with ϑq : ASL2(C),S → C given by the trace of the kth power

of the monodromy around the lift of q to T ′S.

• Suppose q is a closed curve surrounding a puncture p on S with weight k (an A-lamination).

Let (L, β) ∈ XPSL2(C),S . Then the choice of monodromy-invariant flag β at the puncture p

determines a choice of eigenspace for the monodromy of L around q. ϑq is then λk, where λ is

the corresponding eigenvalue.

• If q is a weight k curve connecting two punctures (an X -lamination), then ϑq is just Akq , where

Aq is the cluster A-monomial defined as in §7.2.1 (i.e., when viewing q as an edge in some

triangulation).

• The rest of the theta functions are determined by the following: For q1 and q2 non-intersecting

classes of curves containing no common isotopy class, ϑq1+q2 = ϑq1ϑq2 .

This deals with all integral A-laminations, but for X -laminations which are curves connecting two

punctures, the orientation at each puncture must be the one induced by the orientation of the surface.

This can be extended to all X -laminations as follows: The group (Z/2Z)n acts birationally on A by

products of the involutions taking the decoration vp at a puncture p to α(p)vp, where α(p) is defined

by saying that the monodromy around p is given in a basis vp, v
′
p by Mp :=

(
1 0

α(p) 1

)
(see [FG06],

§12.6 for more details). (Z/2Z)n also acts on the X -laminations by changing the orientations at the

pucntures, and imposing that the action is equivariant determines the rest of the theta functions. This

action is in the cluster modular group if and only if n > 1.

Exercise 7.2.11. Check that the four-punctured sphere and once-punctured torus really do correspond

to the seeds in Example 5.3.2. Observe that the theta functions on the X -space, as described above,

are as we claimed in Exercise 4.5.5.
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Appendix A

Some Algebraic Geometry

Background

A.1 Divisors

I assume we are dealing with normal varieties over C, but this may be weakened for much of what

I say. A prime Weil divisor in a variety is a closed irreducible codimension 1 subvariety. A Weil

divisor is a formal sum of prime Weil divisors. A principal Weil divisor is one given by the zeroes

and poles of a rational function—that is, one of the form (f) :=
∑

valY (f) · Y , where f is a rational

function and the sum is over all closed irreducible codimension 1 subvarieties Y . valY here denotes the

order of zero (or negative the order of a pole) along Y . Two Weil divisors are linearly equivalent if

they differ by a principal Weil divisor.

A Cartier divisor is a global section of M∗/O∗, the sheaf of nonzero meromorphic functions

modulo the sheaf of invertible holomorphic functions. In other words, choosing an affine open cover

{Ui}, it is a rational function fi on each Ui such that fi/fj is an invertible regular function on Ui∩Uj .
A principal Cartier divisor is one coming from a global rational function. Cartier divisors modulo

linear equivalence on an irreducible variety X may be identified with Pic(X), the group of “invertible

sheaves” (i.e., line bundles) (without irreducibility this gives a subgroup of Pic(X)). The transition

maps are given by the fj/fi’s.

Cartier divisors can be identified with a subset of the Weil divisors (the “locally principal” Weil

divisors, i.e., those locally given by zeroes and poles of rational funcitons) using the zeroes and poles

of the fi’s. This inclusion clearly identifies principal Cartier divisors with principal Weil divisors, and

the inclusion is an isomorphism if the variety is irreducible and “locally factorial” (local rings are

UFD’s). In particular, smooth varieties are locally factorial.

For D =
∑
aiDi a Cartier divisor expressed as a sum of prime Weil divisors, we can identify the

global sections of the associate line bundle O(D) with the subspace of rational functions whose pole

along Di is at worst −ai for each i.

If D1 ∼ D2 (∼ meaning linearly equivalent), then for any curve C, C · D1 = C · D2, where ·
denotes the intersection form (if the intersections are transverse, this is the number of intersection

points). Blowing up a smooth point on a surface gives an exceptional divisor of self-intersection (−1),
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so conversely, self-intersection (−1) curves are the only ones on a surface that can be blown down

to get a smooth point (other curves with negative self-intersection can be blown down to singular

points).

Given a Cartier divisor D ⊂ X, let |D| denote the space of effective divisors linearly equivalent to

D. |D| is called a linear system, and is isomorphic to Proj(H0(X,LD)), where LD is the line bundle

corresponding to D. b is called a base point of |D| if b is contained in every element of |D|. If |D|
is basepoint free, then every b ∈ X determines a hyperplane H in |D| of divisors passing through

b. |H| corresponds to a point in the dual projective space |D|∗ (i.e., the space of hyperplanes in

H0(X,LD) rather than the space of lines), and this determines a map X → |D|∗. Choosing a basis

for H0(X,LD) gives an identification with Pdim(|D|). Note that hyperplane sections of the image of

X in |D|∗ correspond to elements of |D|.

A.2 Formal schemes

Here I will very briefly introduce the idea of formal schemes, which serve as the algebro-geometric

analogue of analytic neighborhoods. In algebraic geometry, the “value” of an element f in a ring R

at a prime ideal p ∈ Spec(R) is defined to be the image f of f in the field of functions κ(p) of R/p.

Alternatively, one can first localize Rp (i.e., allow devision by elements not in p), and then mod out

by the image of p. More generally, if we are not dealing with affine schemes, we can replace this

localization Rp with the localization of the structure sheaf at the point p.

In particular, if p is maximal and Spec(R) is a variety, then this is what one usually thinks of as the

value of f at p, and the localization step can be skipped. For example, for f ∈ k[x], f(a) is the image

of f in k[x]/〈x − a〉. If we instead take k[x]/〈x − a〉2, then the image of f is actually f(a) + f ′(a)x.

Speck[x]/〈x− a〉2 is therefore viewed as a “fat point,” which contains data about the tangent space

to 〈x = a〉 instead of just the point itself.

We can similarly consider k[x]/〈x − a〉k for any k ∈ Z>0, with the image of f being the degree

(k − 1) Taylor polynomial for f . Taking the inverse limit (of the rings) with respect to k, we obtain

k[[x − a]], the ring of formal (i.e., not necessarily converging) powers series centered at x = a. The

ringed space whose underlying topological space is Speck[x]/〈x − a〉 and whose structure sheaf is

this inverse limit k[[x− a]] (or rather, the corresponding inverse limit of sheaves) is called the formal

completion of Speck[x] along 〈x− a〉, and we will denote it by Spf(k[[x− a]]). Similarly if we replace

k[x] with a more general Noetherian ring (or more generally, a Noetherian scheme) and 〈x − a〉 by

some other ideal (or a sheaf of ideals).

When we construct a mirror family, it might only be a formal deformation of the large complex

structure limit, meaning that it will be a family over a formal scheme which possibly has only one

closed point, the fiber over which is the degenerate fiber (the large complex structure limit). Intuitively,

one may think of this as being a family over an analytic open disk with singular fiber over the origin.

Extending to an algebraic family will require a certain affineness assumption.
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