#### Valuative independence of theta functions

Travis Mandel

(based on joint work with M.W. Cheung, T. Magee, and G. Muller)

# Introduction: The Valuative Independence Theorem

### **Discrete valuations**

A (discrete) valuation val on a field K is a function

```
\mathsf{val}: K \to \mathbb{Z} \cup \{\infty\}
```

such that

- ► val(xy) = val(x) + val(y)
- ▶  $val(x + y) \ge min(val(x), val(y))$

• 
$$val(x) = \infty \iff x = 0.$$

for all  $x, y \in K$ .

**Example:**  $D \subset Y$  a prime divisor, K = K(Y), have  $\operatorname{val}_D$  mapping f to the order of vanishing/pole of f along D.

#### Boundary divisors for toric varieties

#### Let

- $\blacktriangleright N \cong \mathbb{Z}^r,$
- $M = \operatorname{Hom}(N, \mathbb{Z}),$
- ▶ and  $T_N = N \otimes \mathbb{C}^* = \operatorname{Spec} \mathbb{C}[M]$  where

$$\mathbb{C}[M] = \mathbb{C}[z^m | m \in M] / \langle z^{m_1} z^{m_2} = z^{m_1 + m_2} | m_1, m_2 \in M \rangle.$$

- ►  $n \in N \setminus \{0\} \rightsquigarrow \rho_n = \mathbb{R}_{\geq 0} n \implies$  boundary divisor  $D_{\rho_n} =: D_n$ .
- Let  $val_n := |n| val_{D_n}$ .
- Fact:  $val_n(z^m) = m \cdot n$ .
- Furthermore:

$$\operatorname{val}_n\left(\sum_m a_m z^m\right) = \min_{a_m \neq 0} (m \cdot n).$$

3

### Valuative Independence Theorem (VIT)

- ► For Y a cluster variety, we again have a lattice N parametrizing divisorial valuations val<sub>n</sub> := |n| val<sub>Dn</sub>.
- Dual lattice *M* parameterizing theta functions  $\vartheta_m$ .

#### Theorem (Cheung-Magee-M-Muller)

$$\operatorname{val}_n\left(\sum_m a_m \vartheta_m\right) = \min_{a_m \neq 0} \operatorname{val}_n(\vartheta_m).$$

- In fact, our argument works in the more general context of theta functions constructed from a positive consistent scattering diagram.
- Application: Get theta function bases for line bundles on compactifications.

### Review of scattering diagrams and theta functions

### Scattering diagrams

- ► A scattering diagram in *M*<sub>R</sub> is a set of walls with attached functions. More precisely:
- A wall in  $M_{\mathbb{R}}$  is a pair  $(\mathfrak{d}, f)$  where
  - $f \in 1 + z^{m_0} \Bbbk \llbracket z^{m_0} \rrbracket$  for some  $m_0 \in M$ ;
  - $\vartheta$  is a cone in  $n_{\vartheta}^{\perp}$  for some  $n_{\vartheta} \in m_{\vartheta}^{\perp}$ .
- ► A scattering diagram D is a set of walls (finite up to any finite order).
- $(\mathfrak{d}, f)$  is called **incoming** if  $m_{\mathfrak{d}} \in \mathfrak{d}$ .
- Fact [GS, KS, GHKK]: Given

$$\mathfrak{D}^{\mathsf{in}} = \{(\mathbf{n}_i^{\perp}, f_i)\}_i,\$$

 $\exists! \text{ consistent scattering diagram } \mathfrak{D} = \mathsf{Scat}(\mathfrak{D}^{\mathsf{in}}) \text{ whose incoming walls are } \mathfrak{D}^{\mathsf{in}}.$ 

### Interpretations of the initial scattering diagram

- If D<sup>in</sup> = {(n<sub>i</sub>, f<sub>i</sub>)}<sub>i</sub>, you should think of the theta functions we will construct as, roughly, being functions on Y constructed as follows:
  - Start with  $TV(\Sigma)$  for  $\Sigma$  a fan in  $N_{\mathbb{R}}$  including rays generated by the  $n_i$ 's.
  - For each *i*, blow up  $D_{n_i} \cap \{f_i = 0\}$ .
- Cluster varieties: Special cases where

$$f_i = (1 + z^{m_i})^{|n_i|}$$

and the matrix

 $(m_i \cdot n_j)_{i,j \text{ indices for } \mathfrak{D}^{in}}$ 

is skew-symmetric (or skew-symmetrizable).

### Theta functions

- Let  $p \in M, x \in M_{\mathbb{R}}$ .
- A broken line with ends (p, x) is a piecewise-straight path Γ : (-∞, 0] → M<sub>ℝ</sub> such that
  - ► Γ(0) = *x*
  - each straight segment  $\Gamma_i$  has an attached monomial  $c_i z^{m_i}$  such that  $\Gamma'_i = -m_i$
  - the initial attached monomial is z<sup>p</sup>
  - F can only bend when crossing a wall (0, f). The attached monomials satisfy

 $c_{i+1}z^{m_{i+1}}$  is a term in  $c_i z^{m_i} f^{m_i \cdot n_0}$ 

where  $n_{\mathfrak{d}} \in \mathfrak{d}^{\perp}$  is primitive in *N* and positive on  $m_i$ .

Now define

$$\vartheta_{p,x} = \sum_{\operatorname{Ends}(\Gamma) = (p,x)} c_{\Gamma} z^{m_{\Gamma}}$$

where  $c_{\Gamma} z^{m_{\Gamma}}$  denotes the final attached monomial of  $\Gamma$ .

•  $\vartheta_{p,x}$  for different x are related by transition functions called path-ordered products.

Review of scattering diagrams and theta functions

### Theta function example



$$\vartheta_{(0,-1),x} = z^{(-1,0)} + z^{(-1,-1)} + z^{(0,-1)}$$

E

∃ ⊳

۱

#### Valuations

- ► For each generic  $x \in M_{\mathbb{R}}$ ,  $\vartheta_{p,x}$  form a (topological) basis for the formal Laurent series ring  $A = \Bbbk[M] = \sum_{m \in M} c_m z^m$ .
- Given  $n \in N_{\mathbb{R}}$ , define val<sub>n</sub> on A by

$$\operatorname{val}_n:\sum_m c_m z^m = \inf_{c_m \neq 0} m \cdot n.$$

Valuative Independence Theorem:

$$\operatorname{val}_n(\sum_m c_m \vartheta_{m,x}) = \min_{c_m \neq 0} \operatorname{val}_n(\vartheta_{m,x})$$

whenever the right-hand side is finite.

#### Proof sketch for the Valuative Independence Theorem

#### Tautness

Assuming positivity,

$$\mathsf{val}_n(\vartheta_{m,x}) = \mathsf{val}_n\left(\sum_{\mathsf{Ends}(\Gamma)=(m,x)} c_{\Gamma} z^{m_{\Gamma}}\right) = \min_{\mathsf{Ends}(\Gamma)=(m,x)} m_{\Gamma} \cdot n.$$

- Show this is true even if we allow "rational broken lines" whose bends are *c* times bends of ordinary broken lines for *c* ∈ ℚ ∩ [0, 1].
- Theorem: The val<sub>n</sub>-minimizing rational broken lines are "n-taut" (greedy approach to minimizing). Otherwise they wouldn't even give local minima.

### Tropical theta functions

• Let  $\vartheta_{m,x}^{\text{trop}}$  be the piecewise-linear function on  $N_{\mathbb{R}}$  given by

 $\vartheta_{m,x}^{\mathrm{trop}}(n) = \mathrm{val}_n(\vartheta_{m,x}).$ 

- ► **Theorem:** The slope of  $\vartheta_{m,x}^{\text{trop}}$  at a generic *n* uniquely determines *m*. So if  $\vartheta_{m_1,x}^{\text{trop}} = \vartheta_{m_2,x}^{\text{trop}}$  at a generic *n*, then  $m_1 = m_2$ .
- ► **Proof:** The slope determines  $m_{\Gamma}$  for the minimizing  $\Gamma$ , and then we can reconstruct  $\Gamma$  by tracing backwards from *x* using the *n*-tautness condition until we recover *m*.
- VIT is a corollary: In general,

$$\operatorname{val}_n\left(\sum_i f_i\right) \geq \min_i \left(\operatorname{val}_n(f_i)\right)$$

and strict inequality can only happen if  $val_n(f_i) = val_n(f_j)$  for some  $i \neq j$ .

### Applications of VIT and tautness

크

### Linear independence of theta functions

- Theta functions are linearly independent (easy).
- But what about after specializing coefficients?
- Theorem: Theta functions remain linearly independent after specializing coefficients.
- Proof idea:
  - Let  $f = \sum c_m \vartheta_m$ .
  - For generic n, valn(f) is determined by a taut broken line, and no other broken line contributing to valn(f) gives the same valuation.
  - So coefficient-specialization cannot affect val<sub>n</sub>(f).
  - ln fact,  $f^{trop}$  is unchanged.
  - ▶ In particular, *f* does not become 0 after specializing coefficients.

### Bases for line bundles on compactifications

- Suppose {ϑ<sub>m</sub> : m ∈ M} is a theta function basis for regular functions on a cluster variety U.
- Primitive  $n \in N \iff$  boundary divisors  $D_n$ .
- ▶ Let  $F \subset N$  be a finite set of primitive vectors and  $Y = U \cup \bigcup_{n \in F} D_n$ .

• Let  $W = \sum a_i D_{n_i}$ ,

 $\Gamma(Y, \mathcal{O}(W)) = \{f \in K(Y) | \operatorname{val}_{n_i}(f) \ge a_i \text{ for all } i\}.$ 

• Corollary of VIT: We have a theta function basis for  $\Gamma(Y, \mathcal{O}(W))$ :

 $\{\vartheta_m | \operatorname{val}_{n_i}(\vartheta_m) \ge a_i \text{ for all } i\}$ 

- ► Every line bundle in Y is isomorphic to O(W) for some boundary divisor W on Y<sup>prin</sup> [M, '19, Cluster algebras are Cox rings]
- ► So we get theta function bases for all line bundles! (Assuming *U*<sup>prin</sup> has a theta function basis).

## Theta functions and unfreezing

- Let s be a seed (i.e., an initial scattering diagram)
- ▶ s' obtained from s by unfreezing (i.e., creating new initial scattering walls).
- Let  $\vartheta_m$  be a theta function for **s**.
- ► **Theorem:** If  $\vartheta_m$  extends to a global regular function  $\tilde{\vartheta}_m$  for  $\mathbf{s}'$ , then  $\tilde{\vartheta}_m$  is a theta function for  $\mathbf{s}'$ .
- Proof sketch (for principal coefficients):
  - Note  $\operatorname{val}_n(\widetilde{\vartheta}_m) = \operatorname{val}_n(\vartheta_m)$  for each *n*.
  - Also,  $\tilde{\vartheta}_m = \vartheta'_m + \sum_{v \in m + M^+} a_v \vartheta'_v$ .
  - ► So VIT  $\implies$  val<sub>n</sub>( $\vartheta_m$ )  $\le$  val<sub>n</sub>( $\vartheta'_m$ ) for all *n*.
  - But if  $\vartheta'_m \neq \widetilde{\vartheta}_m$ , then  $\operatorname{val}_n(\vartheta'_m) < \operatorname{val}_n(\vartheta_m)$  for some *n*.

### Moduli of local systems

For  $\Sigma$  a marked triangulable surface, and let  $\mathcal{Y}_{\Sigma}$  be one of Fock-Goncharov's moduli of local systems on  $\Sigma.$ 

#### Corollary

Let  $\Sigma'$  be obtained from  $\Sigma$  via gluing boundary arcs. Then theta functions on  $\mathcal{Y}_{\Sigma}$  give theta functions on  $\mathcal{Y}_{\Sigma'}$ .

**Proof idea:** Gluing boundary arcs can be understood as identifying and then unfreezing certain frozen indices.

### Notation: valuations and tropical theta functions

- Let  $\vartheta_m$  denote  $\vartheta_{m,x}$  for x in the positive chamber.
- $n \in N$  determines  $val_n : M \to \mathbb{Z}, m \mapsto val_n(\vartheta_m)$ .
- $m \in M$  determines  $\vartheta_m^{\text{trop}} : N \to \mathbb{Z}, n \mapsto \text{val}_n(\vartheta_m).$

### Theta reciprocity

• Let 
$$\mathfrak{D}^{in} = \{ n_i^{\perp}, (1 + z^{m_i})^{|n_i|} \}, \mathfrak{D} = \mathsf{Scat}(\mathfrak{D}^{in})$$

• Define  $\mathfrak{D}^{\vee}$  similarly switching the roles of *N* and *M*, so

$$(\mathfrak{D}^{\vee})^{\text{in}} = \{m_i^{\perp}, (1+z^{n_i})^{|m_i|}\}.$$

• Theorem: For all  $n \in N$ ,  $m \in M$ , we have

$$\operatorname{val}_n(\vartheta_m) = \operatorname{val}_m(\vartheta_n).$$

Application [Keel]:

• Let 
$$Y = U \cup \bigcup_{n \in F} D_n$$
 like we saw before.

• Let 
$$W = \sum_{n \in F} \vartheta_n$$
 (potential on mirror  $U^{\vee}$ )

• Let 
$$\Xi = \{ W^{\text{trop}} \ge 0 \} \subset M_{\mathbb{R}}$$
.

• Then 
$$\{\vartheta_m | m \in \Xi\}$$
 form a basis for  $\Gamma(Y, \mathcal{O}_Y)$ .

### Applications in representation theory

- ▶ Let G be a reductive group, B a maximal Borel, N the unipotent radical of B.
- Irreducible representations of G correspond to weight-spaces of functions on G/N
- ► *G*/*N* is a partial compactification of a cluster variety *A* which has a theta function basis.
- ► Corollary: We get a theta function basis for every irreducible representation of G, cut out by a slice of some { W<sup>trop</sup> ≥ 0}.
- $G = SL_n$  case was in T. Magee's thesis. VIT lets us generalize (without finding an "optimized seed").